Podstawy wytrzymałości materiałów
|
|
- Wacława Majewska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Podstaw wtrmałości materiałów IMiR - MiBM - Wkład Nr 5 Analia stanu odkstałcenia Składowe stanu odkstałcenia, uogólnione prawo Hooke a, prawo Hooke a dla cstego ścinania, wględna miana objętości, klasfikacja stanów odkstałcenia, analia płaskiego stanu odkstałcenia podstaw tensometrii oporowej nergia sprężsta: energia właściwa odkstałcenia objętościowego i postaciowego Wdiał Inżnierii Mechanicnej i Robotki Katedra Wtrmałości, Zmęcenia Materiałów i Konstrukcji Dr hab. inż. Tomas Machniewic B, II p., pok. 06 -mail: machniew@agh.edu.pl
2 d (+ )d 5.. Składowe stanu odkstałcenia Płaski stan naprężenia: dkstałcenia w płascźnie diałania naprężeń: d d d α α + β = γ β d d (+ )d d d ; d d d d d d d d Składowe płaskiego stanu odkstałcenia:,, g Pod wpłwem prłożonch obciążeń ciało odkstałca się, a jego prestrenne element donają: mian objętości wiąanch liniowmi odkstałceniami, tj. mianami długości boków elementów prestrennch tw. odkstałcenia objętościowe, mian kstałtu (postaci) wiąanch deformacją kątową elementarnch prostopadłościanów, tj. mianami kątów pomięd poscególnmi ściankami elementów prestrennch tw. odkstałcenia postaciowe T. Machniewic IMiR, Podstaw wtrmałości materiałów, Wkład nr 5
3 d T. Machniewic IMiR, Podstaw wtrmałości materiałów, Wkład nr 5 d (+ )d 5.. Składowe stanu odkstałcenia Rodaje odkstałceń: odkstałcenia objętościowe (,, ) wględne mian długości boków elementarnego prostopadłościanu mierone na kierunkach,, wwołane naprężeniami normalnmi,,. odkstałcenia postaciowe (g, g, g ) mierone w poscególnch płascnach pochlenia ścianek elementarnego prostopadłościanu wwołane diałaniem naprężeń stcnch, g, g, g. Prestrenn stan odkstałcenia σ τ σ τ d τ τ τ σ τ τ τ σ (+ )d d Składowe prestrennego stanu odkstałcenia:,,, g, g, g
4 T. Machniewic IMiR, Podstaw wtrmałości materiałów, Wkład nr Prawo Hooke a w prpadku odkstałceń objętościowch dkstałcenia w jednoosiowm stanie naprężenia: ε = σ ε p = νε = σ ν Prestrenn stan naprężenia: σ σ σ σ + + σ = σ σ σ σ ε = + + σ ν ε = + + σ ν ε = + + σ ν σ σ ν σ ν σ ν σ
5 T. Machniewic IMiR, Podstaw wtrmałości materiałów, Wkład nr Prawo Hooke a w prpadku odkstałceń objętościowch W kierunkach głównch: W kierunkach dowolnch: σ σ τ σ σ σ τ τ τ τ τ τ τ σ σ σ ε = σ ν σ + σ ε = σ ν σ + σ ε = σ ν σ + σ ε = σ ν σ + σ ε = σ ν σ + σ ε = σ ν σ + σ
6 = = T. Machniewic IMiR, Podstaw wtrmałości materiałów, Wkład nr Prawo Hooke a w prpadku cstego ścinania Cste ścinanie stan naprężenia w prekrojach, w którch diałają jednie naprężenia stcne, aś naprężenia normalne równe są eru. = - σ = σ + σ σ = σ + σ τ = σ σ + σ σ σ σ sin α cos α cos α gd: σ = σ, σ = σ, α = π 4 : σ = σ = 0, τ = σ =- = = - τ = σ
7 = = (-) 5.. Prawo Hooke a w prpadku cstego ścinania = - tg π 4 γ = ε + ε () π 4 γ ε = σ ν σ + σ ε = σ ν σ + σ ε = ε ε = + ν = ε σ () σ = 0; σ = σ; σ = σ (+) = - τ = σ σ α = π 4 sin α τ = σ () tg α β = tgα tgβ + tgα tgβ tg π 4 γ = tg π 4 tg γ + tg π 4 tg γ = tg γ + tg γ γ + γ gd g jest bliskie eru (4) () (4) γ = + ν σ γ ε = γ () () = τ + ν γ = τ G gdie G = ( + ν) G moduł odkstałcenia postaciowego moduł Kirchoffa (MPa) T. Machniewic IMiR, Podstaw wtrmałości materiałów, Wkład nr 5 7
8 d d (+ )d (+ )d T. Machniewic IMiR, Podstaw wtrmałości materiałów, Wkład nr Uogólnione prawo Hooke a σ W kierunkach głównch: ε = σ ν σ + σ σ d σ (+ )d σ ε = σ ν σ + σ ε = σ ν σ + σ W kierunkach dowolnch: ε = σ ν σ + σ γ = τ G ε = σ ν σ + σ γ = τ G (+ )d d ε = σ ν σ + σ γ = τ G
