6. ZWIĄZKI FIZYCZNE Wstęp
|
|
- Kinga Małgorzata Grzybowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 6. ZWIĄZKI FIZYCZN ZWIĄZKI FIZYCZN 6.1. Wstęp Aby rozwiązać jakiekolwiek zadanie mechaniki ośrodka ciągłego musimy dysponować 15 niezależnymi równaniami, gdyż tyle mamy niewiadomych: trzy składowe wektora przemieszczenia u sześć składowych tensora naprężeń s sześć składowych tensora odkształceń e Znamy już dziewięć równań: trzy równanie różniczkowe równowagi Naviera (związki między naprężeniami) sześć równań geometrycznych Cauchy'ego (związki między odkształceniem a przemieszczeniem) Ostatnie sześć brakujących równań to równania fizyczne zwane także konstytutywnymi lub uogólnionym prawem Hooke'a 6.2. Wyprowadzenie Założenia: związki fizyczne są niezależna od czasu i warunków zewnętrznych, czyli zależności dla każdej chwili i każdej temperatury są takie same zależność s (e) jest liniowa ciała zachowują się sprężyście tzn. s i e zanikają po usunięciu przyczyny Najogólniejszą postać związków fizycznych wiążących ze sobą wartości tensorów naprężenia i odkształcenia, w przypadku trójwymiarowym, w ciałach materialnych zarówno izotropowych jak i anizotropowych liniowo sprężystych można przedstawić następująco: f (6.1) Wskaźnikowo: C ijkl (6.2) Gdzie i, j, k, l,2,3 Tensor C ijkl o walencji 4 nazywamy tensorem sprężystości (sztywności) stałych materiałowych. Tensor ten dla ciał izotropowych jest tensorem izotropowym zatem można go zapisać w następującej postaci:
2 6. ZWIĄZKI FIZYCZN 2 ik il (6.3) Gdzie i, j, k, l 1, 2, 3; l, m, k -dowolne stałe Jeżeli s ij i e kl są symetryczne to C ijkl również jest symetryczny: C ijkl C jikl (6.4) wykorzystując równanie (6.3) otrzymamy: Zatem: ik il C jilk ji il ik ik il ji il ik Po uporządkowaniu: Równanie to jest spełnione gdy: ik il 0 ik il 0 a) 0 lub b) ik il 0 c) Dla dowolnej kombinacji wskaźników warunek b) nie zawsze będzie spełniony zatem: Uwzględniając warunek (6.5) w równaniu (6.3) otrzymamy: 0 (6.5) ik il (6.6) Podstawiając wyrażenie (6.6) do (6.2) dostaniemy: ik il (6.7) Zauważmy, że: 1) 0 gdy lk, wtedy kk 2) ik 0 gdy ki oraz lj, wtedy ik 3) il 0 gdy kj oraz li, wtedy il ji
3 6. ZWIĄZKI FIZYCZN 3 4) ji Stąd po podstawieniu tych warunków do (6.7) otrzymamy: 2 kk (6.8) Wzór (6.8) przedstawia skrócony zapis równań fizycznych wiążących ze sobą wartości tensorów naprężenia i odkształcenia w przypadku trójwymiarowym (dla dowolnych osi), w ciałach materialnych izotropowych, liniowo-sprężystych bez uwzględnienia temperatury i czasu. Stałe m i l to tzw. Stałe Lamego. W uzyskanym równaniu fizycznym naprężenia zostały wyrażone przez odkształcenia. Doprowadźmy do zależności odwrotnej. Przyjmijmy ijk: 2 kk kk 2 kk kk kk kk kk 2 3 Wówczas: kk kk 2 3 (6.9) Podstawmy (6.9) do (6.8) kk Po przekształceniach: 2 ij 22 3 kk ij (6.10) Przyjmując: Otrzymamy wzór na e ij analogiczny do wzoru na s ij :
4 6. ZWIĄZKI FIZYCZN 4 2 kk (6.11) Wprowadzamy stałe materiałowe: moduł Younga (sprężystości) G moduł Kirchoffa (Ścinania, odkształcenia postaciowego) n - współczynnik Poissona G 21 (6.12) Po podstawieniu (6.12) i (6.13) do (6.8) uzyskamy związki fizyczne w postaci : 2G 2G 1 2 2G [ kk ij ij 1 2 ] kk ij 1 [ 1 2 kk ] Po rozpisaniu względem wskaźników i, j, k,2,3 otrzymamy: 11 1 [ ], G [ ], G [ ], G 23 (6.13) (6.14) (6.15) 4 G 1 2 (6.16) (6.17) Po podstawieniu (6.16) i (6.17) do (6.11) uzyskamy związki fizyczne w postaci :
5 6. ZWIĄZKI FIZYCZN G 1 2G 1 kk 2G [ 1 kk ] [ 1 kk ] (6.18) Po rozpisaniu względem wskaźników i, j, k,2,3 otrzymamy: 11 [ ] [ ] [ ], 22 [ ], 2G 33 [ ], G G (6.19) Do opisu stanu w punkcie mamy: 1) ji, j p i 0-3 równania Naviera 6.3. Podsumowanie 2) 2 u i, ju j,i - 6 równań geometrycznych 3) 2 kk - 6 równań fizycznych Jest to pełen komplet równań potrzebnych do opisu 15 niewiadomych.
