Model efektywny dla materiałów komórkowych w zakresie liniowo-sprężystym Małgorzata Janus-Michalska
|
|
- Czesław Markiewicz
- 6 lat temu
- Przeglądów:
Transkrypt
1 Model efektywny dla materiałów komórkowych w zakreie liniowo-prężytym Małgorzata Janu-Michalka Katedra Wytrzymałości Materiałów Intytut Mechaniki Budowli Politechnika Krakowka
2 PAN PREZENTACJI. Wprowadzenie. Analiza prężyta oparta na modelu mikromechanicznym itota modelowania wielokalowego komórka reprezentatywna i jej ymetria kinematyka mikrotruktury w jednorodnych tanach odkztałceń model belkowy truktury komórkowej o komórkach otwartych efektywne continuum zatępcze - definicja naprężeń tenor ztywności materiału anizotropowego
3 . Graficzna reprezentacja tałych materiałowych 4. Przykłady modelowania właności prężytych 5. Wnioki i kierunki dalzych prac 6. iteratura
4 materiały komórkowe materiały o regularnej trukturze przetrzennej pianki
5 Przykłady truktur materiałów komórkowych o układach regularnych pianka
6 Reprezentatywna komórka opi geometrii = 6, 6, 6 0 b =,, 0 e = 6, 6, 6 0 b =,, 0 e = 6, 6, 6 0 b =,, 0 e = 6, 6, b =,, 0 e 4 0 i b wektory położenia punktów środkowych 0 0 i i = b 0 i e werory n i... =,
7 Komórki reprezentatywne dla podanych truktur i ich ymetrie ześcian pryzma o podtawie protokąta ymetria kubiczna ortotropia
8 pryzma o podtawie: trójkąta ześciokąta foremnego tranweralna izotropia
9 Jednorodne tany odkztałceń continuum zatępczego podobieńtwo przemiezczeń węzłów i punktów środkowych
10 Kinematyka i i0 i 0 = i 0 ψ b i 0 - przemiezczenia punktów środkowych - przemiezczenia względne punktów środkowych, względem węzła środkowego,ψ 0 - parametry ruchu ztywnego węzła środkowego
11 a) oiowe rozciągnięcie ε α w kierunku α, α = x, y, z. ( ) ( 0 ε ) α = ε α bi e α e α i i =,... n. b) ścięcie γ αβ w płazczyźnie αβ, α β. i ( ) ( )(( 0 ) ( 0 γ = / b e e b e ) e ) αβ / γ αβ i α β i β α i =,... n. a) b)
12 Metoda analizy trukturalnej (metoda przemiezczeń) model - belka Timohenki i 0 = i0, n i0, i 0, n = 0 ( i e i ) e i ( i ei ) ei i0, = 0
13 Podatność wpornika dla obciążenia iłą oiową c n = = n E S A Podatność wpornika dla obciążenia iłą poprzeczną c = = 4E J G A S S E, G S S - charakterytyki materiału zkieletu A, A, J - charakterytyki przekrojowe belek zkieletu Związki iła - przemiezczenie F in = i 0, n n Fi = i 0,
14 Warunki równowagi określające parametry ruchu ztywnego: n i= n Fi = 0 F 0 i b i = 0 i=
15 Prawo ooke'a dla ciała anizotropowego σ = S o ε S, tenor ztywności, C = S tenor podatności Definicja tenora naprężeń dla continuum zatępczego σ = σ V V dv
16 WYNIKI rozwiązania analityczne graficzna prezentacja Program Mathcad Obliczenia wykonał: Piotr Kordzikowki
17 Komórka n n 9 n 4 n n 9 n 4 4 n n n n 9 ) ( n 9 ) ( n 9 ) (
18 Komórka 4 5 ) ( ) ( n n n n 8 ) ( ) ( ) ( n n n n 8 ) ( n 9 n ) ( ) ( n n n n 8 ) ( ) 4 ( ) ( ) 4 ( ) ( ) ( 6 n n n 8 ) ( ( ),...,,,, A S S n ijkl ijkl =
19 Moduły Younga E n ( ) = n n C n n ( ) ( ) wykrey bezwymiarowe: n = E n E r ( ) ( ) E max
20 Komórka ześcienna (ymetria kubiczna) dane: R E G,5*0-6 m,0*0-7 m GPa 4,8 GPa
21 Pryzma protopadłościenna (ymetria ortotropowa) dane: 4 R E G,5*0-6 m,0*0-6 m,0*0-6 m 0,5*0-7 m GPa 4,8 GPa
22 Pryzma o podtawie trójkąta równobocznego (tranweralna izotropia) dane: R E G,5*0-6 m,0*0-6 m,0*0-7 m GPa 4,8 GPa
23 Pryzma o podtawie ześciokąta foremnego (tranweralna izotropia) dane: R E G,5*0-6 m,0*0-6 m,0*0-7 m GPa 4,8 GPa
24 Uogólniony moduł ściśliwości K n ( ) = I C n n ( )
25 Komórka ześcienna (ymetria kubiczna) dane: R E G,5*0-6 m,0*0-7 m GPa 4,8 GPa
26 Pryzma protopadłościenna (ymetria ortotropowa) dane: 4 R E G,5*0-6 m,0*0-6 m,0*0-6 m 0,5*0-7 m GPa 4,8 GPa
27 Pryzma o podtawie trójkąta równobocznego (tranweralna izotropia) dane: R E G,5*0-6 m,0*0-6 m,0*0-7 m GPa 4,8 GPa
28 Pryzma o podtawie ześciokąta foremnego (tranweralna izotropia) dane: R E G,5*0-6 m,0*0-6 m,0*0-7 m GPa 4,8 GPa
29 Moduł ścinania G n, m ( ) = n m C n m ( ) ( )
30 Komórka ześcienna (ymetria kubiczna) dane: R E G,5*0-6 m,0*0-7 m GPa 4,8 GPa
31 Pryzma protopadłościenna (ymetria ortotropowa) dane: 4 R E G,5*0-6 m,0*0-6 m,0*0-6 m 0,5*0-7 m GPa 4,8 GPa
32 Pryzma o podtawie trójkąta równobocznego (tranweralna izotropia) dane: R E G,5*0-6 m,0*0-6 m,0*0-7 m GPa 4,8 GPa
33 Pryzma o podtawie ześciokąta foremnego (tranweralna izotropia) dane: R E G,5*0-6 m,0*0-6 m,0*0-7 m GPa 4,8 GPa
34 Wpółczynnik Poiona ν n, m E( n) ( ) = n n C m m ( ) ( )
35 Komórka ześcienna (ymetria kubiczna) dane: R E G,5*0-6 m,0*0-7 m GPa 4,8 GPa
36 Pryzma protopadłościenna (ymetria ortotropowa) dane: 4 R E G,5*0-6 m,0*0-6 m,0*0-6 m 0,5*0-7 m GPa 4,8 GPa
37 Pryzma o podtawie trójkąta równobocznego (tranweralna izotropia) dane: R E G,5*0-6 m,0*0-6 m,0*0-7 m GPa 4,8 GPa
38 Pryzma o podtawie ześciokąta foremnego (tranweralna izotropia) dane: R E G,5*0-6 m,0*0-6 m,0*0-7 m GPa 4,8 GPa
39 Modelowanie truktura krępa ograniczająca zakre zatoownia modelu belkowego truktura mukła (tateczność)
40 Przykład: honeycomb wykrey bezwymiarowe: n = E n E r ( ) ( ) E max truktura krępa truktura mukła
41 Uogólniony moduł ściśliwości K( n) truktura krępa truktura mukła
42 Moduł ścinania truktura krępa truktura mukła G ( α) G ( α) α 70 α
43 Wnioki: zbudowano model efektywny dla materiałów komórkowych o komórkach otwartych (model belkowy) rozwiązania umożliwiają modelowanie właności prężytych poprzez zmianę parametrów truktury zaprezentowane podejście pozwala na zbudowanie modelu efektywnego dla truktur o komórkach zamkniętych ( model płytowy) model może być rozzerzony poza zakre liniowo prężyty (rozwiązania numeryczne)
44 iteratura [].J. Gibon, M.F. Ahby (997).Cellular Solid, nd edition Cambridge Univerity Pre. [] J.Rychlewki (984).Unconventional approach to linear elaticity, Arch. Mech., 47, 995, [] S.Nemat-Naer (999). Micromechanic, Elevier. [4] M.Janu-Michalka, R.B.Pęcherki, (00). Macrocopic propertie of open-cell foam baed on micromechanical modelling, Techniche Mechanik, Band, eft -4, [5] P.Kordzikowki, M.Janu-Michalka, R.B.Pęcherki, (00). Analyi of the influence of the trength of the trut forming a cubic cell tructure on the ditribution of the energy limit, Rudy i Metale Nieżelazne, R49, No., 004.
ODPORNOŚĆ NA PĘKANIE MATERIAŁÓW KOMÓRKOWYCH O UJEMNYM WSPÓŁCZYNNIKU POISSONA
XII KRAJOWA KONFERENCJA Naukowo - Szkoleniowa MECHANIKI PĘKANIA Kraków, 6 9.IX.2009 ODPORNOŚĆ NA PĘKANIE MATERIAŁÓW KOMÓRKOWYCH O UJEMNYM WSPÓŁCZYNNIKU POISSONA Małgorzata JANUS-MICHALSKA, Dorota JASIŃSKA
ODPORNOŚĆ NA PĘKANIE AUKSETYCZNYCH MATERIAŁÓW KOMÓRKOWYCH O REGULARNEJ MIKROSTRUKTURZE
MAŁGORZATA JANUS-MICHALSKA, DOROTA JASIŃSKA ** ODPORNOŚĆ NA PĘKANIE AUKSETYCZNYCH MATERIAŁÓW KOMÓRKOWYCH O REGULARNEJ MIKROSTRUKTURZE FRACTURE TOUGHNESS OF AUXETIC CELLULAR MATERIALS WITH PERIODIC MICROSTRUCTURE
ENERGETYCZNE KRYTERIUM STANÓW GRANICZNYCH DLA MATERIAŁÓW KOMÓRKOWYCH
Strona z 9 ENERGETYCZNE KRYTERUM STANÓW GRANCZNYC DA MATERAŁÓW KOMÓRKOWYC Piotr Kordzikowki Małgorzata Janu-Michalka Ryzard B. Pęchrki Katdra Wytrzymałości Matriałów ntytut Mchaniki Budowli Wydział nżynirii
Naprężenia styczne i kąty obrotu
Naprężenia tyczne i kąty obrotu Rozpatrzmy pręt pryzmatyczny o przekroju kołowym obciążony momentem kręcającym 0 Σ ix 0 0 A A 0 0 Skręcanie prętów o przekroju kołowym, pierścieniowym, cienkościennym. Naprężenia
ZASADA DE SAINT VENANTA
Zasięg oddziaływania obciążenia samozrównoważonego w materiałach komórkowych ZASADA DE SAINT VENANTA Małgorzata Janus-Michalska Katedra Wytrzymałości Materiałów dn. 21.05.2007. PLAN PREZENTACJI 1. Wprowadzenie
Część 1 9. METODA SIŁ 1 9. METODA SIŁ
Część 1 9. METOD SIŁ 1 9. 9. METOD SIŁ Metoda ił jet poobem rozwiązywania układów tatycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych). Sprowadza ię ona do rozwiązania
ROZDZIAŁ 2 RÓWNANIA FIZYCZNE DLA KOMPOZYTÓW KONFIGURACJA OSIOWA. σ = (2.1a) ε = (2.1b) σ = i, j = 1,2,...6 (2.2a) ε = i, j = 1,2,...6 (2.
ROZDZIAŁ J. German: PODTAWY MCHANIKI KOMPOZYTÓW WŁÓKNITYCH ROZDZIAŁ RÓWNANIA FIZYCZN DLA KOMPOZYTÓW KONFIGURACJA OIOWA W rozdziale tym zostaną przedstawione równania fizyczne dla materiałów anizotropowych,
MECHANIKA PRĘTÓW CIENKOŚCIENNYCH
dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki
TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania
TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika
( L,S ) I. Zagadnienia
( L,S ) I. Zagadnienia. Elementy tatyki, dźwignie. 2. Naprężenia i odkztałcenia ciał tałych.. Prawo Hooke a.. Moduły prężytości (Younga, Kirchhoffa), wpółczynnik Poiona. 5. Wytrzymałość kości na ścikanie,
Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia
Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości
PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania
Charakterystyczne wielkości i równania PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny Instytut L-5, Wydział Inżynierii Lądowej,
PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania
Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko
1 Charakterystyka ustrojów powierzchniowych. Anna Stankiewicz
1 Charakterystyka ustrojów powierzchniowych Anna Stankiewicz e-mail: astankiewicz@l5.pk.edu.pl Tematyka zajęć Przykłady konstrukcji inżynierskich Klasyfikacja ustrojów powierzchniowych Podstawowe pojęcia
2.9. Kinematyka typowych struktur manipulatorów
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 1 2.9. Kinematyka typowych struktur manipulatorów 2.9.1. Manipulator planarny 3DOF Notacja DH Rys. 28 Tablica 1 Parametry DH Nr ogniwa
s Dla prętów o stałej lub przedziałami stałej sztywności zginania mianownik wyrażenia podcałkowego przeniesiemy przed całkę 1 EI s
Wprowadzenie Kontrukcja pod wpływem obciążenia odkztałca ię, a jej punkty doznają przemiezczeń iniowych i kątowych. Umiejętność wyznaczania tych przemiezczeń jet konieczna przy prawdzaniu warunku ztywności
1. Wprowadzenie. Andrzej Szychowski. lub równomiernie zginanych elementach o przekrojach otwartych, w których wspornikowa
Budownictwo i Architektura 13(3) (014) 91-98 Wyboczenie prężyście zamocowanej ścianki wpornikowej z uztywnieniem krawędzi wobodnej Andrzej Szychowki 1 Katedra Mechaniki, Kontrukcji Metalowych i Metod Komputerowych,
PROJEKT NR 1 METODA PRZEMIESZCZEŃ
POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr
WYMIAROWANIE PRZEKROJÓW POZIOMYCH KOMINÓW ŻELBETOWYCH W STANIE GRANICZNYM NOŚNOŚCI WG PN-EN - ALGORYTM OBLICZENIOWY
Budownictwo DOI: 0.75/znb.06..7 Mariuz Pońki WYMIAROWANIE PRZEKROJÓW POZIOMYCH KOMINÓW ŻELBETOWYCH W STANIE GRANICZNYM NOŚNOŚCI WG PN-EN - ALGORYTM OBLICZENIOWY Wprowadzenie Wprowadzenie norm europejkich
Defi f nicja n aprę r żeń
Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie
Sprawdzenie stanów granicznych użytkowalności.