9 d (+ )d T. Machniewic IMiR, Podstaw wtrmałości materiałów, Wkład nr Wględna miana objętości (dlatacja) σ Pocątkowa objętość prostopadłościanu: Końcowa objętość prostopadłościanu: dv 0 = d d d σ d σ (+ )d σ e = dv dv 0 dv 0 dv = + ε d + ε d + ε d Wględna miana objętości (dlatacja): e = + ε + ε + ε + ε ε + ε ε + ε ε + ε ε ε = + ε d + ε d + ε d d d d d d d = + ε + ε + ε d Małe wżsch rędów e = ε + ε + ε Uwględniając: lub w prpadku dowolnch kierunków: e = ε + ε + ε Wględna miana objętości w funkcji naprężeń: ε = σ ν σ + σ ε = σ ν σ + σ ε = σ ν σ + σ lub: ε = σ ν σ + σ ε = σ ν σ + σ ε = σ ν σ + σ e = e = ν ν σ + σ + σ σ + σ + σ
10 d d (+ )d (+ )d T. Machniewic IMiR, Podstaw wtrmałości materiałów, Wkład nr Scególne prpadki stanu odkstałcenia i naprężenia Prestrenn stan odkstałcenia: Prestrenn dowoln stanu odkstałcenia opisan jest seścioma składowmi:,,, g, g, g Tensor dowolnego prestrennego stanu odkstałcenia: T ε = γ ε γ ε γ γ (+ )d d γ γ ε W prpadku materiału iotropowego kierunki naprężeń głównch są takie same dla odkstałceń jak i naprężeń. σ Tensor prestrennego stanu odkstałcenia dla kierunków głównch : σ d σ (+ )d σ T ε = ε ε ε Zgodnie prawem Hooke a (g /G) odkstałcenia kątowe są równe eru (g = g = g =0), bo nie wstępują naprężenia stcne ( = = =0)
11 T. Machniewic IMiR, Podstaw wtrmałości materiałów, Wkład nr Scególne prpadki stanu odkstałcenia i naprężenia Płaski stan naprężenia (PSN): a) W prpadku kierunków głównch: σ 0, σ 0, σ = 0 - co uwględniając otrmujem: σ σ σ ε = σ νσ ε = σ νσ σ = σ = ν ν ε + νε ε + νε σ ε = ν σ + σ σ = 0 Tensor odkstałceń i naprężeń w PSN na kierunkach głównch: T ε = ε ε ε T σ = σ 0 0 σ
12 T. Machniewic IMiR, Podstaw wtrmałości materiałów, Wkład nr Scególne prpadki stanu odkstałcenia i naprężenia Płaski stan naprężenia (PSN): b) W prpadku kierunków dowolnch: σ 0, σ 0, σ = 0, τ 0, τ = 0, τ = 0 σ τ τ ε = σ νσ ε = σ νσ σ = σ = ν ν ε + νε ε + νε σ τ τ σ σ ε = ν σ + σ γ = τ G σ = 0 τ = G γ Tensor odkstałceń i naprężeń w PSN na kierunkach dowolnch: T ε = γ ε 0 γ ε ε T σ = σ τ τ σ Wniosek: W płaskim stanie naprężenia istnieje prestrenn stan odkstałcenia.
13 5.6. Scególne prpadki stanu odkstałcenia i naprężenia Płaski stan odkstałcenia (PS): a) W prpadku kierunków głównch: ε 0, ε 0, ε = 0 - co uwględniając otrmujem: σ σ σ σ ε = σ ν σ + σ = 0 σ = ν σ + σ T ε = ε 0 0 ε T σ = σ σ σ b) W prpadku kierunków dowolnch: ε 0, ε 0, ε = 0, γ 0, γ = 0, γ = 0 σ τ ε = σ ν σ + σ = 0 σ = ν σ + σ σ τ τ σ τ σ T ε = ε γ γ T σ = ε σ τ 0 τ σ σ Wniosek: Płaski stan odkstałcenia można wwołać, odpowiednio dobranm, prestrennm stanem naprężenia T. Machniewic IMiR, Podstaw wtrmałości materiałów, Wkład nr 5
14 T. Machniewic IMiR, Podstaw wtrmałości materiałów, Wkład nr Analia płaskiego stan odkstałcenia podstaw tensometrii Analogia pomięd ależnościami transformacjnmi w płaskim stanie naprężenia i odkstałcenia: n cos n sin g n cos g n sin (90) ε 0 = ε + ε + ε ε cos α 90 (45) ε 45 = ε + ε + ε ε cos α + 45 ε 90 = ε + ε + ε ε cos α (0) ε, = ε 0 + ε 90 ± ε 0 ε 90 cos α tgα = ε 45 ε 0 ε 90 ε 0 ε 90
15 T. Machniewic IMiR, Podstaw wtrmałości materiałów, Wkład nr Analia płaskiego stan odkstałcenia podstaw tensometrii (90) 90 0 (45) ε, = ε 0 + ε 90 ± ε 0 ε 90 tgα = ε 45 ε 0 ε 90 ε 0 ε 90 Uwględniając: cos α = trmujem: cos α (0) ε, = ε 0 + ε 90 ± ε 0 ε 90 + ε 45 ε 90 W tensometrii oporowej wnaca się odkstałcenie na podstawie wględnej mian restancji (R/R) użtego tensometru : R R = εk gdie K stała cujnika + tg α Roet tensometrcne stosowane do wnacania kierunków i wartości odkstałceń głównch