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
7. RÓWNANIA TEORII SPRĘŻYSTOŚCI
7. RÓWNANIA TEORII SPRĘŻYSTOŚCI 1 7. 7. RÓWNANIA TEORII SPRĘŻYSTOŚCI 7.1. Wprowadzenie Równania Lamego wyrażają się wzorem: u i 1 u j, j i0 (7.1) gdzie: u i jest funkcją biharmoniczną u j,j υ - dylatacja
Defi f nicja n aprę r żeń
Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie
RÓWNANIA FIZYCZNE DLA CIAŁ LINIOWO - SPRĘŻYSTYCH
Część 5. RÓWNANIA FIZYCZNE DLA CIAŁ LINIOWO - SPRĘŻYSTYCH 5. RÓWNANIA FIZYCZNE DLA CIAŁ LINIOWO - SPRĘŻYSTYCH 5.. ZWIĄZKI MIĘDZY ODKSZTAŁCENIAMI I GŁÓWNYMI NAPRĘŻENIAMI W każdym materiale konstrukcyjnym
UOGÓLNIONE PRAWO HOOKE A
UOGÓLNIONE PRAWO HOOKE A Układ liniowosprężysty Clapeyrona Robert Hooke podał następującą, pierwotna postać prawa liniowej sprężystości: ut tensio sic vis, czyli takie wydłużenie jaka siła W klasycznej
4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ
4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie Teoria sprężystości jest działem mechaniki, zajmującym się bryłami sztywnymi i ciałami plastycznymi. Sprężystość zajmuje się odkształceniami
1.5. ZWIĄZKI KONSTYTUTYWNE STRONA FIZYCZNA
J. Wyrwał, Wykłady z echaniki ateriałów.5. ZWIĄZKI KONSTYTUTYWN STRONA FIZYCZNA.5.. Wprowadzenie Wyprowadzone w rozdziałach.3 (strona statyczna) i.4 (strona geoetryczna) równania (.3.36) i (.4.) są niezależne
TEORIA SPRĘŻYSTOŚCI I PLASTYCZNOŚCI (TSP)
TEORIA SPRĘŻYSTOŚCI I PLASTYCZNOŚCI (TSP) Wstęp. Podstawy matematyczne. Tensor naprężenia. Różniczkowe równania równowagi Zakład Mechaniki Budowli PP Materiały pomocnicze do TSP (studia niestacjonarne,
3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA
3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie
ROZDZIAŁ 2 RÓWNANIA FIZYCZNE DLA KOMPOZYTÓW KONFIGURACJA OSIOWA. σ = (2.1a) ε = (2.1b) σ = i, j = 1,2,...6 (2.2a) ε = i, j = 1,2,...6 (2.
ROZDZIAŁ J. German: PODTAWY MCHANIKI KOMPOZYTÓW WŁÓKNITYCH ROZDZIAŁ RÓWNANIA FIZYCZN DLA KOMPOZYTÓW KONFIGURACJA OIOWA W rozdziale tym zostaną przedstawione równania fizyczne dla materiałów anizotropowych,
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
9. PODSTAWY TEORII PLASTYCZNOŚCI
9. PODSTAWY TEORII PLASTYCZNOŚCI 1 9. 9. PODSTAWY TEORII PLASTYCZNOŚCI 9.1. Pierwsze kroki Do tej pory zajmowaliśmy się w analizie ciał i konstrukcji tylko analizą sprężystą. Nie zastanawialiśmy się, co
Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor.
Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor. Dany jest stan naprężenia w układzie x 1,x 2,x 3 T 11 12 13 [ ] 21 23 31 32 33 Znaleźć wektor naprężenia w płaszczyźnie o normalnej
mgr inż. Paweł Szeptyński Podstawy wytrzymałości materiałów i mechaniki układów prętowych 07 Teoria stanu naprężenia i odkształcenia
NAPRĘŻENIE Teoria stanu naprężenia i odkształcenia Naprężeniem nazywamy gęstość powierzchniowych sił wewnętrznych obrazujących oddziaływanie jednej części ciała na drugą, po dokonaniu jego myślowego rozcięcia.
Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia
Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości
Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa
Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia
MECHANIKA PRĘTÓW CIENKOŚCIENNYCH
dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki
Budowa Maszyn II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) podstawowy (podstawowy / kierunkowy / inny HES)
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 A. USYTUOWANIE
Analiza stanu naprężenia - pojęcia podstawowe
10. ANALIZA STANU NAPRĘŻENIA - POJĘCIA PODSTAWOWE 1 10. 10. Analiza stanu naprężenia - pojęcia podstawowe 10.1 Podstawowy zapisu wskaźnikowego Elementy konstrukcji znajdują się w przestrzeni fizycznej.
17. 17. Modele materiałów
7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
2. Pręt skręcany o przekroju kołowym
2. Pręt skręcany o przekroju kołowym Przebieg wykładu : 1. Sformułowanie zagadnienia 2. Warunki równowagi kąt skręcenia 3. Warunek geometryczny kąt odkształcenia postaciowego 4. Związek fizyczny Prawo
[ A i ' ]=[ D ][ A i ] (2.3)
. WSTĘP DO TEORII SPRĘŻYSTOŚCI 1.. WSTĘP DO TEORII SPRĘŻYSTOŚCI.1. Tensory macierzy Niech macierz [D] będzie macierzą cosinusów kierunkowych [ D ]=[ i ' j ] (.1) Macierz transformowana jest równa macierzy
13 Układy równań liniowych
13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...
Doświadczalne sprawdzenie twierdzeń Bettiego i Maxwella LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny Politechnika Śląska www.imio.polsl.pl fb.com/imiopolsl twitter.com/imiopolsl LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Doświadczalne
Drgania układu o wielu stopniach swobody
Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach
TENSOMETRIA ZARYS TEORETYCZNY
TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba
PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A
PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej
ROZWIĄZANIE PROBLEMU NIELINIOWEGO
Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Jerzy Pamin Tematyka zajęć 1 Dyskretyzacja
Symetrie i prawa zachowania Wykład 6
Symetrie i prawa zachowania Wykład 6 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/29 Rola symetrii Największym
PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH
1 Przedmowa Okładka CZĘŚĆ PIERWSZA. SPIS PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1. STAN NAPRĘŻENIA 1.1. SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE 1.2. WEKTOR NAPRĘŻENIA 1.3. STAN NAPRĘŻENIA W PUNKCIE 1.4. RÓWNANIA
Geometria. Hiperbola
Geometria. Hiperbola Definicja 1 Dano dwa punkty na płaszczyźnie: F 1 i F 2 oraz taką liczbę d, że F 1 F 2 > d > 0. Zbiór punktów płaszczyzny będących rozwiązaniami równania: XF 1 XF 2 = ±d. nazywamy hiperbolą.
Zaawansowane metody numeryczne
Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz
SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY.