MARCIN BRAŚ SGU Sprawzenie stanów granicznych użytkowalności. Wymiary belki: szerokość przekroju poprzecznego: b w := 35cm wysokość przekroju poprzecznego: h:= 70cm rozpiętość obliczeniowa przęsła: :=
Analiza płyt i powłok MES
Analiza płyt i powłok MES Jerzy Pamin e-mails: JPamin@L5.pk.edu.pl Podziękowania: M. Radwańska, A. Wosatko ANSYS, Inc. http://www.ansys.com Tematyka zajęć Klasyfikacja modeli i elementów skończonych Elementy
RÓWNANIA FIZYCZNE DLA CIAŁ LINIOWO - SPRĘŻYSTYCH
Część 5. RÓWNANIA FIZYCZNE DLA CIAŁ LINIOWO - SPRĘŻYSTYCH 5. RÓWNANIA FIZYCZNE DLA CIAŁ LINIOWO - SPRĘŻYSTYCH 5.. ZWIĄZKI MIĘDZY ODKSZTAŁCENIAMI I GŁÓWNYMI NAPRĘŻENIAMI W każdym materiale konstrukcyjnym
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki
11. WŁASNOŚCI SPRĘŻYSTE CIAŁ
11. WŁANOŚCI PRĘŻYTE CIAŁ Efektem działania siły może być przyspieszanie ciała, ae może być także jego deformacja. Przykładami tego ostatniego są np.: rozciąganie gumy a także zginanie ub rozciąganie pręta.
CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ
CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne
ROZWIĄZANIE PROBLEMU NIELINIOWEGO
Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Jerzy Pamin Tematyka zajęć 1 Dyskretyzacja
Laboratorium wytrzymałości materiałów
Politechnika Lubelska MECHANIKA Laboratorium wytrzymałości materiałów Ćwiczenie 19 - Ścinanie techniczne połączenia klejonego Przygotował: Andrzej Teter (do użytku wewnętrznego) Ścinanie techniczne połączenia
Wydział Inżynierii Lądowej i Środowiska Katedra Mechaniki Budowli Kierownik Katedry prof. dr hab. inż. Paweł Kłosowski
Wydział Inżynierii Lądowej i Środowiska Kierownik Katedry prof. dr hab. inż. Paweł Kłosowski Laboratorium Mechaniki Konstrukcji i Materiałów Kierownik Laboratorium dr hab. inż. Piotr Iwicki, prof. nadzw.
Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995
Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Jerzy Bobiński Gdańsk, wersja 0.32 (2014)
TEORIA SPRĘŻYSTOŚCI I PLASTYCZNOŚCI (TSP)
TEORIA SPRĘŻYSTOŚCI I PLASTYCZNOŚCI (TSP) Wstęp. Podstawy matematyczne. Tensor naprężenia. Różniczkowe równania równowagi Zakład Mechaniki Budowli PP Materiały pomocnicze do TSP (studia niestacjonarne,
6. ZWIĄZKI FIZYCZNE Wstęp
6. ZWIĄZKI FIZYCZN 1 6. 6. ZWIĄZKI FIZYCZN 6.1. Wstęp Aby rozwiązać jakiekolwiek zadanie mechaniki ośrodka ciągłego musimy dysponować 15 niezależnymi równaniami, gdyż tyle mamy niewiadomych: trzy składowe
RÓWNANIA FIZYCZNE DLA KOMPOZYTÓW
Kopozt RÓWNANIA FIZYCZN DLA KOMPOZYTÓW Równania fizczne dla ateriałów anizotropowch Równania fizczne liniowej teorii sprężstości ożna zapisać w ogólnej postaci ij ijkl kl lub po odwróceniu ij ijkl kl gdzie
Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa
Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia
WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ MATERIAŁ. Właściwości materiałów. Właściwości materiałów
WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ Właściwości materiałów O możliwości zastosowania danego materiału decydują jego właściwości użytkowe; Zachowanie się danego materiału w środowisku pracy to zaplanowana
Lokalne wyboczenie. 1. Wprowadzenie. Andrzej Szychowski. wspornikowych, których nie znaleziono w literaturze.
Budownictwo i Architektura 14(2) (2015) 113-121 Lokalne wyboczenie ścianki wpornikowej elementu cienkościennego przy wzdłużnej i poprzecznej zmienności naprężeń Katedra Mechaniki, Kontrukcji Metalowych
4. Elementy liniowej Teorii Sprężystości
4. lementy liniowej Teorii Sprężystości 4.1. Podstawowe założenia i hipotezy liniowej TS. 4.2. Stan naprężenia w punkcie 4.3. Równania równowagi stanu naprężenia 4.4. Stan odkształcenia w punkcie 4.5.
MATEMATYCZNY OPIS NIEGŁADKICH CHARAKTERYSTYK KONSTYTUTYWNYCH CIAŁ ODKSZTAŁCALNYCH
XLIII Sympozjon Modelowanie w mechanice 004 Wieław GRZESIKIEWICZ, Intytut Pojazdów, Politechnika Warzawka Artur ZBICIAK, Intytut Mechaniki Kontrukcji Inżynierkich, Politechnika Warzawka MATEMATYCZNY OPIS
KONSTRUKCJE DREWNIANE I MUROWE
POLITECHNIKA BIAŁOSTOCKA WBiIŚ KATEDRA KONSTRUKCJI BUDOWLANYCH ZAJĘCIA 5 KONSTRUKCJE DREWNIANE I MUROWE Mgr inż. Julita Krassowska 1 CHARAKTERYSTYKI MATERIAŁOWE drewno lite sosnowe klasy C35: - f m,k =
SPRAWOZDANIE. a) Podaj rodzaj i oznaczenie zastosowanej głowicy.. Zakres obserwacji
Akademia Górniczo-Hutnicza Kraków Katedra Wytrzymałości, Zmęczenia Materiałów i Kontrukcji KWZMiK Ćwiczenia laboratoryjne Badanie jednorodności truktury i właności mechanicznych materiałów kontrukcyjnych
WYKORZYSTANIE KOMBINACJI POTENCJAŁÓW T- DO WYZNACZANIA PARAMETRÓW SZTYWNOŚCI SIŁOWNIKA ŁOŻYSKA MAGNETYCZNEGO
Zezyty Problemowe Mazyny Elektryczne Nr 83/29 89 Broniław Tomczuk, Jan Zimon Politechnika Opolka, Opole WYKORZYSTANIE KOMBINACJI POTENCJAŁÓW T- DO WYZNACZANIA PARAMETRÓW SZTYWNOŚCI SIŁOWNIKA ŁOŻYSKA MAGNETYCZNEGO
EDOMETRYCZNE MODUŁY ŚCISLIWOŚCI GRUNTU
Dr inż. Grzegorz Straż Intrukcja do ćwiczeń laboratoryjnych pt: EDOMETRYCZNE MODUŁY ŚCISLIWOŚCI GRUNTU Wprowadzenie. Zalecenia dotyczące badań gruntów w edometrze: Zalecane topnie wywoływanego naprężenia:
9. DZIAŁANIE SIŁY NORMALNEJ
Część 2 9. DZIŁIE SIŁY ORMLEJ 1 9. DZIŁIE SIŁY ORMLEJ 9.1. ZLEŻOŚCI PODSTWOWE Przyjmiemy, że materiał pręta jet jednorodny i izotropowy. Jeśli ponadto założymy, że pręt jet pryzmatyczny, to łuzne ą wzory
Pręt nr 1 - Element żelbetowy wg. EN :2004
Pręt nr 1 - Element żelbetowy wg. EN 1992-1-1:2004 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x800
Wytrzymałość materiałów
Wytrzymałość materiałów Wykład 3 Analiza stanu naprężenia i odkształcenia w przekroju pręta Poznań 1 3.1. Podstawowe założenia Charakterystyka materiału Zakładamy na początek, że mamy do czynienia z ośrodkiem
Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji
POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Ćwiczenie nr 7 Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji Analiza statyczna obciążonego kątownika
Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III
KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli
2.12. Zadania odwrotne kinematyki
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 1 2.12. Zadania odwrotne kinematyki Określenie zadania odwrotnego kinematyki T 0 N = [ ] n s a p = r 11 r 12 r 13 p x r 21 r 22 r 23
WRAŻLIWOŚĆ NA IMERFEKCJE PRĘTÓW CIENKOŚCIENNYCH Z POŁĄCZENIAMI PODATNYMI
Dr inż. Lezek CHODOR Dr inż. Roman BIJA Politechnika Świętokrzyka, atedra Budownictwa etalowego i eorii ontrukcji WRAŻLIWOŚĆ NA IRFCJ PRĘÓW CINOŚCINNCH Z POŁĄCZNIAI PODANI. Wprowadzenie Dominującą technologią
INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE ZACHOWANIA SIĘ MATERIAŁÓW PODCZAS ŚCISKANIA Instrukcja przeznaczona jest dla studentów
Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI
Katedra Mechaniki Konstrukcji Wydział Budownictwa i Inżynierii Środowiska Politechniki Białostockiej... (imię i nazwisko)... (grupa, semestr, rok akademicki) ĆWICZENIE PROJEKTOWE NR Z MECHANIKI BUDOWLI
RUCH FALOWY. Ruch falowy to zaburzenie przemieszczające się w przestrzeni i zmieniające się w
RUCH FALOWY Ruch alowy to zaburzenie przemiezczające ię w przetrzeni i zmieniające ię w czaie. Podcza rozchodzenia ię al mechanicznych elementy ośrodka ą wytrącane z położeń równowagi i z powodu właności
IDENTYFIKACJA MODELU MATEMATYCZNEGO ROBOTA INSPEKCYJNEGO
MODELOWANIE INśYNIERSKIE ISSN 896-77X 36,. 87-9, liwice 008 IDENTYFIKACJA MODELU MATEMATYCZNEO ROBOTA INSPEKCYJNEO JÓZEF IERIEL, KRZYSZTOF KURC Katedra Mechaniki Stoowanej i Robotyki, Politechnika Rzezowka
Rys Przykładowe krzywe naprężenia w funkcji odkształcenia dla a) metali b) polimerów.