16 T. Machniewic IMiR, Podstaw wtrmałości materiałów, Wkład nr nergia sprężsta nergia właściwa odkstałcenia sprężstego w jednoosiowm stanie naprężenia ( n ): A P ഥP L P l l l L P = P l l = Pl A L P = P l A nergia właściwa () energia prpadająca na jednostkę objętości materiału (V) Φ n = L V = P l A Al = P A ; Φ n = σ = σ σ ; Φ n = σε
17 a T. Machniewic IMiR, Podstaw wtrmałości materiałów, Wkład nr nergia sprężsta Właściwa energia sprężsta ścinania ( t ): s τ ഥT τ γ τ a τ Φ t = L T V = Ts V T = τa s = aγ V = a Φ t = τγ Całkowita właściwa energia sprężsta w prestrennm stanie naprężenia (): σ τ τ g dla kierunków dowolnch g g σ τ σ τ dla kierunków głównch σ σ σ
18 T. Machniewic IMiR, Podstaw wtrmałości materiałów, Wkład nr nergia sprężsta nergia sprężsta odkstałcenia objętościowego ( ) i odkstałcenia postaciowego ( P ): Całkowitą energię odkstałcenia sprężstego () można podielić na dwie cęści: energię odkstałcenia objętościowego P energię odkstałcenia postaciowego P a) dkstałcenia csto objętościowe powstaną, gd element obciążon będie takimi sammi naprężeniami na wsstkich kierunkach: σ σ (σ σ ) σ σ = + σ σ (σ σ ) (σ σ ) σ σ (σ σ ) dkstałcenia wpadkowe () dkstałcenia dkstałcenia objętościowe postaciowe ( ) ( P )
19 5.8. nergia sprężsta nergia sprężsta odkstałcenia objętościowego ( ) i odkstałcenia postaciowego ( P ): σ σ (σ σ ) σ σ = + σ σ (σ σ ) P (σ σ ) σ σ (σ σ ) Prjmujem: Z prawa Hooke a: () () trmujem ( rów. i ): 6 6 T. Machniewic IMiR, Podstaw wtrmałości materiałów, Wkład nr 5 - dla kierunków głównch - dla kierunków dowolnch 9
20 T. Machniewic IMiR, Podstaw wtrmałości materiałów, Wkład nr nergia sprężsta nergia sprężsta odkstałcenia objętościowego ( ) i odkstałcenia postaciowego ( P ): σ σ (σ σ ) σ σ = + σ σ (σ σ ) P (σ σ ) σ σ (σ σ ) 6 6 b) dkstałcenia csto postaciowe powstaną, gd elementarn prostopadłościan obciążon będie naprężeniami będącmi dopełnieniem naprężeń ednich ( ) do wjściowch naprężeń głównch. 6 trmujem: P 6 P 6 - dla kierunków głównch - dla kierunków dowolnch
Podstawy wytrzymałości materiałów
Podstaw wtrmałości materiałów IMiR -IA- Wkład Nr 9 Analia stanu odkstałcenia Składowe stanu odkstałcenia, uogólnione prawo Hooke a, prawo Hooke a dla cstego ścinania, wględna miana objętości, klasfikacja
Podstawy wytrzymałości materiałów
Podstaw wtrmałości materiałów IMiR IMT - Wkład Nr 0 Złożon stan naprężeń - wtężenie materiału stan krtcn materiału pojęcie wtężenia cel stosowania hipote wtężeniowch naprężenie redukowane pregląd hipote
Przykład 6.3. Uogólnione prawo Hooke a
Prkład 6 Uogónione prawo Hooke a Zwiąki międ odkstałceniami i naprężeniami w prpadku ciała iotropowego opisuje uogónione prawo Hooke a: ] ] ] a Rowiąując równania a wgędem naprężeń otrmujem wiąki: b W
Złożone działanie sił wewnętrznych w prętach prostych
Złożone diałanie sił wewnętrnch w rętach rostch Jeżeli sił wewnętrne nie redukują się włącnie do sił odłużnej N, orecnej T i momentu gnącego Mg c momentu skręcającego Ms, to radki takie nawa się łożonmi
Zginanie ukośne LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki
Katedra Wtrmałości Materiałów i Metod Komputerowch Mechaniki Wdiał Mechanicn Technologicn Politechnika Śląska LABORATORUM WYTRZYMAŁOŚC MATERAŁÓW Zginanie ukośne ZGNANE UKOŚNE 2 1. CEL ĆWCZENA Ćwicenie
σ x σ y σ z σ z, Adam Bodnar: Wytrzymałość Materiałów. Równania fizyczne.
Ada Bodnar: Wtrałość Materiałów. Równania ficne. 7. RÓWNANIA FIZCZN 7.. Zwiąki ięd stane odkstałcenia i naprężenia. I i II postać równań Hooke a Zależność deforacji brł od obciążeń ewnętrnch naruca istnienie
ANALIZA STANU NAPRĘŻEŃ
MACIJ PAWŁOWSKI ANALIZA STANU NAPRĘŻŃ Skrpt dla studentów Gdańsk 08 dr hab inż Maciej Pawłowski, prof GSW Wdiał Nauk Inżnierskich, Gdańska Skoła Wżsa Redakcja Tomas Mikołajcewski Wdanie pierwse, Gdańsk
Adam Bodnar: Wytrzymałość Materiałów. Proste zginanie
dam Bodnar: trmałość ateriałów. Proste ginanie. PROSTE GINNIE.. Naprężenia i odkstałcenia Proste ginanie pręta prmatcnego wstępuje wówcas gd układ sił ewnętrnch po jednej stronie jego prekroju poprecnego
J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie
J. antr - Wkład Napór hdrostatcn Napór hdrostatcn na ścian płaskie Napór elementarn: d n( p pa ) d nρgd Napór całkowit: ρg nd ρgn d gdie: C Napór hdrostatcn na ścianę płaską predstawia układ elementarnch
J. Szantyr - Wykład 7 Ruch ogólny elementu płynu
J. Santr - Wkład 7 Rch ogóln element płn Rch ogóln ciała stwnego można predstawić jako smę premiescenia liniowego i obrot. Ponieważ płn nie mają stwności postaciowej, w rch płn dochodi dodatkowo do odkstałcenia
ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY
Cw3_biornik.doc ANALIZA KONTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY 1. W P R O W A D Z E N I E Ciało utworone pre dwie akrwione powierchnie nawane jest powłoką, jeśli preciętna odlełość pomięd
4. Elementy liniowej Teorii Sprężystości
4. lementy liniowej Teorii Sprężystości 4.1. Podstawowe założenia i hipotezy liniowej TS. 4.2. Stan naprężenia w punkcie 4.3. Równania równowagi stanu naprężenia 4.4. Stan odkształcenia w punkcie 4.5.
Stan odkształcenia i jego parametry (1)
Wprowadzenie nr * do ćwiczeń z przedmiotu Wytrzymałość materiałów przeznaczone dla studentów II roku studiów dziennych I stopnia w kierunku nergetyka na wydz. nergetyki i Paliw, w semestrze zimowym /.
Wyznaczanie środka ścinania w prętach o przekrojach niesymetrycznych
Insttut Mechaniki i Inżnierii Obliceniowej Wdiał Mechanicn echnologicn Politechnika Śląska www.imio.polsl.pl LBORORIUM WYRZYMŁOŚCI MERIŁÓW Wnacanie środka ścinania w prętach o prekrojach niesmetrcnch WYZNCZNIE
Część 1 2. PRACA SIŁ WEWNĘTRZNYCH 1 2. PRACA SIŁ WEWNĘTRZNYCH Wstęp
Cęść 1. PRC SIŁ WEWNĘTRZNYCH 1.. PRC SIŁ WEWNĘTRZNYCH.1. Wstęp Na wstępie prpomnijm, że gd premiescenie danego eementu jest funkcją diałającej nań sił Δ = f(p), to praca sił na tm premiesceniu jest równa:
Adam Bodnar: Wytrzymałość Materiałów. Ukośne zginanie 13. UKOŚNE ZGINANIE
. UKOŚNE GINNIE.. Naprężenia i odkstałcenia Ukośne ginanie pręta prmatcnego wstępuje wówcas gd układ sił ewnętrnch po jednej stronie jego prekroju poprecnego pręta redukuje się do momentu ginającego, którego
1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił
. REDUKCJA DOWOLNYCH UKŁADÓW IŁ Redukcja płaskiego układu sił Zadanie. Znaleźć wartość licbową i równanie linii diałania wpadkowej cterech sił predstawionch na rsunku. Wartości licbowe sił są następujące:
KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA
ĆWICZENIE 5 KONWENCA ZNAKOWANIA OENTÓW I WZÓR NA NAPRĘŻENIA Wektor momentu pr ginaniu ukośnm można rutować na osie,, będące głównmi centralnmi osiami bewładności prekroju. Prjmujem konwencję nakowania
P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ).
Materiał ddaktcne Geodeja geometrcna Marcin Ligas, Katedra Geomatki, Wdiał Geodeji Górnicej i Inżnierii Środowiska UKŁADY WSPÓŁZĘDNYCH NA KULI Pierwsm prbliżeniem kstałtu Ziemi (ocwiście po latach płaskich
Naprężenia i odkształcenia Stress & strain. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki
Naprężenia i odkstałcenia Stress & strain Naprężenia i odkstałcenia Simplifing assumptions:. Soil is continuous. Soil is homogeneous. Soil is isotropic A continuous bod subjected to a sstem of eternal
Podstawy Konstrukcji Maszyn
Podsta Konstrukcji Masn kład Podsta oliceń elementó masn Dr inŝ. acek Carnigoski OciąŜenia elementu OciąŜeniem elementu (cęści lu całej masn) są oddiałania innc elementó, środoiska ora ociąŝeń enętrnc
TEORIA SPRĘŻYSTOŚCI 10
W YKŁ ADY Z T EOII S ĘŻYSTOŚCI ZADANIE BOUSSINESQA I FLAMANTA olitechnika onańska Kopac, Kawck, Łodgowski, łotkowiak, Świtek, Tmpe Olga Kopac, Kstof Kawck, Adam Łodgowski, Michał łotkowiak, Agnieska Świtek,
TENSOMETRIA ZARYS TEORETYCZNY
TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba
Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8
Wnacanie reakcji dnaicnch ora wważanie ciała w ruchu oroow wokół sałej osi 8 Wprowadenie Jeśli dowolne ciało swne o asie jes w ruchu oroow wokół osi, o na podporach powsają reakcje A i B. Składowe ch reakcji
Adam Bodnar: Wytrzymałość Materiałów. Hipotezy wytężeniowe.
HIPOTEZY WYTĘŻENIOWE Wtężenie i jego miara Wkres rociągania stali miękkiej pokauje że punkt materialn najdując się w jednoosiowm stanie naprężenia prechodi w trakcie więksania naprężenia pre kolejne stan
PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A
PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej
MECHANIKA PRĘTÓW CIENKOŚCIENNYCH
dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki
TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1
ĆWICZENIE NR 1 TEMAT: Próba statycna rociągania metali. Obowiąująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 Podać nacenie następujących symboli: d o -.....................................................................
Integralność konstrukcji w eksploatacji
1 Integralność konstrukcji w eksploatacji Wykład 0 PRZYPOMNINI PODSTAWOWYCH POJĘĆ Z WYTRZYMAŁOŚCI MATRIAŁÓW Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji
Defi f nicja n aprę r żeń
Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie
Belki zespolone 1. z E 1, A 1
Belki espolone. DEFINIC Belki espolone to belki, którch prekrój poprecn składa się co najmniej dwóch materiałów o różnch własnościach ficnch (różne moduł Younga i współcnniki Poissona), pr cm apewnione
napór cieczy - wypadkowy ( hydrostatyczny )
5. apór hdrostatcn i równowaga ciał płwającch Płn najdując się w stanie równowagi oddiałwuje na ścian ogranicające ropatrwaną jego objętość i sił te nawane są naporami hdrostatcnmi. Omawiana problematka
ODKSZTAŁCENIE PLASTYCZNE MATERIAŁÓW IZOTROPOWYCH. Opis dla ośrodka ciągłego
ODKSZTAŁCENIE LASTYCZNE MATERIAŁÓW IZOTROOWYCH. Opis dla ośrodka ciągłego (opracowano na podstawie: C.N. Reid, deformation geometr for Materials Scientists, ergamon ress, Oford, 97) Wstęp Omówim tera sposób
PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania
Charakterystyczne wielkości i równania PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny Instytut L-5, Wydział Inżynierii Lądowej,
Wytrzymałość materiałów
Wytrzymałość materiałów Wykład 3 Analiza stanu naprężenia i odkształcenia w przekroju pręta Poznań 1 3.1. Podstawowe założenia Charakterystyka materiału Zakładamy na początek, że mamy do czynienia z ośrodkiem
Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia
Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości
TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania
TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika
Wprowadzenie do WK1 Stan naprężenia
Wytrzymałość materiałów i konstrukcji 1 Wykład 1 Wprowadzenie do WK1 Stan naprężenia Płaski stan naprężenia Dr inż. Piotr Marek Wytrzymałość Konstrukcji (Wytrzymałość materiałów, Mechanika konstrukcji)
WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ MATERIAŁ. Właściwości materiałów. Właściwości materiałów
WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ Właściwości materiałów O możliwości zastosowania danego materiału decydują jego właściwości użytkowe; Zachowanie się danego materiału w środowisku pracy to zaplanowana
mgr inż. Paweł Szeptyński Podstawy wytrzymałości materiałów i mechaniki układów prętowych 07 Teoria stanu naprężenia i odkształcenia
NAPRĘŻENIE Teoria stanu naprężenia i odkształcenia Naprężeniem nazywamy gęstość powierzchniowych sił wewnętrznych obrazujących oddziaływanie jednej części ciała na drugą, po dokonaniu jego myślowego rozcięcia.
Zestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t
Zesaw adań : Preksałcenia liniowe () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + +, b) n = m = 3, ϕ( +, 3 + + + +, d) n = m = 3, ϕ( +, c) n = m = 3, ϕ( e) n
PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania
Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko
Kolokwium z mechaniki gruntów
Zestaw 1 Zadanie 1. (6 pkt.) Narysować wykres i obliczyć wypadkowe parcia czynnego wywieranego na idealnie gładką i sztywną ściankę. 30 kpa γ=17,5 kn/m 3 Zadanie 2. (6 pkt.) Obliczyć ile wynosi obciążenie
STATYCZNA PRÓBA SKRĘCANIA
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku
ENERGIA DYSYPACJI W SPRĘŻYSTOLEPKIM PRĘ CIE PRZY HARMONICZNYCH OBCIĄŻENIACH
ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK XLVIII NR 1 (168) 007 Janusz Kolenda Akademia Marynarki Wojennej ENERGIA DYSYPACJI W SPRĘŻYSTOLEPKIM PRĘ CIE PRZY HARMONICZNYCH OBCIĄŻENIACH STRESZCZENIE
Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis
Nauka o Materiałach Wykład VIII Odkształcenie materiałów właściwości sprężyste Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Klasyfikacja reologiczna odkształcenia
UOGÓLNIONE PRAWO HOOKE A
UOGÓLNIONE PRAWO HOOKE A Układ liniowosprężysty Clapeyrona Robert Hooke podał następującą, pierwotna postać prawa liniowej sprężystości: ut tensio sic vis, czyli takie wydłużenie jaka siła W klasycznej
RÓWNANIA KONSTYTUTYWNE MATERIAŁ ÓW LEPKOSPRĘŻYSTYCH PODDANYCH OBCIĄŻENIOM ZŁ O Ż ONYM
ZSZYTY NAUKOW AKADMII MARYNARKI WOJNNJ ROK XLVIII NR (69) 007 Janus Kolenda Akademia Marnarki Wojennej RÓWNANIA KONSTYTUTYWN MATRIAŁ ÓW LPKOSPRĘŻYSTYCH PODDANYCH OBCIĄŻNIOM ZŁ O Ż ONYM STRSZCZNI Praca
2. ELEMENTY TEORII PRĘTÓW SILNIE ZAKRZYWIONYCH (Opracowano na podstawie [9, 11, 13, 34, 51])
P Litewka Efektywny eement skońcony o dżej krywiźnie ELEENTY TEOII PĘTÓW SILNIE ZKZYWIONYCH (Opracowano na podstawie [9,, 3, 34, 5]) Premiescenia i odkstałcenia osiowe Pre pręty sinie akrywione romie się
STANY NAPRĘŻENIA I ODKSZTAŁCENIA
STANY NAPRĘŻNIA I ODKSZTAŁCNIA Analia stanu naprężenia: Stan naprężenia jest kreśln seścima składwmi: naprężenia nrmalne: naprężenia stcne:. W celu achwania równwagi seściennej kstki naprężenia stcne na
Zestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t
Zesaw adań : Preksałcenia liniowe. Maciere preksałceń liniowch () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + ) = +, b) n = m = 3, ϕ( ) = +, 3 + + + +, d) n
Postać Jordana macierzy
Rodiał 8 Postać Jordana macier 8.1. Macier Jordana Niech F = R lub F = C. Macier J r () F r r postaci 1. 1... J r () =..........,.... 1 gdie F, nawam klatką Jordana stopnia r. Ocwiście J 1 () = [. Definicja
ZADANIE PROJEKTOWE NR 3. Projekt muru oporowego
Rok III, sem. VI 1 ZADANIE PROJEKTOWE NR 3 Projekt muru oporowego Wg PN83/B03010 Ściany oporowe. Obliczenia statyczne i projektowanie. Ściany oporowe budowle utrzymujące w stanie statecznym uskok naziomu
Wytrzymałość Materiałów
Wytrzymałość Materiałów Skręcanie prętów o przekrojach kołowych Siły przekrojowe, deformacja, naprężenia, warunki bezpieczeństwa i sztywności, sprężyny śrubowe. Wydział Inżynierii Mechanicznej i Robotyki
Naprężenia styczne i kąty obrotu
Naprężenia tyczne i kąty obrotu Rozpatrzmy pręt pryzmatyczny o przekroju kołowym obciążony momentem kręcającym 0 Σ ix 0 0 A A 0 0 Skręcanie prętów o przekroju kołowym, pierścieniowym, cienkościennym. Naprężenia
MECHANIKA BUDOWLI 2 PRACA SIŁ WEWNĘTRZNYCH W PRĘTACH
Oga Kopac, am Łogowski, Wojciech Pawłowski, ichał Płotkowiak, Krstof mber Konsutacje naukowe: prof. r hab. JERZY RKOWSKI Ponań /3 ECHIK BUDOWI Praca sił normanch Siła normana prpomnienie (): Jest to siła
11. WŁASNOŚCI SPRĘŻYSTE CIAŁ
11. WŁANOŚCI PRĘŻYTE CIAŁ Efektem działania siły może być przyspieszanie ciała, ae może być także jego deformacja. Przykładami tego ostatniego są np.: rozciąganie gumy a także zginanie ub rozciąganie pręta.