ĆWICZENIE 5 SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. Wprowadzenie Odkształcenie, którego doznaje ciało pod działaniem
POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko
Twierdzenia o wzajemności
Twierdzenia o wzajemności Praca - definicja Praca iloczyn skalarny wektora siły i wektora drogi jaką pokonuje punkt materialny pod wpływem działania tej siły. L S r r F( s) o ds r F( s) cos ( α ) ds F
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki
3. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE
Część. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE.. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE Istotę metody przemieszczeń, najwygodniej jest przedstawić przez porównanie jej do metody sił, którą wcześniej już poznaliśmy
Układy równań liniowych. Ax = b (1)
Układy równań liniowych Dany jest układ m równań z n niewiadomymi. Liczba równań m nie musi być równa liczbie niewiadomych n, tj. mn. a a... a b n n a a... a b n n... a a... a b m m mn n m
Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron)
Jerzy Wyrwał Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Uwaga. Załączone materiały są pomyślane jako pomoc do zrozumienia informacji podawanych na wykładzie. Zatem ich
27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE
27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i
1.5. ZWIĄZKI KONSTYTUTYWNE STRONA FIZYCZNA
.5. ZWIĄZKI KONSTYTUTYWN STRONA FIZYCZNA.5.. Wprowazenie Wyprowazone w rozziałach.3 (strona statyczna i.4 (strona geoetryczna równania (.3.36 i (.4. są niezależne o rozaju ciała aterialnego, które oże
Wyboczenie ściskanego pręta
Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia
Zasady dynamiki Newtona. dr inż. Romuald Kędzierski
Zasady dynamiki Newtona dr inż. Romuald Kędzierski Czy do utrzymania ciała w ruchu jednostajnym prostoliniowym potrzebna jest siła? Arystoteles 384-322 p.n.e. Do utrzymania ciała w ruchu jednostajnym prostoliniowym
Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =
11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania
Charakterystyczne wielkości i równania PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny Instytut L-5, Wydział Inżynierii Lądowej,
MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
Wykład 5. Metoda eliminacji Gaussa
1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne
WSTĘP DO TEORII PLASTYCZNOŚCI
13. WSTĘP DO TORII PLASTYCZNOŚCI 1 13. 13. WSTĘP DO TORII PLASTYCZNOŚCI 13.1. TORIA PLASTYCZNOŚCI Teoria plastyczności zajmuje się analizą stanów naprężeń ciał, w których w wyniku działania obciążeń powstają
Tensory mały niezbędnik
28 października 2013 Rozkład wektora V na współrzędne: α = (0x, V ), β = (0y, V ), γ = (0z, V ). Rozkład wektora r, r = (x, y) na współrzędne w dwóch różnych układach współrzędnych. x = x cos θ + y sin
PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania
Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko
STAN ODKSZTAŁCENIA 2.1. WEKTOR PRZEMIESZCZENIA
Część. STAN ODKSZTAŁCENIA. STAN ODKSZTAŁCENIA.. WEKTOR PRZEMIESZCZENIA Rozważymy ciało odkształcalne wypełnione szczelnie materią (rys..). Pod wpływem czynników zewnętrznych (sił powierzchniowych, sił
Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski
Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu
STAN NAPRĘŻENIA. dr hab. inż. Tadeusz Chyży
STAN NAPRĘŻENIA dr hab. inż. Tadeusz Chyży 1 SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE Rozważmy ciało o objętości V 0 ograniczone powierzchnią S 0, poddane działaniu sił będących w równowadze. Rozróżniamy tutaj
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Algebra liniowa. Macierze i układy równań liniowych
Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,
Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis
Nauka o Materiałach Wykład VIII Odkształcenie materiałów właściwości sprężyste Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Klasyfikacja reologiczna odkształcenia
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 14 Rachunekwektorowy W celu zdefiniowania wektora a należy podać: kierunek(prostą na której leży wektor)
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.
Układy równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych
Wstęp Ruch po okręgu jest najprostszym przypadkiem płaskich ruchów krzywoliniowych. W ogólnym przypadku ruch po okręgu opisujemy równaniami: gdzie: dowolna funkcja czasu. Ruch odbywa się po okręgu o środku
WIADOMOŚCI OGÓLNE O NAPRĘŻENIACH. Stan naprężenia w punkcie ciała
WIADOMOŚCI OGÓLN O NAPRĘŻNIACH Stan naprężenia w punkcie ciała Załóżmy, że pewne ciało (rys. 1.1), obciążone układem sił zewnętrznych czynnych i biernych, znajduje się w równowadze. Poprowadzimy myślowo
Mechanika i wytrzymałość materiałów Kod przedmiotu
Mechanika i wytrzymałość materiałów - opis przedmiotu Informacje ogólne Nazwa przedmiotu Mechanika i wytrzymałość materiałów Kod przedmiotu 06.9-WM-IB-P-22_15W_pNadGenRDG4C Wydział Kierunek Wydział Mechaniczny
Wykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Wytrzymałość materiałów Rok akademicki: 2013/2014 Kod: GGiG-1-414-n Punkty ECTS: 5 Wydział: Górnictwa i Geoinżynierii Kierunek: Górnictwo i Geologia Specjalność: Poziom studiów: Studia I
Układy równań liniowych
Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d
Teoria sprężystości F Z - F Z
Teoria sprężystości Ciało sprężyste bryła, która pod wpływem działających sił zewnętrznych ulega deformacji zmienia swój kształt i/lub objętość i wraca do pierwotnej postaci po ustaniu działania tych sił.
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam
11. WŁASNOŚCI SPRĘŻYSTE CIAŁ
11. WŁANOŚCI PRĘŻYTE CIAŁ Efektem działania siły może być przyspieszanie ciała, ae może być także jego deformacja. Przykładami tego ostatniego są np.: rozciąganie gumy a także zginanie ub rozciąganie pręta.
