Interpolacja. Układ. x exp. = y 1. = y 2. = y n

Wielkość: px
Rozpocząć pokaz od strony:

Download "Interpolacja. Układ. x exp. = y 1. = y 2. = y n"

Transkrypt

1 MES 07 lokaln Interpolacja. Układ Interpolacja, wprowadzenie Interpolacja: po co nam to? Ptania MES polega na wznaczaniu interesującch nas parametrów w skończonej ilości punktów. A co leż pomiędz tmi punktami? Na razie rozpatrwaliśm najprostszą stuację niewiadoma funkcja (np. przemieszczenia, temperatura) jest w przbliżeniu zastępowana na każdm z elementów funkcją liniową. A dlaczego nie użć w tm celu bardziej dokładnej funkcji, np. kwadratowej? Definicja Interpolacja pozwala wznaczć funkcję (zwkle wielomian), która przechodzi przez n podanch punktów Interpolacja jest mostem pomiędz światem matematki tradcjnej (funkcje ciągle, linii z punktów, itd.) a światem matematki komputerowej, w którm wszstko jest dskretne. Cel i środki Kied użwam interpolacji. Nie znam funkcji, mam kilka jej wartości (np. z pomiarów). Funkcja jest znana lecz jest zbt skomplikowana () = 0 ep ( t ) sin(τ )dτ dt π Współrzędne n punktów pozwalają jednoznacznie wznaczć współcznniki wielomianu stopnia n, wkres którego przechodzi przez te punkt Niestet bezpośrednie wznaczenie współcznników wielomianu a 0 +a + a +...+a n n wmaga rozwiązania układu n równań liniowch a 0 +a +a +...+a n n = a 0 +a +a +...+a n n =... a 0 +a n +a n +...+a n n n = n Nasz cel: wmślić metodę, która pozwoli zapisać wzór dla wielomianu interpolacjnego bez żadnch obliczeń. Pomsł: zastąpić poszukiwan wielomian sumą dwóch lub więcej innch wielomianów z łatwmi do wznaczenia współcznnikami Przkład dodawania wielomianów a + b + a + b (a + a ) + (b + b ) Wniosek: suma wielomianów stopnia n zawsze jest wielomianem stopnia nie wżejn

2 Interpolacja. Układ lokaln Wznaczanie sum wielomianów? Wniosek Najprościej wznaczć sumę dwóch wielomianów w punktach zerowch każdego z nich Interpolacja Lagrange a Każd wielomian na składniki 3 Wracam do interpolacji. Mam n punktów (, ),(, ),...,( n, n ), które jednoznacznie wznaczają wielomian P() stopnia n. Punkt i,i =...n będziem nazwać węzłami. Ten wielomian można zawsze przedstawić jako sumęnwielomianówp i (),i =...n tego samego stopnia, każd z którch ma pierwiastki we wszstkich węzłach poza i 3. Ostatnie ptanie: cz można w prost sposób zapisać równanie dla każdego z tch składników? Równanie wielomianu z pierwiastkami w i Twierdzenie Jeżeli jest pierwiastkiem wielomianu P n () to równanie tego wielomianu można zapisać w postacip() = ( )P n () Przkład: dwie postaci wielomianu P() = P() = ( ) 7 = ( )( )( )( )( )( )( ) Rsunki pokazane niżej udowodniają, jak łatwo zapisać równanie dla wielomianu, jeżeli go pierwiastki są znane. Równanie takie, z dokładnością do mnożnika a, można zapisać od razu. a+b = a(+ b a ) = = a( ) a( )( ) = b/a I.Rokach,

3 Interpolacja. Układ lokaln Wielomian Lagrange a, liniow Wzór ogóln: () = a( ) Warunek do wznaczania a: ( ) = = a( ) To dajea = i ostatecznie { 0 = () = = N (), gdzie N () = = FunkcjaN () jest znaną przez nas funkcją kształtu Końcow wzór dla liniowego wielomianu Lagrange a () = + = N ()+ N () Teraz widzim, że wprowadzon wcześniej przez nas element skończon do modelowania prętów użwał liniow wielomian Lagrange a do interpolacji przemieszczeń pomiędz węzłami. Budujem liniow wielomian Lagrange a, krok po kroku. Struktura ogólna:() = +. Miejsca zerowe dla każdego ze składników: () = + 3. W swoim węźle f-cja kształtu = : () = + Budujem kwadratow wielomian Lagrange a i+ i+ i Wzór: () = i + i+ + i+ i i+ i+. Struktura ogólna:() = i + i+ + i+. Miejsca zerowe dla każdego ze składników: () = i ( i+ )( i+ ) + i+ ( i )( i+ ) +i+ ( i )( i+ ) ( i+ )( i+ ) 3. W swoim węźle f-cja kształtu = :() = i ( i i+ )( i i+ ) + ( i )( i+ ) i+ ( i+ i )( i+ i+ ) + ( i )( i+ ) i+ ( i+ i )( i+ i+ ) Przkład Zadanie. Wznaczć wielomian Lagrange a, któr przechodzi przez punkt (,), (,), (4,5) Rozwiązanie () = ( )( 4) + ( )( 4) +5 ( )( ) I.Rokach,

4 Interpolacja. Układ lokaln () = ( )( 4) ( )( 4) +( )( 4) ( )( 4) +5( )( ) (4 )(4 ) () = ( )( 4) 3 + ( )( 4) +5 ( )( ) 6 Można pokazać, że jest to() = 4+5 = ( ) + Ogóln wzór wielomianu Lagrange a n i N(, i ) i=. Interpolacja liniowa N(, i ) = i+ i i+. Interpolacja kwadratowa N(, i ) = ( i+)( i+ ) ( i i+ )( i i+ ) 3. Interpolacja stopnia n : N(, i ) = ( )( )...( i ) ( i+ )...( n ) ( i )( i )...( i i ) ( i i+ )...( i n ) Wzór najbardziej ogóln P n () = n n i i= j= j i j i j Zalet: Wgląda prosto, bardzo podoba się matematkom Wad: Raczej niepraktczn, szczególnie dla n > 3 Podsumowanie. Do wznaczania wartości niewiadomej funkcji (przemieszczeń, temperatur, itp) MES użwa interpolacji wielomianowej, zwkle najprostszej liniowej lub kwadratowej. Zaletą wielomianów interpolacjnch Lagrange a jest możliwość zapisania wzoru obliczeniowego od razu, bez wstępnch obliczeń. Z tego powodu funkcje kształtu oparte na tm tpie wielomianów są użwane w MES najczęściej. 3 Lokaln i globaln układ współrzędnch MES z punktu widzenia magazniera. Macierz sztwności obliczam ze wzoru k = V B T DBdv. Mam 5 elementów. Każd ma swoje własne współrzędne węzłów, swoje własne funkcje kształtu, swoją własna macierz sztwności. 3. Ale realnie tu jest 3 jednakowch pręt cienkich i grubch i tlko rodzaje macierz sztwności. Cz MES tego nie widzi? I.Rokach,

5 Interpolacja. Układ lokaln Globalne i lokalne podejście Podejście globalne Podejście lokalne i i Numer węzłów: i,i+ Współrzędne węzłów: i, i+ Funkcje kształtu: N i (),N i+ () Numer węzłów:, Współrzędne węzłów: -, Funkcje kształtu: N () = ( ), N () = (+) Podstawowa zaleta podejścia lokalnego Funkcję kształtu w układzie lokalnm są identczne dla elementów tego samego tpu. Czli w naszm przpadku dla wszstkich 5 elementów lokalne funkcje kształtu są jednakowe. Kolejność operacji prz wznaczaniu macierz sztwności dla elementu liniowego Globalne podejście. Wznaczam N i (),N i+ (). Wznaczam dn i(), dn i+() d d 3. Obliczam k = B T DBdv () Lokalne podejście V. N () = ( ), N () = (+), dn (). Wznaczam transformację = f() 3. We wzorze () zastępujem przez =, dn () = są znane Z punktu widzenia programist, jest szansa, że użwając podejścia lokalnego można zdecdowanie przspieszć obliczenia macierz sztwności elementów. O ile nie będzie problemów z wznaczeniem transformacji = f() Transformacja () : N () N () i i+ i i+ - 0 i+ = f() i I.Rokach,

6 Interpolacja. Układ lokaln Funkcja = (), metoda ściśle MESowska Każdą funkcję f() można aproksmować liniowo za pomocą interpolacjnego wzoru f() = f N ()+f N () gdzief, f wartości f() w węzłach. Czli w ten sposób można również zapisać równanie dla () () = i N ()+ i+ N () Test równania () = i N ()+ i+ N () =, ( ) = i N ( )+ i+ N ( ) = i + i+ 0 = i = +, () = i N ()+ i+ N () = i 0+ i+ = i+ Zadanie domowe Sprawdź, cz (0) = ( i + i+ )/ Macierz sztwności pręta, jeszcze raz Dodatkowe wzor. Wzor na macierz sztwności zawierają pochodne funkcji kształtu po. Musim zastąpić ich wzorami na pochodne po. Pochodna funkcji złożonej: df(()) ( ) d df() d = df(()), dn i+() B = [ dn i() d d ] = [ dn () = df() d, dn () ] d ( ) d i+i 3. Zamiana zmiennch: f()d = f(()) d i d = L Przkład, któr pokazuje sens ostatniego wzoru: jeżeli pewn towar w Polsce kosztuje d L zł, a na Słowacji, to kurs złotówki to L/ zł za. Czli wartość pochodnej jest kursem wmian -ow na dla danego towaru. Przkład: obliczanie pochodnch funkcji kształtu na dwa sposob Zadanie Wznaczć pochodne funkcji liniowch kształtu dla elementu z węzłami w p. = 4, = 6 Układ globaln W ramach ćwiczenia zapiszem każdą z funkcji kształtu jako wielomian Łagrange a: N () = ( 6)/( 4 6) = ( 6)/0, N () = ( ( 4))/(6 ( 4)) = (+4)/0 dn () d Układ lokaln = 0, dn () = d 0 N () = ( ), N () = (+), dn () =, dn () = () = N ()+ N () = ( 4) /( )+6 /(+) = I.Rokach,

7 Interpolacja. Układ lokaln d() ( ) d() = 5, = 5, dn () = dn () d dn () = d 5 = 0 ( d() ) = 5 = 0,. Realnie wznaczanie d() na piechotę bło zbędne, ponieważ mieliśm prostsz wzór d() = L = 0/ = 5. Sens fizczn wzoru = +5 jest prost. Lokaln układ jest wnikiem przemieszczenia początku układu współrzędnch o i 5-krotnego rozciągnięcia osi Nowe wzor ma macierz sztwności i wektor obciążenia Macierz sztwności, wzór ogóln i+ k i = B T DB dv = A i B T DB d= A i V i i ( ) d = A i B T DB [ ( ) ] T ( ) d d d B DB Kolorem czerwonm pokazane są zmienne składniki wzorów na macierz sztwności otrzmane w globalnm i lokalnm układach współrzędnch (zakładam, że materiał jest ten sam dla wszstkich elementów). Widzim, że użwając lokaln układ współrzędnch możem wcześniej wznaczć niezmienną część macierz sztwności dla danego tpu elementu i tm samm znacznie przśpieszć obliczenia. Macierz sztwności dla elementu liniowego [ ] / k = A i E[ / /, /] = EA [ ] i /4 /4 L i L i /4 /4 Sił węzłowe = EA i L i [ ] F i = i+ i q()n i ()d = Dla równomiernego obciążenia q() = q: F i = ql i N () = ql i q()n () d = L i q()n () ( ) = ql i Obserwacja Warto odnotować, że nawet dla najprostszego równomiernego obciążenia program musi wznaczć wartość pewnej całki, żeb obliczć wartość sił węzłowej. Jak on to robi? Szczegół już wkrótce. 4 Dodatki Pochodna złożona, sens fizczn 0 d d = () = d d d = d d d 0 d Zmiana skali = d Wkład został opracowan w LATEXe za pomocą klas BEAMER, graficznego pakietu PGF/TikZ i pakietu do tworzenia wkresów PGFPLOTS. Zanim wdrukujesz pomśl o środowisku. Before printing think about environment I.Rokach,

MES polega na wyznaczaniu interesujących nas parametrów w skończonej ilości punktów. A co leży pomiędzy tymi punktami?

MES polega na wyznaczaniu interesujących nas parametrów w skończonej ilości punktów. A co leży pomiędzy tymi punktami? MES- 07 Interpolacja, wprowadzenie Interpolacja: po co nam to? Ptania MES polega na wznaczaniu interesującch nas parametrów w skończonej ilości punktów. A co leż pomiędz tmi punktami? Na razie rozpatrwaliśm

Bardziej szczegółowo

ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP

ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP. Podstawowe związki (równania równowagi, liniowe i nieliniowe związki geometrczne, związki fizczne, warunki brzegowe) w zapisie wskaźnikowm

Bardziej szczegółowo

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH MES W ANAIZIE SPRĘŻYSEJ KŁADÓW PRĘOWYCH Przkład obliczeń Kratownice płaskie idia FEDOROWICZ Jan FEDOROWICZ Magdalena MROZEK Dawid MROZEK Gliwice r. - idia Fedorowicz Jan Fedorowicz Magdalena Mrozek Dawid

Bardziej szczegółowo

F + R = 0, u A = 0. u A = 0. f 0 f 1 f 2. Relację pomiędzy siłami zewnętrznymi i wewnętrznymi

F + R = 0, u A = 0. u A = 0. f 0 f 1 f 2. Relację pomiędzy siłami zewnętrznymi i wewnętrznymi MES Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F + R, u A R f f F R + f, f + f, f + F, u A Równania

Bardziej szczegółowo

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych Ekonomia matematczna II Ekonomia matematczna II Prowadząc ćwiczenia Programowanie nieliniowe optmalizacja unkcji wielu zmiennch Modele programowania liniowego często okazują się niewstarczające w modelowaniu

Bardziej szczegółowo

Wektory. P. F. Góra. rok akademicki

Wektory. P. F. Góra. rok akademicki Wektor P. F. Góra rok akademicki 009-0 Wektor zwiazan. Wektorem zwiazanm nazwam parę punktów. Jeżeli parę tę stanowią punkt,, wektor przez nie utworzon oznaczm. Graficznie koniec wektora oznaczam strzałką.

Bardziej szczegółowo

Równania różniczkowe

Równania różniczkowe Równania różniczkowe I rzędu Andrzej Musielak Równania różniczkowe Równania różniczkowe I rzędu Równanie różniczkowe pierwszego rzędu to równanie w którm pojawia się zmienna x, funkcja tej zmiennej oraz

Bardziej szczegółowo

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia MES skończony Najprostszy element Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F+R, u A R f f F

Bardziej szczegółowo

Całkowanie przez podstawianie i dwa zadania

Całkowanie przez podstawianie i dwa zadania Całkowanie przez podstawianie i dwa zadania Antoni Kościelski Funkcje dwóch zmiennch i podstawianie Dla funkcji dwóch zmiennch zachodzi następując wzór na całkowanie przez podstawianie: f(x(a, b), (a,

Bardziej szczegółowo

Elementy algebry i analizy matematycznej II

Elementy algebry i analizy matematycznej II Element algebr i analiz matematcznej II Wkład 1. Ekstrema unkcji dwóch zmiennch Deinicja 1 Funkcja dwóch zmiennch, z = (, ), ma w punkcie z = (, ), maksimum lokalne, jeżeli istnieje takie otoczenie punktu

Bardziej szczegółowo

Równania różniczkowe cząstkowe

Równania różniczkowe cząstkowe Równania różniczkowe cząstkowe Definicja: Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut Miejsce na naklejkę z kodem szkoł OKE ŁÓDŹ CKE MATEMATYKA POZIOM ROZSZERZONY MARZEC ROK 008 PRZYKŁADOWY ZESTAW ZADAŃ NR Czas prac 0 minut Instrukcja dla zdającego. Sprawdź, cz arkusz egzaminacjn zawiera

Bardziej szczegółowo

Scenariusz lekcji matematyki z wykorzystaniem komputera

Scenariusz lekcji matematyki z wykorzystaniem komputera Scenariusz lekcji matematki z wkorzstaniem komputera Temat: Wpłw współcznników a i b na położenie wkresu funkcji liniowej. (Rsowanie wkresów prz użciu arkusza kalkulacjnego EXCEL.) Czas zajęć: 9 min Cele:

Bardziej szczegółowo

f x f y f, jest 4, mianowicie f = f xx f xy f yx

f x f y f, jest 4, mianowicie f = f xx f xy f yx Zestaw 14 Pochodne wŝszch rzędów Niech będzie dana funkcja x f określona w pewnm obszarze D Przpuśćm Ŝe f x istnieją pochodne cząstkowe tej funkcji x x Pochodne cząstkowe tch pochodnch jeŝeli istnieją

Bardziej szczegółowo

KURS FUNKCJE WIELU ZMIENNYCH

KURS FUNKCJE WIELU ZMIENNYCH KURS FUNKCJE WIELU ZMIENNYCH Lekcja 1 Pochodne cząstkowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tlko jedna jest prawdziwa). Ptanie 1 Funkcja dwóch zmiennch a)

Bardziej szczegółowo

Równania różniczkowe cząstkowe

Równania różniczkowe cząstkowe Równania różniczkowe cząstkowe Definicja Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch

Bardziej szczegółowo

Ruch po równi pochyłej

Ruch po równi pochyłej Sławomir Jemielit Ruch po równi pochłej Z równi pochłej o kącie nachlenia do poziomu α zsuwa się ciało o masie m. Jakie jest przspieszenie ciała, jeśli współcznnik tarcia ciała o równię wnosi f? W jakich

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma

Bardziej szczegółowo

12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej

12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej 1. FUNKCJE WIELU ZMIENNYCH 1.1. FUNKCJE DWÓCH ZMIENNYCH Funkcją dwóch zmiennch określoną w zbiorze D R nazwam przporządkowanie każdej parze liczb () D dokładnie jednej liczb rzeczwistej z. Piszem prz tm

Bardziej szczegółowo

Pochodna funkcji wykład 5

Pochodna funkcji wykład 5 Pochodna funkcji wkład 5 dr Mariusz Grządziel 8 listopada 2010 Funkcja logistczna 40 Rozważm funkcję logistczną = f 0 (t) = 1+5e 0,5t Funkcja f może bć wkorzstana np. do modelowania wzrostu mas ziaren

Bardziej szczegółowo

Zad.1 Zad. Wyznaczyć rozkład sił wewnętrznych N, T, M, korzystając z komputerowej wersji metody przemieszczeń. schemat konstrukcji:

Zad.1 Zad. Wyznaczyć rozkład sił wewnętrznych N, T, M, korzystając z komputerowej wersji metody przemieszczeń. schemat konstrukcji: Zad. Wznaczć rozkład sił wewnętrznch N, T, M, korzstając z komputerowej wersji metod przemieszczeń. schemat konstrukcji: ϕ 4, kn 4, 4, macierz transformacji (pręt nr): α = - ϕ = -, () 5 () () E=5GPa; I

Bardziej szczegółowo

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia. Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr

Bardziej szczegółowo

Ekstrema funkcji dwóch zmiennych

Ekstrema funkcji dwóch zmiennych Wkład z matematki inżnierskiej Ekstrema funkcji dwóch zmiennch JJ, IMiF UTP 18 JJ (JJ, IMiF UTP) EKSTREMA 18 1 / 47 Ekstrema lokalne DEFINICJA. Załóżm, że funkcja f (, ) jest określona w pewnm otoczeniu

Bardziej szczegółowo

ZADANIE 1 Poniżej znajduje się fragment wykresu funkcji y = f (x). ZADANIE 2 Na podstawie podanego wykresu funkcji f

ZADANIE 1 Poniżej znajduje się fragment wykresu funkcji y = f (x). ZADANIE 2 Na podstawie podanego wykresu funkcji f IMIE I NAZWISKO ZADANIE Poniżej znajduje się fragment wkresu funkcji = f (). -7 -- - - 6 7 Dorsuj brakujac a część wkresu wiedzac, że dziedzina funkcji f jest przedział,, a wkres jest smetrczn względem

Bardziej szczegółowo

Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi:

Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi: Stan naprężenia Przkład 1: Tarcza (płaski stan naprężenia) Określić sił masowe oraz obciążenie brzegu tarcz jeśli stan naprężenia wnosi: 5 T σ. 8 Składowe sił masowch obliczam wkonując różniczkowanie zapisane

Bardziej szczegółowo

Rozwiązanie równań stanu dla układów liniowych - pola wektorowe

Rozwiązanie równań stanu dla układów liniowych - pola wektorowe Rozwiązanie równań stanu dla układów liniowch - pola wektorowe Przgotowanie: Dariusz Pazderski Wprowadzenie Rozważm liniowe równanie stanu układu niesingularnego stacjonarnego o m wejściach: ẋ = A+ Bu,

Bardziej szczegółowo

ROZWIĄZANIA I ODPOWIEDZI

ROZWIĄZANIA I ODPOWIEDZI Zastosowania matematki w analitce medcznej zestaw do kol. semestr. - rozwiązania i odpowiedzi (część I). ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. a) Rozważając dwa przpadki ze względu na moduł mam: skąd ostatecznie,3>.

Bardziej szczegółowo

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx 5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.

Bardziej szczegółowo

SKRYPT Z MATEMATYKI. Wstęp do matematyki. Rafał Filipów Piotr Szuca

SKRYPT Z MATEMATYKI. Wstęp do matematyki. Rafał Filipów Piotr Szuca Publikacja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego SKRYPT Z MATEMATYKI Wstęp do matematki Rafał Filipów Piotr Szuca Publikacja współfinansowana przez Unię Europejską

Bardziej szczegółowo

2. CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH

2. CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH dam Bodnar: Wtrzmałość Materiałów. Charakterstki geometrczne figur płaskich.. CHRKTERSTKI GEOMETRCZNE FIGUR PŁSKICH.. Definicje podstawowch charakterstk geometrcznch Podczas zajęć z wtrzmałości materiałów

Bardziej szczegółowo

Przenoszenie niepewności

Przenoszenie niepewności Przenoszenie niepewności Uwaga wstępna: pojęcia niepewność pomiarowa i błąd pomiarow są stosowane wmiennie. Załóżm, że wielkość jest funkcją wielkości,,, dla którch niepewności (,, ) są znane (wnikają

Bardziej szczegółowo

Ćwiczenie 361 Badanie układu dwóch soczewek

Ćwiczenie 361 Badanie układu dwóch soczewek Nazwisko... Data... Wdział... Imię... Dzień tg.... Godzina... Ćwiczenie 36 Badanie układu dwóch soczewek Wznaczenie ogniskowch soczewek metodą Bessela Odległość przedmiotu od ekranu (60 cm 0 cm) l Soczewka

Bardziej szczegółowo

Róniczka. f x. V Vx. Zadanie 4. Znale maksymalny błd bezwzgldny i wzgldny powstały przy obliczaniu objtoci stoka, jeli promie podstawy wynosi

Róniczka. f x. V Vx. Zadanie 4. Znale maksymalny błd bezwzgldny i wzgldny powstały przy obliczaniu objtoci stoka, jeli promie podstawy wynosi Róniczka Wraenie d nazwa si róniczk pierwszego rzdu czci liniow przrostu wartoci unkcji Zastosowanie róniczki do oblicze przblionch: Zadanie Za pomoc róniczki oblicz przblion warto liczb Wkorzstam wzór

Bardziej szczegółowo

Metody matematyczne w technologii materiałów Krzysztof Szyszkiewicz

Metody matematyczne w technologii materiałów Krzysztof Szyszkiewicz Kinetka formalna jest działem kinetki chemicznej zajmującm się opisem przebiegu reakcji chemicznch za pomocą równao różniczkowch. W przpadku reakcji homogenicznch (w objętości), g skład jest jednorodn

Bardziej szczegółowo

lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów

lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów 9. CAŁKA POWÓJNA 9.. Całka podwójna w prostokącie Niech P będzie prostokątem opisanm na płaszczźnie OXY nierównościami: a < < b, c < < d, a f(,) funkcją określoną i ograniczoną w tm prostokącie. Prostokąt

Bardziej szczegółowo

Macierze normalne. D : Dowolną macierz kwadratową można zapisać w postaci A = B + ic gdzie ( ) B = A + A B = A + A = ( A + A)

Macierze normalne. D : Dowolną macierz kwadratową można zapisać w postaci A = B + ic gdzie ( ) B = A + A B = A + A = ( A + A) Macierze normalne Twierdzenie: Macierz można zdiagonalizować za pomocą unitarnej transformacji podobieństwa wted i tlko wted gd jest normalna (AA A A). ( ) D : Dowolną macierz kwadratową można zapisać

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 4 ZADANIA - ZESTAW 4

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 4 ZADANIA - ZESTAW 4 ZADANIA - ZESTAW 4 Zadanie 4. 0-0,4 c 0 0, 0, Wznacz c. Wznacz rozkład brzegowe. Cz, są niezależne? (odp. c = 0,3 Zadanie 4.- 0-0,4 0,3 0 0, 0, Wznaczć macierz kowariancji i korelacji. Cz, są skorelowane?

Bardziej szczegółowo

Definicja wartości bezwzględnej. x < x y. x =

Definicja wartości bezwzględnej. x < x y. x = 1.9. WARTOŚĆ BEZWZGLĘDNA Definicja wartości bezwzględnej... gd... 0 =... gd... < 0 Własności wartości bezwzględnej 0 = = = n a n = a, gd n jest liczbą parzstą Przkład 1.9.1. Oblicz: a) b) c) 1 d) 0 e)

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszeo roku kierunku zamawianeo Biotecnoloia w ramac projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera pewna lokata

Bardziej szczegółowo

Metody numeryczne. Sformułowanie zagadnienia interpolacji

Metody numeryczne. Sformułowanie zagadnienia interpolacji Ćwiczenia nr 4. Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n i wartości y 0,..., y n, takie że i=0,...,n y i = f (x i )). Szukamy funkcji F (funkcji interpolującej), takiej

Bardziej szczegółowo

Wykład Analiza jakościowa równań różniczkowych

Wykład Analiza jakościowa równań różniczkowych Na podstawie książki J. Rusinka, Równania różniczkowe i różnicowe w zarządzaniu, Oficna Wdawnicza WSM, Warszawa 2005. 21 maja 2012 Definicja Stabilność Niech = F (x, ) będzie równaniem różniczkowm. Rozwiązanie

Bardziej szczegółowo

Pierwiastki kwadratowe z liczby zespolonej

Pierwiastki kwadratowe z liczby zespolonej Pierwiastki kwadratowe z liczb zespolonej Pierwiastkiem kwadratowm z liczb w C nazwam każdą liczbę zespoloną z C, dla której z = w. Zbiór wszstkich pierwiastków oznaczam smbolem w. Innmi słow w = {z C

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Matematka Poziom rozszerzon Listopad W niniejszm schemacie oceniania zadań otwartch są prezentowane przkładowe poprawne odpowiedzi. W tego tpu ch

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch - Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs... s.. rzed przstąpieniem

Bardziej szczegółowo

Rachunek różniczkowy funkcji jednej zmiennej

Rachunek różniczkowy funkcji jednej zmiennej Rachunek różniczkow funkcji jednej zmiennej wkład z MATEMATYKI Budownictwo, studia niestacjonarne sem. I, rok ak. 2008/2009 Katedra Matematki Wdział Informatki Politechnika Białostocka 1 Iloraz różnicow

Bardziej szczegółowo

3.3. UKŁADY RÓWNAŃ LINIOWYCH. Równanie liniowe z dwiema niewiadomymi. Równaniem liniowym z dwiema niewiadomymi x i y nazywamy równanie postaci

3.3. UKŁADY RÓWNAŃ LINIOWYCH. Równanie liniowe z dwiema niewiadomymi. Równaniem liniowym z dwiema niewiadomymi x i y nazywamy równanie postaci .. UKŁADY RÓWNAŃ LINIOWYCH Równanie liniowe z dwiema niewiadommi Równaniem liniowm z dwiema niewiadommi i nazwam równanie postaci A B C 0, gdzie A, B, C R i A B 0 m równania z dwiema niewiadommi nazwam

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 5

RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 Równania różniczkowe rzędu drugiego Równania rzędu drugiego sprowadzalne do równań rzędu pierwszego Równanie różniczkowe rzędu drugiego postaci F ( x, ', ") 0 ( nie wstępuje

Bardziej szczegółowo

Modelowanie w ME- Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowane są materiał, obciążenie i umocowanie (krok 0).

Modelowanie w ME- Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowane są materiał, obciążenie i umocowanie (krok 0). MES1 10 S/MCS Modelowanie w ME- Część I Kolejność postępowania w prostej analizie MES w SWS Kroki analiz Zakładam, że model już jest uproszczon, zdefiniowane są materiał, obciążenie i umocowanie (krok

Bardziej szczegółowo

[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia.

[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia. rzkład 10.3. Łuk paraboliczn. Rsunek przedstawia łuk wolnopodpart, którego oś ma kształt paraboli drugiego stopnia (łuk paraboliczn ). Łuk obciążon jest ciśnieniem wewnętrznm (wektor elementarnej wpadkowej

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera

Bardziej szczegółowo

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH ZADANIA ZAMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0 B. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa B. 9 C. D. 5 Zadanie. ( pkt) Liczba

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era

Bardziej szczegółowo

Przedziały ufności i testy parametrów. Przedziały ufności dla średniej odpowiedzi. Interwały prognoz (dla przyszłych obserwacji)

Przedziały ufności i testy parametrów. Przedziały ufności dla średniej odpowiedzi. Interwały prognoz (dla przyszłych obserwacji) Wkład 1: Prosta regresja liniowa Statstczn model regresji liniowej Dane dla prostej regresji liniowej Przedział ufności i test parametrów Przedział ufności dla średniej odpowiedzi Interwał prognoz (dla

Bardziej szczegółowo

Wartości i wektory własne

Wartości i wektory własne Rozdział 7 Wartości i wektor własne Niech X będzie skończenie wmiarową przestrzenią liniową nad ciałem F = R lub F = C. Niech f : X X będzie endomorfizmem, tj. odwzorowaniem liniowm przekształającm przestrzeń

Bardziej szczegółowo

Więcej arkuszy znajdziesz na stronie: arkusze.pl

Więcej arkuszy znajdziesz na stronie: arkusze.pl KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Matematka Poziom rozszerzon Listopad W niniejszm schemacie oceniania zadań otwartch są prezentowane przkładowe poprawne odpowiedzi. W tego tpu ch

Bardziej szczegółowo

Rozwiązywanie układu równań metodą przeciwnych współczynników

Rozwiązywanie układu równań metodą przeciwnych współczynników Rozwiązwanie układu równań metodą przeciwnch współcznników Sposob postępowania krok po kroku: I. przgotowanie równań. pozbwam się ułamków mnoŝąc kaŝd jednomian równania równań przez najmniejszą wspólną

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennch Wkres i warstwice funkcji wielu zmiennch. Przeglad powierzchni stopnia drugiego. Granice i ciagłość funkcji wielu zmiennch. Małgorzata Wrwas Katedra Matematki Wdział Informatki Politechnika

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY Drogi Uczniu Witaj na II etapie konkursu matematcznego. Przecztaj uważnie instrukcję.

Bardziej szczegółowo

) q przyłożona jest w punkcie o współrzędnej x = x + x. Przykład Łuk trójprzegubowy.

) q przyłożona jest w punkcie o współrzędnej x = x + x. Przykład Łuk trójprzegubowy. rzkład 0.. Łuk trójprzegubow. Rsunek 0.. przedstawia łuk trójprzegubow, którego oś ma kształt półokręgu (jest to łuk kołow ). Łuk obciążon jest ciężarem konstrukcji podwieszonej. Narsować wkres momentów

Bardziej szczegółowo

Analiza numeryczna kolokwium2a-15grudnia2005

Analiza numeryczna kolokwium2a-15grudnia2005 kolokwium2a-15grudnia2005 1.Niechf(x)=a n x n +a n 1 x n 1 +...+a 0.Jakąwartośćprzyjmujeilorazróżnicowy f[x 0,...,x n ]dladowolnychn+1paramiróżnychwęzłówx j?odpowiedźuzasadnić. 2. Pokazać, że zamiana zmiennych

Bardziej szczegółowo

Ć w i c z e n i e K 2 b

Ć w i c z e n i e K 2 b Akademia Górniczo Hutnicza Wdział Inżnierii Mechanicznej i Robotki Katedra Wtrzmałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena:

Bardziej szczegółowo

Zestaw 0. 1 sin 2 x ; k) (arctg x) 0 = 1 ; l) (arcctg x) x 2 m) (arcsin x) 0 = p 1

Zestaw 0. 1 sin 2 x ; k) (arctg x) 0 = 1 ; l) (arcctg x) x 2 m) (arcsin x) 0 = p 1 Podstawowe wzor rachunku ró zniczkowego Zestaw. Rachunek ró zniczkow i ca kow a) (f () g ()) = f () g () + f () g () b) f (g ()) = f (g ()) g () f() c) g() = f ()g() f()g () d) ( n ) = n n g () e) (log

Bardziej szczegółowo

Fizyka I (mechanika), ćwiczenia, seria 1

Fizyka I (mechanika), ćwiczenia, seria 1 Fizka I (mechanika), ćwiczenia, seria 1 Układ współrzędnch na płaszczźnie. Zadanie 1 Odcinek o stałej długości porusza się tak, że jego punkt końcowe A i B ślizgają się po osiach odpowiednio x i pewnego

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Bardziej szczegółowo

Warsztat pracy matematyka

Warsztat pracy matematyka Warsztat prac matematka Izabela Bondecka-Krzkowska Marcin Borkowski Jęzk matematki Teoria Jednm z podstawowch pojęc matematki jest pojęcie zbioru. Teorię opisującą zbior nazwa sie teorią mnogości. Definicja

Bardziej szczegółowo

Analiza Matematyczna II.1, kolokwium rozwiazania 9 stycznia 2015, godz. 16:15 19:15

Analiza Matematyczna II.1, kolokwium rozwiazania 9 stycznia 2015, godz. 16:15 19:15 Analiza Matematczna II., kolokwium rozwiazania 9 stcznia 05, godz. 6:5 9:5 0. Podać definicj e zbioru miar 0. Udowodnić, że jeśli A = {(x,, z) : (x )(x + + z ) = 0}, to l (A) = 0. Zbiorem miar zero jest

Bardziej szczegółowo

Metody Numeryczne Wykład 4 Wykład 5. Interpolacja wielomianowa

Metody Numeryczne Wykład 4 Wykład 5. Interpolacja wielomianowa Sformułowanie zadania interpolacji Metody Numeryczne Wykład 4 Wykład 5 Interpolacja wielomianowa Niech D R i niech F bȩdzie pewnym zbiorem funkcji f : D R. Niech x 0, x 1,..., x n bȩdzie ustalonym zbiorem

Bardziej szczegółowo

Ćwiczenia nr 7. TEMATYKA: Krzywe Bézier a

Ćwiczenia nr 7. TEMATYKA: Krzywe Bézier a TEMATYKA: Krzywe Bézier a Ćwiczenia nr 7 DEFINICJE: Interpolacja: przybliżanie funkcji za pomocą innej funkcji, zwykle wielomianu, tak aby były sobie równe w zadanych punktach. Poniżej przykład interpolacji

Bardziej szczegółowo

KONSPEKT LEKCJI. NAUCZYCIEL: mgr inŝ. EWA JAROSZ SZKOŁA: GIMNAZJUM KLASA: 3 PRZEDMIOT: MATEMATYKA

KONSPEKT LEKCJI. NAUCZYCIEL: mgr inŝ. EWA JAROSZ SZKOŁA: GIMNAZJUM KLASA: 3 PRZEDMIOT: MATEMATYKA NAUCZYCIEL: mgr inŝ. EWA JAROSZ SZKOŁA: GIMNAZJUM KLASA: 3 PRZEDMIOT: MATEMATYKA KONSPEKT LEKCJI TEMAT LEKCJI: Badanie własności funkcji liniowej za pomocą programu Graphmatica. CELE OPERACYJNE: Uczeń

Bardziej szczegółowo

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: 1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]

Bardziej szczegółowo

Grafika 2D. Przekształcenia geometryczne 2D. opracowanie: Jacek Kęsik

Grafika 2D. Przekształcenia geometryczne 2D. opracowanie: Jacek Kęsik Grafika 2D Przekształcenia geometrczne 2D opracowanie: Jacek Kęsik Wkład obejmuje podstawowe przekształcenia geometrczne stosowane w grafice komputerowej. Opisane są w nim również współrzędne jednorodne

Bardziej szczegółowo

ZADANIA Z MATEMATYKI DLA WYDZIAŁU IMIR

ZADANIA Z MATEMATYKI DLA WYDZIAŁU IMIR ZADANIA Z MATEMATYKI DLA WYDZIAŁU IMIR ZADANIA w semestrze zimowm Teoria zbiorów funkcje. Podać interpretację geometrczną zbiorów: A B jeżeli A = i B = A B X = X X X gdzie X = gdzie A= { : } B = d) { }

Bardziej szczegółowo

PRÓBNA MATURA. ZADANIE 1 (1 PKT) Wskaż liczbę, której 4% jest równe 8. A) 200 B) 100 C) 3,2 D) 32

PRÓBNA MATURA. ZADANIE 1 (1 PKT) Wskaż liczbę, której 4% jest równe 8. A) 200 B) 100 C) 3,2 D) 32 PRÓBNA MATURA ZADANIE ( PKT) Wskaż liczbę, której % jest równe 8. A) B) C), D) ZADANIE ( PKT) Odległość liczb od liczb -8 na osi liczbowej jest równa A) 8 B) + 8 C) + 8 D) 8 ZADANIE ( PKT) Wskaż rsunek,

Bardziej szczegółowo

Młodzieżowe Uniwersytety Matematyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego REGUŁA GULDINA

Młodzieżowe Uniwersytety Matematyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego REGUŁA GULDINA Młodzieżowe Uniwerstet Matematczne Projekt współfinansowan przez Unię Europejską w ramach Europejskiego Funduszu połecznego REGUŁA GULDINA dr Bronisław Pabich Rzeszów marca 1 Projekt realizowan przez Uniwerstet

Bardziej szczegółowo

MATURA PRÓBNA 2 KLASA I LO

MATURA PRÓBNA 2 KLASA I LO IMIE I NAZWISKO MATURA PRÓBNA KLASA I LO CZAS PRACY: 90 MIN. SUMA PUNKTÓW: 60 ZADANIE (5 PKT) Znajdź wszstkie funkcje liniowe określone na zbiorze ;, którch zbiorem wartości jest przedział ; 0. ZADANIE

Bardziej szczegółowo

Minimalizacja kosztów

Minimalizacja kosztów Minimalizacja kosztów 1. (na wkładzie) Firma genealogiczna Korzenie produkuje dobro korzstając z jednego nakładu x użwając funkcji produkcji f(x) = x. (a) Ile jednostek x jest potrzebnch do wprodukowania

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 17751 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Rozważm treść następujacego

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 1-2

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 1-2 Stanisław Cichocki Natalia Nehreecka Zajęcia - . Model liniow Postać modelu liniowego Zapis macierzow modelu liniowego. Estmacja modelu Przkład Wartość teoretczna (dopasowana) Reszt 3. MNK - przpadek wielu

Bardziej szczegółowo

MES 4. 1 Przykłady błędów MES. 2 Proces V&V. Weryfikacja i walidacja. Czy MES jest nieomylny?

MES 4. 1 Przykłady błędów MES. 2 Proces V&V. Weryfikacja i walidacja. Czy MES jest nieomylny? MES 4 Zbieżność. Wskaźniki błędu 1 Przykłady błędów MES Czy MES jest nieomylny? Katastrofa platformy Sleipner A 23.08.1991. Skutki: kompletne zniszczenie konstrukcji o wadzę 97K ton, trzęsienie ziemi (3

Bardziej szczegółowo

KONSPEKT LEKCJI na temat: PRZESUWANIE PARABOLI

KONSPEKT LEKCJI na temat: PRZESUWANIE PARABOLI KONSPEKT LEKCJI na temat: PRZESUWANIE PARABOLI CELE LEKCJI: Poznawcze Uczeń utrwala wiadomości o: funkcji kwadratowej rsowanie wkresu, przesuwaniu wkresu funkcji wzdłuż osi 0 i 0 związkach międz równaniem

Bardziej szczegółowo

Mikroekonomia II. Narz ¾edzia matematyczne. f 0 (x) = 0. f (x) = 5. f 0 (x) = ax a 1 = ax a 1. f (x) = p x = x 1 2. d (bf(x)) dx.