Podstawy wytrzymałości materiałów
Podstaw wtrzmałości materiałów IMiR - MiBM - Wkład Nr 4 Aaliza stau aprężeia Sta aprężeia w pukcie, tesor aprężeia, klasfikacja staów aprężeia, aaliza jedoosiowego stau aprężeia, aaliza płaskiego stau
Przykład 6.1. Przestrzenny stan naprężenia i odkształcenia
Prkład Pretrenn tan naprężenia i odktałcenia Stan naprężenia Stan naprężenia w punkcie jet określon a pomocą diewięciu kładowch, które onacam literą odpowiednimi indekami Pierw indek onaca normalną ewnętrną
Załącznik D (EC 7) Przykład analitycznej metody obliczania oporu podłoża
Załącznik D (EC 7) Przykład analitycznej metody obliczania oporu podłoża D.1 e używane w załączniku D (1) Następujące symbole występują w Załączniku D: A' = B' L efektywne obliczeniowe pole powierzchni
PLASTYCZNOŚĆ W UJĘCIU KOMPUTEROWYM
Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2013/2014 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Jerzy Pamin Tematyka zajęć 1 Sprężystość
WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ GAUSSA
Ćwiczenie WYZNACZANIE MOUŁU SZTYWNOŚCI METOĄ YNAMICZNĄ GAUSSA.1. Wiadomości ogóne Pod wpływem sił zewnętrznych ciała stałe uegają odkształceniom tzn. zmieniają swoje wymiary oraz kształt. Jeżei po usunięciu
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Surface settlement due to tunnelling. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki
urface settlement due to tunnelling Projektowanie i wykonawstwo budowli podziemnych pod zagospodarowana powierzchnią terenu wymaga oszacowania wielkości deformacji wewnątrz górotworu, a szczególnie powierzchni
Zginanie Proste Równomierne Belki
Zginanie Proste Równomierne Belki Prebieg wykładu : 1. Rokład naprężeń w prekroju belki. Warunki równowagi. Warunki geometrycne 4. Zwiąek fiycny 5. Wskaźnik wytrymałości prekroju na ginanie 6. Podsumowanie
UKŁADY TENSOMETRII REZYSTANCYJNEJ
Ćwicenie 8 UKŁADY TESOMETII EZYSTACYJEJ Cel ćwicenia Celem ćwicenia jest ponanie: podstawowych właściwości metrologicnych tensometrów, asad konstrukcji pretworników siły, ora budowy stałoprądowych i miennoprądowych
Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.
Wytrzymałość Konstrukcji I - MEiL część II egzaminu 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. 2. Omówić pojęcia sił wewnętrznych i zewnętrznych konstrukcji.
Rysunek Płaski stan naprężenia: nieznane (a) oraz znane (b) kierunki między naprężeniami głównymi.
LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Ćwiczenie 16 WYZNACZANIE SKŁADOWYCH PŁASKIEGO STANU NAPRĘŻENIA PRZY ZASTOSOWANIU TENSOMETRÓW ELEKTROOPOROWYCH 16.1. Wprowadzenie Płaski stan naprężenia (rys. 16.1
[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)
PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]
Laboratorium wytrzymałości materiałów
Politechnika Lubelska MECHANIKA Laboratorium wytrzymałości materiałów Ćwiczenie 19 - Ścinanie techniczne połączenia klejonego Przygotował: Andrzej Teter (do użytku wewnętrznego) Ścinanie techniczne połączenia
POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y
POTENCJALNE POLE SIŁ POLE SKALARNE Polem skalarnm V(r) nawam funkcję prpisującą każdemu punktowi w prestreni licbę recwistą (skalar): V (r): r=(,, ) V (r) POLE WEKTOROWE SIŁ Polem wektorowm sił F(r) nawam
Ruch kulisty bryły. Kąty Eulera. Precesja regularna
Ruch kulist brł. Kąt Eulera. Precesja regularna Ruchem kulistm nawam ruch, w casie którego jeden punktów brł jest stale nieruchom. Ruch kulist jest obrotem dookoła chwilowej osi obrotu (oś ta mienia swoje
Ruch kulisty bryły. Kinematyka
Ruch kulist bł. Kinematka Ruchem kulistm nawam uch, w casie któego jeden punktów bł jest stale nieuchom. Ruch kulist jest obotem dookoła chwilowej osi obotu (oś ta mienia swoje położenie w casie). a) b)
Fizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
2. Pręt skręcany o przekroju kołowym
2. Pręt skręcany o przekroju kołowym Przebieg wykładu : 1. Sformułowanie zagadnienia 2. Warunki równowagi kąt skręcenia 3. Warunek geometryczny kąt odkształcenia postaciowego 4. Związek fizyczny Prawo
[ ] ρ m. Wykłady z Hydrauliki - dr inż. Paweł Zawadzki, KIWIS WYKŁAD WPROWADZENIE 1.1. Definicje wstępne
WYKŁAD 1 1. WPROWADZENIE 1.1. Definicje wstępne Płyn - ciało o module sprężystości postaciowej równym zero; do płynów zaliczamy ciecze i gazy (brak sztywności) Ciecz - płyn o małym współczynniku ściśliwości,
cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 8: Brła stwna c. Dr inż. Zbigniew Sklarski Katedra Elektroniki, paw. C-, pok.3 skla@agh.edu.pl http://laer.uci.agh.edu.pl/z.sklarski/ 05.04.08 Wdiał nformatki, Elektroniki i Telekomunikacji - Teleinformatka
Wyznaczanie koncentracji naprężeń w elemencie rurowym z otworem
POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ MECHANICZNY Katedra Budowy i Eksploatacji Maszyn Instrukcja do zajęć laboratoryjnych z przedmiotu: PODSTAWY KONSTRUKCJI MASZYN II Temat ćwiczenia: Wyznaczanie koncentracji
MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW
MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW Materiały pomocnicze do wykładu (Inżynieria Środowiska) PWSZ w Elblągu dr hab. inż. Cezary Orlikowski Instytut Politechniczny MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW MECHANIKA
Równoważne układy sił
Równoważne układ sił Równoważnmi układami sił nawam takie układ, którch skutki diałania na ten sam obiekt są jednakowe. Jeżeli układ sił da się astąpić jedną siłą, to siłę tą nawam siłą wpadkową. Wpadkowa
Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor.
Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor. Dany jest stan naprężenia w układzie x 1,x 2,x 3 T 11 12 13 [ ] 21 23 31 32 33 Znaleźć wektor naprężenia w płaszczyźnie o normalnej
Katedra Geotechniki i Budownictwa Drogowego. WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Mazurski
Katedra Geotechniki i Budownictwa Drogowego WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Maurski Mechanika Gruntów dr inż. Ireneus Dyka http://pracownicy.uwm.edu.pl/i.dyka e-mail: i.dyka@uwm.edu.pl
1. Połączenia spawane
1. Połączenia spawane Przykład 1a. Sprawdzić nośność spawanego połączenia pachwinowego zakładając osiową pracę spoiny. Rysunek 1. Przykład zakładkowego połączenia pachwinowego Dane: geometria połączenia
Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995
Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Jerzy Bobiński Gdańsk, wersja 0.32 (2014)
GEOFIZYKA STOSOWANA wykład 2. Podstawy sejsmiki
GEOFIZYKA STOSOWANA wykład Podstawy sejsmiki Naprężenie całkowite działające na nieskończenie mały element ośrodka ciągłego o objętości dv i powierzchni ds można opisać jeśli znamy rozkład naprężeń działających
α - stałe 1 α, s F ± Ψ taka sama Drgania nieliniowe (anharmoniczne) Harmoniczne: Inna zależność siły od Ψ : - układ nieliniowy,
Drgania nieliniowe (anharmoniczne) Harmoniczne: F s s Inna zależność siły od : - układ nieliniowy, Symetryczna siła zwrotna Niech: F s ( ) s Symetryczna wartość - drgania anharmoniczne α, s F s dla α -
Instytut Geologii, Uniwersytet im. A. Mickiewicza w Poznaniu. prof. UAM, dr hab. inż. Jędrzej Wierzbicki
Instytut Geologii, Uniwersytet im. A. Mickiewica w Ponaniu MECHANIKA GRUNTÓW prof. UAM, dr hab. inż. Jędrej Wierbicki CEL Ponanie asad modelowego opisu ośrodka gruntowego (model i jego parametry). Umiejętność
Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych
Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało sprężyste Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało
Aerodynamika i mechanika lotu
Płynem nazywamy ciało łatwo ulegające odkształceniom postaciowym. Przeciwieństwem płynu jest ciało stałe, którego odkształcenie wymaga przyłożenia stosunkowo dużego naprężenia (siły). Ruch ciała łatwo
PROJEKT ZAUTOMATYZOWANEJ WIELOZADANIOWEJ HAMOWNI SILNIKÓW BLDC
irosław NOWAKOWSK, Jarosław CSZKOWSK, Sebastian RUTKOWSK, Karol ŁOSEK, Wojciech LORENC PROJEKT ZAUTOATYZOWANEJ WELOZADANOWEJ HAOWN SLNKÓW BLDC W artkule omówion ostał projekt koncepcjn hamowni silników
2.1. ZGINANIE POPRZECZNE
.1. ZGINNIE POPRZECZNE.1.1. Wprowadenie Zginanie poprecne (ginanie e ścinaniem) wstępuje wted, gd ociążenie ewnętrne pręta redukuje się do momentu ginającego M i sił poprecnej. W prekroju takim wstępują
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Pręt nr 0 - Płyta żelbetowa jednokierunkowo zbrojona wg PN-EN :2004
Pręt nr 0 - Płyta żelbetowa jednokierunkowo zbrojona wg PN-EN 1992-1- 1:2004 Informacje o elemencie Nazwa/Opis: element nr 0 (belka) - Brak opisu elementu. Węzły: 0 (x0.000m, y0.000m); 1 (x6.000m, y0.000m)
v = v i e i v 1 ] T v =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq
Funkcje trygonometryczne
Funkcje trygonometryczne Wartości funkcji trygonometrycznych kątów 30 o, 45 o, 60 o Kąt α [ o ] 30 o 45 o 60 o sin α ½ 2 / 2 3 / 2 cos α 3 / 2 2 / 2 ½ tg α 3 / 3 1 3 ctg α 3 1 3 / 3 Związki między funkcjami
ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE
KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 6 nr Archiwum Technologii Masn i Automatacji 6 ROMAN STANIEK * ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE W artkule predstawiono ależności matematcne
Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m
Wytrzymałość materiałów Naprężenia główne na przykładzie płaskiego stanu naprężeń 1 Tensor naprężeń Naprężenia w stanie przestrzennym: τ τxz τ yx τ yz τzx τzy zz Układ współrzędnych jest zwykle wybrany
Fale skrętne w pręcie
ae skrętne w ręcie + -(+) eement ręta r π ) ( 4 Lokane skręcenie o () moment skręcając moduł stwności r romień ręta r 4 ) ( π Pod włwem wadkowego momentu eement ręta uskuje rsiesenie kątowe i sełnion jest