8. PODSTAWY ANALIZY NIELINIOWEJ
8. PODSTAWY ANALIZY NIELINIOWEJ 1 8. 8. PODSTAWY ANALIZY NIELINIOWEJ 8.1. Wprowadzenie Zadania nieliniowe mają swoje zastosowanie na przykład w rozwiązywaniu cięgien. Przyczyny nieliniowości: 1) geometryczne:
MATERIAŁOZNAWSTWO vs WYTRZYMAŁOŚĆ MATERIAŁÓW
ĆWICZENIA LABORATORYJNE Z MATERIAŁOZNAWSTWA Statyczna próba rozciągania stali Wyznaczanie charakterystyki naprężeniowo odkształceniowej. Określanie: granicy sprężystości, plastyczności, wytrzymałości na
2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I
Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania
TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika
Równania różniczkowe wyższych rzędów
Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1. Rozwiązanie ogólne............................... 1.3 Obniżanie rzędu
Więzy i ich klasyfikacja Wykład 2
Więzy i ich klasyfikacja Wykład 2 Karol Kołodziej (przy współpracy Bartosza Dziewita) Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna
Równanie przewodnictwa cieplnego (I)
Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca
Rozwiązywanie układów równań liniowych
Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy
1 Pochodne wyższych rzędów
1 Pochodne wyższych rzędów Definicja 1.1 (Pochodne cząstkowe drugiego rzędu) Niech f będzie odwzorowaniem o wartościach w R m, określonym na zbiorze G R k. Załóżmy, że zbiór tych x G, dla których istnieje
MODELOWANIE NUMERYCZNE PEŁZANIA POŁĄCZEŃ KLEJOWYCH W KONSTRUKCJACH METALOWYCH
Wojciech ŻÓŁTOWSKI Artur ZBICIAK Paweł A. KRÓL 3 MODELOWANIE NUMERYCZNE PEŁZANIA POŁĄCZEŃ KLEJOWYCH W KONSTRUKCJACH METALOWYCH. Wprowadzenie Badania własne prowadzone w Instytucie Konstrukcji Budowlanych
1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH
1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH Ośrodki materialne charakteryzują dwa rodzaje różniących się zasadniczo od siebie wielkości fizycznych: globalne (ekstensywne) przypisane obszarowi przestrzeni fizycznej,
FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI
FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI DEFINICJA (funkcji elementarnych) Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe wykładnicze logarytmiczne trygonometryczne Funkcje, które można
PODSTAWY ENERGETYCZNE
Część 6. PODTAWY ENERGETYCZNE 6 PODTAWY ENERGETYCZNE 6.. PRACA IŁ ZEWNĘTRZNYCH Rozważmy ruch ciała po szorstkiej płaszczyźnie z uwzględnieniem siły tarcia. Ruch ten jest wywołany siłą P wzrastającą od
Własności wyznacznika
Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych
Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało sprężyste Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało
WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ MATERIAŁ. Właściwości materiałów. Właściwości materiałów
WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ Właściwości materiałów O możliwości zastosowania danego materiału decydują jego właściwości użytkowe; Zachowanie się danego materiału w środowisku pracy to zaplanowana
TERMODYNAMIKA PROCESOWA
TERMODYNAMIKA PROCESOWA Wykład III Podstawy termodynamiki nierównowagowej Prof. Antoni Kozioł Wydział Chemiczny Politechniki Wrocławskiej Uwagi ogólne Większość zagadnień związanych z przemianami różnych
1 Rozwiązywanie układów równań. Wyznaczniki. 2 Wektory kilka faktów użytkowych
Rozwiązywanie układów równań. Wyznaczniki. 2 Wektory kilka faktów użytkowych 2. Wektory. 2.. Wektor jako n ka liczb W fizyce mamy do czynienia z pojęciami lub obiektami o różnym charakterze. Są np. wielkości,
Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego
Matematyka 2 Równania różniczkowe zwyczajne rzędu drugiego Równania różniczkowe liniowe rzędu II Równanie różniczkowe w postaci y + a 1 (x)y + a 0 (x)y = f(x) gdzie a 0 (x), a 1 (x) i f(x) są funkcjami
Rys Przykładowe krzywe naprężenia w funkcji odkształcenia dla a) metali b) polimerów.
6. Właściwości mechaniczne II Na bieżących zajęciach będziemy kontynuować tematykę właściwości mechanicznych, którą zaczęliśmy tygodnie temu. Ponownie będzie nam potrzebny wcześniej wprowadzony słowniczek: