Badanie liniowego efektu elektrooptycznego
|
|
- Amelia Madej
- 6 lat temu
- Przeglądów:
Transkrypt
1 Badanie liniowego efektu elektrooptcznego Wstęp Rozwój telekomunikacji optcznej oraz techniki laserowej spowodował zapotrzebowanie na materiał i urządzenia, za pomocą którch można sterować wiązką świetlną. Do modulacji wiązki świetlnej najczęściej wkorzstwan jest efekt elektrooptczn, ponieważ wtworzenie pola elektrcznego o określonej wartości jest znacznie prostsze niż np. pola magnetcznego. Bardzo ważnm argumentem jest również możliwość bardzo szbkich zmian pola elektrcznego, a więc modulacja światła z bardzo wsoką częstością. Celem ćwiczenia jest zapoznanie ze zjawiskami, w którch objawia się falowa natura światła, podstawowmi pojęciami dotczącmi własności optcznch ośrodków anizotropowch, liniowm i kwadratowm zjawiskiem elektrooptcznm, oraz metodą badania zjawiska elektrooptcznego. Zjawisko podwójnego załamania światła Fala przechodząc przez granicę ośrodków ulega zwkle załamaniu. Współcznnik załamania definiowan jest jako stosunek prędkości fazowch fal w tch ośrodkach. W przpadku światła mam do cznienia z falą elektromagnetczną, a współcznnik załamania określa się najczęściej w stosunku do próżni (bezwzględn współcznnik załamania światła. Prawo załamania światła dla ośrodków izotropowch zapisuje się w postaci podanej przez Sneliusa sinα / sinβ n c / v (l gdzie a jest kątem padania promienia, to jest kątem pomiędz normalną do powierzchni i promieniem padającm, p- kątem załamania, n - współcznnikiem załamania, c - prędkością światła w próżni, a u prędkością światła w danm ośrodku. Warto podkreślić dość oczwist fakt, że promień padając i załaman leżą w jednej płaszczźnie, gd mam do cznienia z ośrodkiem izotropowm. W przpadku ośrodków anizotropowch prędkość fazowa fali zależ nie tlko od kierunku rozchodzenia się promienia, lecz może zależeć od kierunku drgań wektora elektrcznego. Tę zależność współcznnika załamania od kierunku propagacji fali opisuje się za pomocą zależności n + n z + nz 1 ( Jest to równanie tzw. indkatrs, a n, n, n z są głównmi współcznnikami załamania. W ośrodkach anizotropowch istnieje prznajmniej jeden taki kierunek rozchodzenia się promienia,
2 dla którego prędkość fazowa światła nie zależ od kierunku polarzacji. Kierunek ten nazwam osią optczną ośrodka. Jeżeli wiązka światła niespolarzowanego rozchodzi się w ośrodku optcznie anizotropowm pod pewnm kątem do osi optcznej, to ulega rozdzieleniu na dwie. Jedna z tch wiązek leż w płaszczźnie padania i spełnia prawo Sneliusa. Wiązkę tę nazwa się wiązką lub promieniem zwczajnm. Druga z wiązek leż poza płaszczzną padania i nazwana jest nadzwczajną. Współcznnik złamania promienia zwczajnego n o i współcznnik załamania promienia nadzwczajnego n e określim jako n c/v (3 n e c / v e (4 Wstępujące w równaniach (3 i (4 wielkości \ i \ e są prędkościami fazowmi dla promienia zwczajnego i nadzwczajnego. Zjawisko podwójnego załamania nazwane jest dwójłomnością. Ze względu na własności optczne ciała stałe (krształ dzielim na trz grup: 1. Krształ należące do układu regularnego zachowują się jak ośrodki izotropowe, a więc nie obserwuje się w nich podwójnego załamania (przkładem jest sól kuchenna. W tm przpadku n n n z n o i indkatrsa jest kulą o promieniu n o.. W krształach należącch do układu heksagonalnego, trgonalnego i tetragonalnego istnieje jeden kierunek (tzw. oś optczna, dla którego prędkość fazowa fali świetlnej nie zależ od kierunku polarzacji. Krształ te nazwa się optcznie jednoosiowmi. Główne współcznniki załamania n n n o i n^ n e i wobec tego indkatrsa jest elipsoidą obrotową. Osią optczną jest oś z. 3. W krształach należącch do układu jednoskośnego, trójskośnego i rombowego istnieją dwa wróżnione kierunki (osie optczne. Krształ te nazwam dwuosiowmi. Tutaj mam n n n z. Miarą dwójłomności ośrodka jest różnica pomiędz współcznnikiem załamania dla promienia zwczajnego i nadzwczajnego Δ n n (5 e n Jeżeli Aw < O, to krształ nazwan jest optcznie dodatnim, natomiast w przpadku A/i > O optcznie ujemnm. Warto jeszcze podkreślić, że promienie zwczajn i nadzwczajn są
3 spolarzowane w kierunkach wzajemnie prostopadłch. Zjawisko to wkorzstuje się do budow polarzatorów, np. przmatów Nicola. Rs. l. Indkatrs krształów jednoosiowch (oś optczna zaznaczona grubszą linią dla dwóch przpadków: a krształ optcznie ujemn i b optcznie dodatni. Promienie zwczajn i nadzwczajn mogą ze sobą interferować. Jeżeli interferują ze sobą dwie wiązki spolarzowane liniowo o kierunkach wzajemnie prostopadłch, to w wniku interferencji otrzmam wiązkę spolarzowaną kołowo, eliptcznie lub liniowo w zależności od różnic faz, tak jak to ma miejsce podczas składania drgań wzajemnie prostopadłch o tej samej częstości. Jeżeli promień zwczajn i nadzwczajn przejdą w krsztale drogę /, to różnica faz pomiędz promieniem zwczajnm i nadzwczajnm wnosi Δ γ ( n e n λ (6 πl / gdzie λ jest długością fali w próżni. Zjawisko elektrooptczne Dwójłomność może zostać wwołana (również w ciałach izotropowch za pomocą cznników zewnętrznch takich jak naprężenia mechaniczne, pole elektrczne lub magnetczne cz też gradient temperatur. Dwójłomność ośrodka pod nieobecność cznników zewnętrznch nazwa się dwójłomnością spontaniczną, natomiast dwójłomność spowodowana cznnikiem zewnętrznm nazwa się dwójłomnością wmuszoną lub indukowaną. Zmiana dwójłomności wwołana zewnętrznm polem elektrcznm nazwa się zjawiskiem elektrooptcznm. Jeżeli zmiana dwójłomności 6Aw jest liniową fiinkcją natężenia pola elektrcznego, to mówim o liniowm efekcie elektrooptcznm lub o efekcie Pockelsa
4 δδn r (7 W przpadku, gd zmiana jest proporcjonalna do kwadratu natężenia pola elektrcznego, mam do cznienia z kwadratowm zjawiskiem elektrooptcznm nazwanm na cześć jego odkrwc efektem Kerra δδn R (8 W obu przpadkach może zmieniać się wartość zarówno współcznnika załamania promienia zwczajnego jak i nadzwczajnego. Jeżeli kierunek rozchodzenia się wiązki światła jest równoległ do kierunku zewnętrznego pola elektrcznego, mam do cznienia z podłużnm zjawiskiem elektrooptcznm, natomiast w przpadku, gd kierunek pola elektrcznego jest prostopadł do tego promienia, zjawisko nazwam poprzecznm. Na rs. przedstawiono wzajemną orientację kierunku rozchodzenia się wiązki światła i pola elektrcznego w podłużnm i poprzecznm efekcie elektrooptcznm. Powierzchnie zakreskowane smbolizują elektrod naniesione na krształ (do elektrod przkładane jest napięcie. efekt podłużn r efekt poprzeczn r Rs.. fekt elektrooptczne, podłużn i poprzeczn. Zaznaczono kierunek biegu wiązki światła r i pola elektrcznego. Rozpatrzm przejście wiązki światła spolarzowanego przez krształ. Dla prostot rozważań założm, że płaszczzna polarzacji wiązki tworz kąt n/4 z kierunkiem, dla którego współcznnik załamania ma wartość największą prz danm kierunku propagacji wiązki. Wiązka ulega rozdzieleniu na dwie wzajemnie prostopadle spolarzowane wiązki. Jeżeli natężenia pola elektrcznego wiązki padającej oznaczm przez j, to amplitud pól promienia zwczajnego i nadzwczajnego będą jednakowe (9
5 Podczas wejścia do krształu faz tch promieni są także jednakowe. Kr Rs. 3. Ilustracja do obliczenia natężenia fali świetlnej prz przechodzeniu przez układ polarzator P, krształ Kr, analizator A. Na rsunku zaznaczono płaszczzn transmisji polarzatora i analizatora. Po przejściu przez krształ faz te wnoszą γ i γ, a ich różnica określona jest równaniem (6. Składowe natężenia pola fal po przejściu przez krształ są równe cos( ω t + γ (1 cos( ω t + γ (11 Jak już wspomniano, fale te interferują dając w wniku tej interferencji falę spolarzowaną liniowo, kołowo lub eliptcznie zależnie od różnic faz - Y Ab obliczć natężenie wiązki po przejściu przez analizator ustawion tak, że jego płaszczzna przepuszczania jest równoległa do płaszczzn przepuszczania polarzatora, zwróćm uwagę na to, że analizator przepuszcza rzut tch promieni. Rzut te są równe cos( ω t + γ cos( ωt + γ (1 cos( ω t + γ cos( ωt + γ (13
6 Kwadrat amplitud natężenia pola wpadkowego obliczm tak jak oblicza się amplitudę złożenia dwóch drgań o jednakowch częstościach zachodzącch w tej samej płaszczźnie + + cos( γ γ (14 Rs. 3 Ilustracja do wzoru (14 Podstawiając do równania (14 X / otrzmam [ cos( γ + 1] 1 γ (15 Natężenie wiązki jest jak już wspomniano proporcjonalne do kwadratu amplitud, a więc stosunek natężenia wiązki wchodzącej z układu do natężenia wiązki padającej uzskujem dzieląc prawą stronę równania (15 przez I I wj 1 [ cos( γ γ + 1] [ cos( Δ γ ] (16 Jeżeli dwójłomność wwołana jest przez liniowe zjawisko elektrooptczne, to korzstając z równań (6 i (7 otrzmam πl rπl Δ γ ( n e n (17 λ λ W elektrooptce stosowane jest oznaczenie ΔГ zamiast Δγ Napięcie potrzebne do wwołania różnic faz ΔГ π, czli napięcie potrzebne do przejścia od całkowitego wgaszenia do maksmalnego rozjaśnienia nazwane jest napięciem półfali - U 1/. Z równania (17 po skorzstaniu z warunku ΔГ π i z tego, że U d, gdzie d jest odległością międz elektrodami, mam πlu π dλ 1/ (18
7 i po przekształceniu powższego równania otrzmujem U 1/ λd rl (19 Napięcie półfali podawane jest zwczajowo w V/cm. Jeżeli korzstam z podłużnego efektu elektrooptcznego, to długość drogi /, jaką przebwa promień światła jest równa odległości pomiędz elektrodami d i napięcie półfali nie zależ od wmiarów krształu. W przpadku zjawiska poprzecznego jest proporcjonalne do odległości międz elektrodami i odwrotnie proporcjonalne do drogi optcznej. Tak więc wgodniej jest korzstać z efektu poprzecznego, ponieważ wdłużając drogę optczną i zmniejszając grubość krształu można znacznie zmniejszć napięcie potrzebne do sterowania wiązką świetlną.
EFEKT POKELSA I MODULACJA WIĄZKI LASEROWEJ.
EFEKT POKELSA I MODULACJA WIĄZKI LASEROWEJ. Sprawdzanie prawa Malusa Światło jest falą elektromagnetczną o długości z przedziału 4-8 nm. Fale elektromagnetczne o długości większej od 8 nm nazwane są promieniowaniem
Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa, badanie komórki Pockelsa i Kerra
Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa badanie komórki Pockelsa i Kerra Opracowanie: Ryszard Poprawski Katedra Fizyki Doświadczalnej Politechnika Wrocławska Wstęp Załamanie światła
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 5, Radosław Chrapkiewicz, Filip Ozimek
Podstaw Fizki IV Optka z elementami fizki współczesnej wkład 5, 27.02.2012 wkład: pokaz: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wkład 4 - przpomnienie dielektrki
Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT
Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów
Polaryzacja kołowa. Jak spolaryzować światło Dwójłomność 1/8/2010 1/8/2010
Wkład 1 Polarzacja światła Polarzacja liniowa, kołowa i eliptczna Jak spolarzować światło Dwójłomność Spin fotonu a polarzacja Barwa i natęŝenie to dwie cech światła, które są rejestrowane przez nasz zmsł
O5. BADANIE PROPAGACJI ŚWIATŁA W OŚRODKACH ANIZOTROPOWYCH
O5. BADANI PROPAGACJI ŚWIATŁA W OŚRODKACH ANIZOTROPOWYCH opracowała Bożena Janowska-Dmoch Ośrodkami anizotropowmi optcznie nazwam takie substancje, którch własności optczne zależą zarówno od kierunku rozchodzenia
Fizyka elektryczność i magnetyzm
Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
Fala EM w izotropowym ośrodku absorbującym
Fala EM w izotropowym ośrodku absorbującym Fala EM powoduje generację zmienne pole elektryczne E Zmienne co do kierunku i natężenia, Pole E Nie wywołuje w ośrodku prądu elektrycznego Powoduje ruch elektronów
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą
Ekstrema funkcji dwóch zmiennych
Wkład z matematki inżnierskiej Ekstrema funkcji dwóch zmiennch JJ, IMiF UTP 18 JJ (JJ, IMiF UTP) EKSTREMA 18 1 / 47 Ekstrema lokalne DEFINICJA. Załóżm, że funkcja f (, ) jest określona w pewnm otoczeniu
25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx
5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.
Pierwiastki kwadratowe z liczby zespolonej
Pierwiastki kwadratowe z liczb zespolonej Pierwiastkiem kwadratowm z liczb w C nazwam każdą liczbę zespoloną z C, dla której z = w. Zbiór wszstkich pierwiastków oznaczam smbolem w. Innmi słow w = {z C
Równania różniczkowe cząstkowe
Równania różniczkowe cząstkowe Definicja: Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch
Rysunek 4.1. Odwzorowanie przez soczewkę. PołoŜenie obrazu znajdziemy, korzystając z równania (3.41). Odpowiednio dla obu powierzchni mamy O C
Temat 4: Podstaw optki geometrcznej-3 Ilość godzin na temat wkładu: Zagadnienia: Cienka soczewka sferczna. Wzór soczewkow. Konstrukcja obrazu w soczewce cienkiej. Powiększenie soczewki cienkiej. Soczewka
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny
BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ
ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Cel ćwiczenia: Zapoznanie się ze zjawiskiem Faradaya. Wyznaczenie stałej Verdeta dla danej próbki. Wyznaczenie wartości ładunku właściwego elektronu
Równania różniczkowe cząstkowe
Równania różniczkowe cząstkowe Definicja Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch
falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
Widmo fal elektromagnetycznych
Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą
Polaryzatory/analizatory
Polaryzatory/analizatory Polaryzator eliptyczny element układu optycznego lub układ optyczny, za którym światło jest spolaryzowane eliptycznie i o parametrach ściśle określonych przez polaryzator zazwyczaj
OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę
OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
Wektory. P. F. Góra. rok akademicki
Wektor P. F. Góra rok akademicki 009-0 Wektor zwiazan. Wektorem zwiazanm nazwam parę punktów. Jeżeli parę tę stanowią punkt,, wektor przez nie utworzon oznaczm. Graficznie koniec wektora oznaczam strzałką.
ψ przedstawia zależność
Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi
Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski
Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne
Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski
Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne
WYDZIAŁ.. LABORATORIUM FIZYCZNE
WSEiZ W WARSZAWIE WYDZIAŁ.. LABORATORIUM FIZYCZNE Ćw. nr 8 BADANIE ŚWIATŁA SPOLARYZOWANEGO: SPRAWDZANIE PRAWA MALUSA Warszawa 29 1. Wstęp Wiemy, że fale świetlne stanowią niewielki wycinek widma fal elektromagnetycznych
Zadania do rozdziału 10.
Zadania do rozdziału 0. Zad.0.. Jaką wsokość musi mieć pionowe zwierciadło ab osoba o wzroście.80 m mogła się w nim zobaczć cała. Załóżm, że ocz znajdują się 0 cm poniżej czubka głow. Ab prawidłowo rozwiązać
12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej
1. FUNKCJE WIELU ZMIENNYCH 1.1. FUNKCJE DWÓCH ZMIENNYCH Funkcją dwóch zmiennch określoną w zbiorze D R nazwam przporządkowanie każdej parze liczb () D dokładnie jednej liczb rzeczwistej z. Piszem prz tm
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
Laboratorium TECHNIKI LASEROWEJ. Ćwiczenie 1. Modulator akustooptyczny
Laboratorium TECHNIKI LASEROWEJ Ćwiczenie 1. Modulator akustooptyczny Katedra Metrologii i Optoelektroniki WETI Politechnika Gdańska Gdańsk 2018 1. Wstęp Ogromne zapotrzebowanie na informację oraz dynamiczny
Ćwiczenie 361 Badanie układu dwóch soczewek
Nazwisko... Data... Wdział... Imię... Dzień tg.... Godzina... Ćwiczenie 36 Badanie układu dwóch soczewek Wznaczenie ogniskowch soczewek metodą Bessela Odległość przedmiotu od ekranu (60 cm 0 cm) l Soczewka
BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA
ZDNIE 11 BDNIE INTERFERENCJI MIKROFL PRZY UŻYCIU INTERFEROMETRU MICHELSON 1. UKŁD DOŚWIDCZLNY nadajnik mikrofal odbiornik mikrofal 2 reflektory płytka półprzepuszczalna prowadnice do ustawienia reflektorów
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 18, 23.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 17 - przypomnienie
POLARYZACJA ŚWIATŁA OPISY MATEMATYCZNE
POLARYZACJA ŚWIATŁA OPISY MATMATYCZN prof. dr hab. inż. Krzsztof Patorski Analiza propagacji światła w ośrodku anizotropowm, którego właściwości zależą od kierunku propagacji wiązki, wmaga wprowadzenia
Światło Światł jako fala
Światło jako fala 1 Fala elektromagnetczna widmo promieniowania ν c Czułość oka ludzkiego w zakresie widzialnm Wtwarzanie fali elektromagnetcznej o częstościach radiowch E(x, B(x, t) t) E B m m sin (kx
Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54
Metody Optyczne w Technice. Wykład 8 Polarymetria
Metody Optyczne w Technice Wykład 8 Polarymetria Fala elektromagnetyczna div D div B 0 D E rot rot E H B t D t J B J H E Fala elektromagnetyczna 2 2 E H 2 t 2 E 2 t H 2 v n 1 0 0 c n 0 Fala elektromagnetyczna
Równania Maxwella i równanie falowe
Równania Maxwella i równanie falowe Prezentacja zawiera kopie folii omawianch na wkładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wkorzstanie niekomercjne dozwolone pod warunkiem podania
Prawa optyki geometrycznej
Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)
4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)
Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera
Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku.
Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku. Definicje: promień fali kierunek rozchodzenia się fali powierzchnia falowa powierzchnia,
Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
Falowa natura światła
Falowa natura światła Christiaan Huygens Thomas Young James Clerk Maxwell Światło jest falą elektromagnetyczną Barwa światło zależy od jej długości (częstości). Optyka geometryczna Optyka geometryczna
[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia.
rzkład 10.3. Łuk paraboliczn. Rsunek przedstawia łuk wolnopodpart, którego oś ma kształt paraboli drugiego stopnia (łuk paraboliczn ). Łuk obciążon jest ciśnieniem wewnętrznm (wektor elementarnej wpadkowej
Fizyka 12. Janusz Andrzejewski
Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające
Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi:
Stan naprężenia Przkład 1: Tarcza (płaski stan naprężenia) Określić sił masowe oraz obciążenie brzegu tarcz jeśli stan naprężenia wnosi: 5 T σ. 8 Składowe sił masowch obliczam wkonując różniczkowanie zapisane
Liczby zespolone. Niech C = R 2. Zdefiniujmy dwa działania w C. Dodawanie + : C 2 C zdefiniowane jest przez
Liczb zespolone Ciało liczb zespolonch Niech C = R. Zdefiniujm dwa działania w C. Dodawanie + : C C zdefiniowane jest przez (, ) + (, ) = ( +, + ). Ćwiczenie. Obliczm (, ) + (, 0) =.................................................
Podstawy fizyki wykład 7
Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale
Optyka 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Optka Projekt współinansowan przez Unię Europejską w ramach Europejskiego Funuszu Społecznego Optka II Promień świetln paając na powierzchnię zwierciała obija się zgonie z prawem obicia omówionm w poprzeniej
Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu
Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi
WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA
WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA 1. Interferencja fal z dwóch źródeł 2. Fale koherentne i niekoherentne 3. Interferencja fal z wielu źródeł 4. Zasada Huygensa 5.
III. Opis falowy. /~bezet
Światłowody III. Opis falowy BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet Równanie falowe w próżni Teoria falowa Równanie Helmholtza Równanie bezdyspersyjne fali płaskiej, rozchodzącej
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i
Agata Saternus piątek Dwójłomność kryształów, dwójłomność światłowodów, dwójłomność próżni (z ang. vacuum birefringence)
Agata Saternus piątek 9.07.011 Dwójłomność kryształów, dwójłomność światłowodów, dwójłomność próżni (z ang. vacuum birefringence) Dwójłomność odkrył Rasmus Bartholin w 1669 roku, dwójłomność kryształu
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 18, 07.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 17 - przypomnienie
2. CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH
dam Bodnar: Wtrzmałość Materiałów. Charakterstki geometrczne figur płaskich.. CHRKTERSTKI GEOMETRCZNE FIGUR PŁSKICH.. Definicje podstawowch charakterstk geometrcznch Podczas zajęć z wtrzmałości materiałów
WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki
- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)
37. Straty na histerezę. Sens fizyczny. Energia dostarczona do cewki ferromagnetykiem jest znacznie większa od energii otrzymanej. Energia ta jest tworzona w ferromagnetyku opisanym pętlą histerezy, stąd
POLARYZACJA ŚWIATŁA. Uporządkowanie kierunku drgań pola elektrycznego E w poprzecznej fali elektromagnetycznej (E B). światło niespolaryzowane
FALE ELEKTROMAGNETYCZNE Polaryzacja światła Sposoby polaryzacji Dwójłomność Skręcanie płaszczyzny polaryzacji Zastosowania praktyczne polaryzacji Efekty fotoelastyczne Stereoskopia Holografia Politechnika
Podstawy fizyki sezon 2 8. Fale elektromagnetyczne
Podstawy fizyki sezon 8. Fale elektromagnetyczne Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Przenoszenie
Rozwiązywanie układu równań metodą przeciwnych współczynników
Rozwiązwanie układu równań metodą przeciwnch współcznników Sposob postępowania krok po kroku: I. przgotowanie równań. pozbwam się ułamków mnoŝąc kaŝd jednomian równania równań przez najmniejszą wspólną
1 Płaska fala elektromagnetyczna
1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI
ZADANIE DOŚWIADCZALNE 2 DWÓJŁOMNOŚĆ MIKI W tym doświadczeniu zmierzysz dwójłomność miki (kryształu szeroko używanego w optycznych elementach polaryzujących). WYPOSAŻENIE Oprócz elementów 1), 2) i 3) powinieneś
Wykład FIZYKA II. 7. Optyka geometryczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 7. Optyka geometryczna Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ WSPÓŁCZYNNIK ZAŁAMANIA Współczynnik załamania ośrodka opisuje zmianę prędkości fali
lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów
9. CAŁKA POWÓJNA 9.. Całka podwójna w prostokącie Niech P będzie prostokątem opisanm na płaszczźnie OXY nierównościami: a < < b, c < < d, a f(,) funkcją określoną i ograniczoną w tm prostokącie. Prostokąt
Scenariusz lekcji Zwierciadła i obrazy w zwierciadłach
Scenariusz lekcji. Temat lekcji: Zwierciadła i obraz w zwierciadłach 2. Cele: a) Cele poznawcze: Uczeń wie: - co to jest promień świetln, - Ŝe światło rozchodzi się prostoliniowo, - na czm polega zjawisko
Wykład Analiza jakościowa równań różniczkowych
Na podstawie książki J. Rusinka, Równania różniczkowe i różnicowe w zarządzaniu, Oficna Wdawnicza WSM, Warszawa 2005. 21 maja 2012 Definicja Stabilność Niech = F (x, ) będzie równaniem różniczkowm. Rozwiązanie
Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
Laboratorium techniki laserowej. Ćwiczenie 1. Modulator akustooptyczny
Laboratorium techniki laserowej Ćwiczenie 1. Modulator akustooptyczny Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wstęp Ogromne zapotrzebowanie na informację
Wykład I Krzysztof Golec-Biernat Optyka 1 / 16
Optyka Wykład I Krzysztof Golec-Biernat Fale 1 Uniwersytet Rzeszowski, 4 października 2017 Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Uwagi wstępne 30 h wykładu wykład przy pomocy transparencji lub
Wykład 17: Optyka falowa cz.1.
Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 11. Fale mechaniczne Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html FALA Falą nazywamy każde rozprzestrzeniające
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 20, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 20, 07.05.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 19 - przypomnienie
Piotr Targowski i Bernard Ziętek GENERACJA II HARMONICZNEJ ŚWIATŁA
Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki GENERACJA II HARMONICZNEJ ŚWIATŁA Zadanie VI Zakład Optoelektroniki Toruń 004 I. Cel zadania Celem
Promieniowanie dipolowe
Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A
Równanie Fresnela. napisał Michał Wierzbicki
napisał Michał Wierzbici Równanie Fresnela W anizotropowych ryształach optycznych zależność między wetorami inducji i natężenia pola eletrycznego (równanie materiałowe) jest następująca = ϵ 0 ˆϵ E (1)
Ćw. 20. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego
0 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 0. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego Wprowadzenie Światło widzialne jest
18 K A T E D R A F I ZYKI STOSOWAN E J
18 K A T E D R A F I ZYKI STOSOWAN E J P R A C O W N I A F I Z Y K I Ćw. 18. Wyznaczanie długości fal świetlnych diody laserowej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło jest promieniowaniem
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz
Wykład III. Interferencja fal świetlnych i zasada Huygensa-Fresnela
Wykład III Interferencja fal świetlnych i zasada Huygensa-Fresnela Interferencja fal płaskich Na kliszy fotograficznej, leżącej na płaszczyźnie z=0 rejestrujemy interferencję dwóch fal płaskich, o tej
MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut
Miejsce na naklejkę z kodem szkoł OKE ŁÓDŹ CKE MATEMATYKA POZIOM ROZSZERZONY MARZEC ROK 008 PRZYKŁADOWY ZESTAW ZADAŃ NR Czas prac 0 minut Instrukcja dla zdającego. Sprawdź, cz arkusz egzaminacjn zawiera
Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
Podstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.
3.3. UKŁADY RÓWNAŃ LINIOWYCH. Równanie liniowe z dwiema niewiadomymi. Równaniem liniowym z dwiema niewiadomymi x i y nazywamy równanie postaci
.. UKŁADY RÓWNAŃ LINIOWYCH Równanie liniowe z dwiema niewiadommi Równaniem liniowm z dwiema niewiadommi i nazwam równanie postaci A B C 0, gdzie A, B, C R i A B 0 m równania z dwiema niewiadommi nazwam
Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:
Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
Właściwości optyczne kryształów
Właściwości optyczne kryształów -ośrodki jedno- (n x =n y n z ) lub dwuosiowe (n x n y n z n x ) - oś optyczna : w tym kierunku rozchodzą się dwie takie same fale (z tą samą prędkością); w ośrodkach jednoosiowych
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 9, 08.2.207 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 8 - przypomnienie
Aby nie uszkodzić głowicy dźwiękowej, nie wolno stosować amplitudy większej niż 2000 mv.
Tematy powiązane Fale poprzeczne i podłużne, długość fali, amplituda, częstotliwość, przesunięcie fazowe, interferencja, prędkość dźwięku w powietrzu, głośność, prawo Webera-Fechnera. Podstawy Jeśli fala
Równania Maxwella. roth t
, H wektory natężenia pola elektrycznego i magnetycznego D, B wektory indukcji elektrycznej i magnetycznej J gęstość prądu elektrycznego Równania Maxwella D roth t B rot+ t J Dla ośrodka izotropowego D
Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe
Fizyka dr Bohdan Bieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D.
Pomiar drogi koherencji wybranych źródeł światła
Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA PRZYKŁADOWEGO ZESTAWU ZADAŃ PAŹDZIERNIK 2011 Zadania