Mikroekonomia II. Narz ¾edzia matematyczne. f 0 (x) = 0. f (x) = 5. f 0 (x) = ax a 1 = ax a 1. f (x) = p x = x 1 2. d (bf(x)) dx. Mikroekonomia II Narz edzia matematczne Pochodne. Funkcja sta a f () = b f 0 () = 0 f () = 5 f 0 () = 0 2. Funkcja wk adnicza f () = a f 0 () = a a = a a f () = p = 2 f 0 () = 2 2 = 2 2. Funkcja logartmiczna

Bardziej szczegółowo

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7 ozwiązwanie ram płaskich wznaczanie reakcji i wkresów sił przekrojowch 7 Obciążenie ram płaskiej, podobnie jak w przpadku beek rozdział 6, mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe

Bardziej szczegółowo

Badanie zależności cech

Badanie zależności cech PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i element kombinatorki. Zmienne losowe i ich rozkład 3. Populacje i prób danch, estmacja parametrów 4. Testowanie hipotez 5. Test parametrczne (na przkładzie

Bardziej szczegółowo

Kilka spraw praktycz-

Kilka spraw praktycz- Kilka spraw praktycz- MES2 2 nych Część I Uproszczenia, cd. Symetria konstrukcji Zasada nr. Uwzględniamy symetrię rakz -displ. y-displ.=z-displ. z z y y z y rak z-displ. rak z-displ. W tym przypadku wystarczy

Bardziej szczegółowo

Metody Eulera i Eulera-Cauchy'ego rozwiązywania równań różniczkowych zwyczajnych. y 3 := x 2 (1) ( ) Rozwiązanie dokładne równania (1) (2)

Metody Eulera i Eulera-Cauchy'ego rozwiązywania równań różniczkowych zwyczajnych. y 3 := x 2 (1) ( ) Rozwiązanie dokładne równania (1) (2) euler-przkl_.xmcd Metod Eulera i Eulera-Cauch'ego rozwiązwania równań różniczkowch zwczajnch ' ( x, ) : x () + Rozwiązanie dokładne równania () ( x, C) : + C exp( atan( x) ) () Sprawdzenie: d dx ( x, C)

Bardziej szczegółowo

Stateczność ramy - wersja komputerowa

Stateczność ramy - wersja komputerowa Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych

Bardziej szczegółowo

RZĘDU PIERWSZEGO. RÓWNANIE BERNOULLIEGO. RÓWNANIE JEDNORODNE. KRZYWE ORTOGONALNE. RÓWNANIE BERNOULLIEGO. Nieliniowe równanie różniczkowe Bernoulliego

RZĘDU PIERWSZEGO. RÓWNANIE BERNOULLIEGO. RÓWNANIE JEDNORODNE. KRZYWE ORTOGONALNE. RÓWNANIE BERNOULLIEGO. Nieliniowe równanie różniczkowe Bernoulliego NIELINIOWE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RZĘDU PIERWSZEGO. RÓWNANIE BERNOULLIEGO. RÓWNANIE JEDNORODNE. KRZYWE ORTOGONALNE. RÓWNANIE BERNOULLIEGO. Nieliniowe równanie różniczkowe Bernoulliego ma postać:

Bardziej szczegółowo

Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie = Rozwiąż układ równań: (( + 1 ( + 2 = = 1

Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie  = Rozwiąż układ równań: (( + 1 ( + 2 = = 1 Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/). Rozwiąż układ równań: (( + ( + 2 = 3 = 4. http://www.zadania.info/d38/2287 2. Rozwiąż układ równań: ( + 2 (

Bardziej szczegółowo

składa się z m + 1 uporządkowanych niemalejąco liczb nieujemnych. Pomiędzy p, n i m zachodzi następująca zależność:

składa się z m + 1 uporządkowanych niemalejąco liczb nieujemnych. Pomiędzy p, n i m zachodzi następująca zależność: TEMATYKA: Krzywe typu Splajn (Krzywe B sklejane) Ćwiczenia nr 8 Krzywe Bezier a mają istotne ograniczenie. Aby uzyskać kształt zawierający wiele punktów przegięcia niezbędna jest krzywa wysokiego stopnia.

Bardziej szczegółowo

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3 ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Blok 2: Zależność funkcyjna wielkości fizycznych

Blok 2: Zależność funkcyjna wielkości fizycznych Blok : Zależność funkcjna wielkości fizcznch I. Odcztwanie informacji z wkreu co tak naprawdę na nim ię znajduje. Chcąc odcztać informacje z wkreu funkcji, muim dokładnie wiedzieć, jaka wielkość fizczna

Bardziej szczegółowo

x y x y y 2 1-1

x y x y y 2 1-1 Mtod komputrow : wrzsiń 5 Zadani. Obliczć u(.5) stosując intrpolację kwadratową Lagrang a dla danch z tabli. i i 5 u( i )..5. 5. 7. Zadani.Dlapunktów =, =, =obliczćfunkcjębazowąintrpolacjihrmitah, ().

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

gruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił

gruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił 1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] 2. Ustalenie stopnia statycznej

Bardziej szczegółowo

3.2. Podstawowe własności funkcji. Funkcje cyklometryczne, hiperboliczne. Definicję funkcji f o dziedzinie X i przeciwdziedzinie Y mamy w 3A5.

3.2. Podstawowe własności funkcji. Funkcje cyklometryczne, hiperboliczne. Definicję funkcji f o dziedzinie X i przeciwdziedzinie Y mamy w 3A5. WYKŁAD 7 3 Podstawowe własności unkcji Funkcje cklometrczne, hiperboliczne Deinicję unkcji o dziedzinie X i przeciwdziedzinie Y mam w 3A5 3A37 (Uwaga: dziedzina naturalna) Często się zdarza, że unkcja

Bardziej szczegółowo

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy

Bardziej szczegółowo

Wykład 4 Testy zgodności. dystrybuanta rozkładu populacji dystrybuanty rozkładów dwóch populacji rodzaj rozkładu wartości parametrów.

Wykład 4 Testy zgodności. dystrybuanta rozkładu populacji dystrybuanty rozkładów dwóch populacji rodzaj rozkładu wartości parametrów. Wkład Test zgodności. Test zgodności służą do werikacji hipotez mówiącch, że a dstrbuanta rozkładu populacji ma określoną z gór postać unkcjną b dstrbuant rozkładów dwóch populacji nie różnią się w sposób

Bardziej szczegółowo

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY ALGORYTM STATYCZNEJ ANALIZY MES DLA RATOWNICY Piotr Pluciński e-mail: p.plucinski@l5.pk.edu.pl Jerzy Pamin e-mail: jpamin@l5.pk.edu.pl Instytut Technologii Informatycznych w Inżynierii Lądowej Wydział

Bardziej szczegółowo