6. Właściwości mechaniczne II Na bieżących zajęciach będziemy kontynuować tematykę właściwości mechanicznych, którą zaczęliśmy tygodnie temu. Ponownie będzie nam potrzebny wcześniej wprowadzony słowniczek:
PLASTYCZNOŚĆ W UJĘCIU KOMPUTEROWYM
Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2013/2014 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Jerzy Pamin Tematyka zajęć 1 Sprężystość
Konstrukcjre metalowe Wykład X Połączenia spawane (część II)
Konstrukcjre metalowe Wykład X Połączenia spawane (część II) Spis treści Metody obliczeń #t / 3 Przykład 1 #t / 11 Przykład 2 #t / 22 Przykład 3 #t / 25 Przykład 4 #t / 47 Przykład 5 #t / 56 Przykład 6
UOGÓLNIONE PRAWO HOOKE A
UOGÓLNIONE PRAWO HOOKE A Układ liniowosprężysty Clapeyrona Robert Hooke podał następującą, pierwotna postać prawa liniowej sprężystości: ut tensio sic vis, czyli takie wydłużenie jaka siła W klasycznej
MES1pr 02 Konstrukcje szkieletowe 2. Belki
MES1pr 02 Kontrukcje zkieletowe 2. Belki Kiedy używamy modeli belkowe? Elementy kontrukcyjne, w których jeden z wymiarów jet wielokrotnie (> 4 razy) więkzy od innych i zginanie lub kręcanie ma wpływ na
Analiza obciążeń baneru reklamowego za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów)
Politechnika Łódzka Wydział Technologii Materiałowych i Wzornictwa Tekstyliów Katedra Materiałoznawstwa Towaroznawstwa i Metrologii Włókienniczej Analiza obciążeń baneru reklamowego za pomocą oprogramowania
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
METODA PASM SKOŃCZONYCH PŁYTY DWUPRZĘSŁOWE
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI METODA PASM SKOŃCZONYCH PŁYTY DWUPRZĘSŁOWE Dla płyty przedstawionej na rysunku należy: 1)Obciążając ciężarem własnym q i
Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis
Nauka o Materiałach Wykład VIII Odkształcenie materiałów właściwości sprężyste Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Klasyfikacja reologiczna odkształcenia
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
Pręt nr 0 - Element żelbetowy wg PN-EN :2004
Budynek wielorodzinny - Rama żelbetowa strona nr 1 z 13 Pręt nr 0 - Element żelbetowy wg PN-EN 1992-1-1:2004 Informacje o elemencie Nazwa/Opis: element nr 0 (belka) - Brak opisu elementu. Węzły: 0 (x=-0.120m,
mgr inż. Paweł Szeptyński Podstawy wytrzymałości materiałów i mechaniki układów prętowych 07 Teoria stanu naprężenia i odkształcenia
NAPRĘŻENIE Teoria stanu naprężenia i odkształcenia Naprężeniem nazywamy gęstość powierzchniowych sił wewnętrznych obrazujących oddziaływanie jednej części ciała na drugą, po dokonaniu jego myślowego rozcięcia.
Pręt nr 0 - Płyta żelbetowa jednokierunkowo zbrojona wg PN-EN :2004
Pręt nr 0 - Płyta żelbetowa jednokierunkowo zbrojona wg PN-EN 1992-1- 1:2004 Informacje o elemencie Nazwa/Opis: element nr 0 (belka) - Brak opisu elementu. Węzły: 0 (x0.000m, y0.000m); 1 (x6.000m, y0.000m)
BADANIA NUMERYCZNE I DOŚWIADCZALNE NOŚNOŚCI GRANICZNEJ BELEK TRÓJWARSTWOWYCH
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 41, s. 463-468, Gliwice 2011 BADANIA NUMERYCZNE I DOŚWIADCZALNE NOŚNOŚCI GRANICZNEJ BELEK TRÓJWARSTWOWYCH JERZY ZIELNICA, PIOTR PACZOS Instytut Mechaniki Stosowanej,
Zmęczenie Materiałów pod Kontrolą
1 Zmęczenie Materiałów pod Kontrolą Wykład Nr 9 Wzrost pęknięć przy obciążeniach zmęczeniowych Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji http://zwmik.imir.agh.edu.pl
SYMULACJA TŁOCZENIA ZAKRYWEK KORONKOWYCH SIMULATION OF CROWN CLOSURES FORMING
MARIUSZ DOMAGAŁA, STANISŁAW OKOŃSKI ** SYMULACJA TŁOCZENIA ZAKRYWEK KORONKOWYCH SIMULATION OF CROWN CLOSURES FORMING S t r e s z c z e n i e A b s t r a c t W artykule podjęto próbę modelowania procesu
Widok ogólny podział na elementy skończone
MODEL OBLICZENIOWY KŁADKI Widok ogólny podział na elementy skończone Widok ogólny podział na elementy skończone 1 FAZA I odkształcenia od ciężaru własnego konstrukcji stalowej (odkształcenia powiększone
BADANIA EKSPERYMENTALNE ŁOPATY O PRZEKROJU DWUSPÓJNYM TURBINY WIATROWEJ O PIONOWEJ OSI OBROTU KINETYKA I MOMENT NAPĘDOWY TURBINY
JAN RYŚ, MARCIN AUGUSTYN * BADANIA EKSPERYMENTALNE ŁOPATY O PRZEKROJU DWUSPÓJNYM TURBINY WIATROWEJ O PIONOWEJ OSI OBROTU KINETYKA I MOMENT NAPĘDOWY TURBINY EXPERIMENTAL STUDIES OF A TWO-COHERENT CROSS-SECTION
Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu
Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pęd Rozważamy
Elementy teorii powierzchni metali
prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 3 v.16 Termodynamika powierzchni kryztałów 1 Termodynamiczny opi układu Ogólne wiadomości o wielkościach charakteryzujących układ I i
1. Wykres momentów zginających M(x) oraz sił poprzecznych Q(x) Rys2.
Zadanie. Zginanie prote belek. Dla belki zginanej obciążonej jak na Ry. wyznaczyć:. Wykre oentów zginających M(x) oraz ił poprzecznych Q(x).. Położenie oi obojętnej.. Wartość akyalnego naprężenia noralnego
Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania
Przykład. Wyznaczyć linię ugięcia osi belki z uwzględnieniem wpływu ściskania. Przedstawić wykresy sił przekrojowych, wyznaczyć reakcje podpór oraz ekstremalne naprężenia normalne w belce. Obliczenia wykonać
9.0. Wspornik podtrzymujący schody górne płytowe
9.0. Wspornik podtrzymujący schody górne płytowe OBCIĄŻENIA: 55,00 55,00 OBCIĄŻENIA: ([kn],[knm],[kn/m]) Pręt: Rodzaj: Kąt: P(Tg): P2(Td): a[m]: b[m]: Grupa: A "" Zmienne γf=,0 Liniowe 0,0 55,00 55,00
Analiza obciążeń baneru reklamowego za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów)
Politechnika Łódzka Wydział Technologii Materiałowych i Wzornictwa Tekstyliów Katedra Materiałoznawstwa Towaroznawstwa i Metrologii Włókienniczej Analiza obciążeń baneru reklamowego za pomocą oprogramowania
Wprowadzenie do WK1 Stan naprężenia
Wytrzymałość materiałów i konstrukcji 1 Wykład 1 Wprowadzenie do WK1 Stan naprężenia Płaski stan naprężenia Dr inż. Piotr Marek Wytrzymałość Konstrukcji (Wytrzymałość materiałów, Mechanika konstrukcji)
[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)
PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE
P. Litewka Efektywny element skończony o dużej krzywiźnie
4.5. Macierz mas Macierz mas elementu wyprowadzić można według (.4) wykorzystując wielomianowe funkcje kształtu (4. 4.). W tym przypadku wzór ten przyjmie postać: [ m~ ] 6 6 ~ ~ ~ ~ ~ ~ gdzie: m = [ N
PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania
Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko
Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Ścisła próba rozciągania stali Numer ćwiczenia: 2 Laboratorium z przedmiotu:
1.5. ZWIĄZKI KONSTYTUTYWNE STRONA FIZYCZNA
J. Wyrwał, Wykłady z echaniki ateriałów.5. ZWIĄZKI KONSTYTUTYWN STRONA FIZYCZNA.5.. Wprowadzenie Wyprowadzone w rozdziałach.3 (strona statyczna) i.4 (strona geoetryczna) równania (.3.36) i (.4.) są niezależne
700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:
Producent: Ryterna modul Typ: Moduł kontenerowy PB1 (długość: 6058 mm, szerokość: 2438 mm, wysokość: 2800 mm) Autor opracowania: inż. Radosław Noga (na podstawie opracowań producenta) 1. Stan graniczny
Z-LOGN Wytrzymałość materiałów Strength of materials
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-LOGN1-0133 Wytrzymałość materiałów Strength of materials A. USYTUOWANIE
Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.
Wytrzymałość Konstrukcji I - MEiL część II egzaminu 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. 2. Omówić pojęcia sił wewnętrznych i zewnętrznych konstrukcji.
Zestaw pytań z konstrukcji i mechaniki
Zestaw pytań z konstrukcji i mechaniki 1. Układ sił na przedstawionym rysunku a) jest w równowadze b) jest w równowadze jeśli jest to układ dowolny c) nie jest w równowadze d) na podstawie tego rysunku
I. Temat ćwiczenia: Definiowanie zagadnienia fizycznie nieliniowego omówienie modułu Property
POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA PODSTAW KON- STRUKCJI MASZYN Przedmiot: Modelowanie właściwości materiałów Laboratorium CAD/MES ĆWICZENIE Nr 8 Opracował: dr inż. Hubert Dębski I. Temat
WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA
aboratorium z Fizyki Materiałów 010 Ćwiczenie WYZNCZNIE MODUŁU YOUNG METODĄ STRZŁKI UGIĘCI Zadanie: 1.Za pomocą przyrządów i elementów znajdujących ię w zetawie zmierzyć moduł E jednego pręta wkazanego
8. WIADOMOŚCI WSTĘPNE
Część 2 8. MECHNIK ELEMENTÓW PRĘTOWYCH WIDOMOŚCI WSTĘPNE 1 8. WIDOMOŚCI WSTĘPNE 8.1. KLSYFIKCJ ZSDNICZYCH ELEMENTÓW KONSTRUKCJI Podstawą klasyfikacji zasadniczych elementów konstrukcji jest kształt geometryczny
Laboratorium Wytrzymałości Materiałów
Katedra Wytrzymałości Materiałów Instytut Mechaniki Budowli Wydział Inżynierii Lądowej Politechnika Krakowska Laboratorium Wytrzymałości Materiałów Praca zbiorowa pod redakcją S. Piechnika Skrypt dla studentów
Integralność konstrukcji w eksploatacji
1 Integralność konstrukcji w eksploatacji Wykład 0 PRZYPOMNINI PODSTAWOWYCH POJĘĆ Z WYTRZYMAŁOŚCI MATRIAŁÓW Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji
TRAJEKTORIE WARTOŚCI WŁASNYCH PÓL SIŁ WEWNĘTRZNYCH W TARCZACH I PŁYTACH ANIZOTROPOWYCH
TRAJEKTORIE WARTOŚCI WŁASNYCH PÓL SIŁ WEWNĘTRZNYCH W TARCZACH I PŁYTACH ANIZOTROPOWYCH Aleksander SZWED, Stanisław JEMIOŁO, Marcin GAJEWSKI Instytut Mechaniki Konstrukcji Inżynierskich PW. WSTĘP W przypadku
OBLICZENIE PRZEMIESZCZEŃ W KRATOWNICY PŁASKIEJ
WYZNACZANIE PRZEMIESZCZEŃ - kratownica obciążenie iłami 070 OBLICZENIE PRZEMIESZCZEŃ W KRATOWNICY PŁASKIEJ DANE WYJŚCIOWE DO OBLICZEŃ Dana jet kratownica jak na runku Zaprojektować wtępnie przekroje prętów
10.0. Schody górne, wspornikowe.
10.0. Schody górne, wspornikowe. OBCIĄŻENIA: Grupa: A "obc. stałe - pł. spocznik" Stałe γf= 1,0/0,90 Q k = 0,70 kn/m *1,5m=1,05 kn/m. Q o1 = 0,84 kn/m *1,5m=1,6 kn/m, γ f1 = 1,0, Q o = 0,63 kn/m *1,5m=0,95
7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu. Wymiary:
7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu Wymiary: B=1,2m L=4,42m H=0,4m Stan graniczny I Stan graniczny II Obciążenie fundamentu odporem gruntu OBCIĄŻENIA: 221,02 221,02 221,02
Pręt nr 1 - Element żelbetowy wg. PN-B-03264
Pręt nr 1 - Element żelbetowy wg. PN-B-03264 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x900 (Beton
P. Litewka Efektywny element skończony o dużej krzywiźnie
Wykaz oznaczeń stosowanych w pracy a długość elementu łukowego, c kosinus kąta rozwarcia elementu, c 0 kosinus połowy kąta rozwarcia elementu, d współczynnik ścinania, e współczynnik membranowy, g ij,