PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (ZAKRES ROZSZERZONY)

Wielkość: px
Rozpocząć pokaz od strony:

Download "PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (ZAKRES ROZSZERZONY)"

Transkrypt

1 PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (ZAKRES ROZSZERZONY) Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 5 Planowana liczba godzin w ciągu roku: 120 Kursywą i szarą czcionką oznaczono treści nieobowiązkowe. 1. ZAŁOŻENIA DO PLANU Podręczniki i książki pomocnicze Gdańskiego Wydawnictwa Oświatowego: Matematyka III. Podręcznik dla liceum i technikum. Zakres podstawowy M. Dobrowolska, M. Karpiński, J. Lech Matematyka III. Podręcznik dla liceum i technikum. Zakres rozszerzony M. Dobrowolska, M. Karpiński, J. Lech, A. Popiołek Matematyka III. Zbiór zadań M. Braun, M. Dobrowolska, M. Karpiński, J. Lech, E. Zamościńska Matematyka III. Sprawdziany U. Sawicka-Patrzałek, D. Figura, B. Jeleńska, W. Urbańczyk 2. ROZKŁAD MATERIAŁU Liczba godzin Wyrażenia wymierne Przekształcanie wielomianów 3 Wyrażenia wymierne 2 Równania wymierne 4 Nierówności wymierne 4 Hiperbola. Przesuwanie hiperboli 3 Funkcja homograficzna 0-2 Funkcje wymierne 0-2 Powtórzenie i praca klasowa 3 Granice funkcji. Pochodne 27 Granice funkcji - intuicje 2 Granice funkcji - definicje 2 Funkcje ciągłe 1 Obliczanie granic 2 Obliczanie granic (cd.) 2 Asymptoty 3 Pochodna funkcji 2 Pochodna funkcji (cd.) 3 Monotoniczność funkcji 1 Ekstrema 2 Ekstrema (cd.) 2 Rysowanie wykresów funkcji 2 Powtórzenie i praca klasowa 3

2 Prawdopodobieństwo Zdarzenia losowe 4 Drzewka 2 Własności prawdopodobieństwa 2 Prawdopodobieństwo warunkowe 2 Prawdopodobieństwo całkowite 2 Elementy kombinatoryki 3 Elementy kombinatoryki (cd.) 2 Kombinatoryka i prawdopodobieństwo 4 Zdarzenia niezależne 0-1 Powtórzenie i praca klasowa 3 Stereometria Wielościany 2 Wielościany foremne 0-1 Kąty w wielościanach 2 Pola graniastosłupów i ostrosłupów 4 Przekroje graniastosłupów i ostrosłupów 2 Pola wielościanów 2 Powtórzenie i praca klasowa 3 Walec 2 Stożek 2 Kula 2 Bryły podobne 0-2 Wartości najmniejsze i największe 3 Powtórzenie i praca klasowa 3 RAZEM W CIĄGU ROKU

3 3. PLAN REALIZACJI MATERIAŁU NAUCZANIA Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych D stosowanie wiadomości w sytuacjach problemowych Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczająca (2) P podstawowy ocena dostateczna (3) R rozszerzający ocena dobra (4) D dopełniający ocena bardzo dobra (5) W wykraczający ocena celująca (6) DZIAŁ PROGRAMOWY JEDNOSTKA LEKCYJNA JEDNOSTKA TEMATYCZNA KATEGORIA A Uczeń zna: KATEGORIA B Uczeń rozumie: KATEGORIA C Uczeń potrafi: KATEGORIA D Uczeń potrafi: WYRAŻENIA WYMIERNE (23 h) 1 Lekcja organizacyjna. 2 4 Przekształcanie wielomianów. pojęcie jednomianu pojęcie wielomianu stopnia n pojęcie rozkładu wielomianu na czynniki wzory skróconego mnożenia: kwadrat sumy i różnicy, różnica kwadratów dwóch wyrażeń, suma i różnica sześcianów dwóch wyrażeń (P), sześcian sumy i różnicy dwóch wyrażeń (P) własność rozkładu wielomianu na czynniki (P) pojęcie trójmianu kwadratowego pojęcie równania wielomianowego stopnia n pojęcie pierwiastka wielomianu pojęcie k-krotnego pierwiastka wielomianu pojęcie jednomianu pojęcie wielomianu stopnia n pojęcie rozkładu wielomianu na czynniki wzory skróconego mnożenia: kwadrat sumy i różnicy, różnica kwadratów dwóch wyrażeń, suma i różnica sześcianów dwóch wyrażeń (P), sześcian sumy i różnicy dwóch wyrażeń (P) własność rozkładu wielomianu na czynniki (P) pojęcie trójmianu kwadratowego pojęcie równania wielomianowego stopnia n pojęcie pierwiastka wielomianu pojecie k-krotnego pierwiastka wielomianu określać stopień wielomianu dodawać, odejmować, mnożyć wielomiany porządkować wielomiany i doprowadzać je do prostszej postaci rozkładać wielomiany na czynniki, stosując: wyłączanie wspólnego czynnika poza nawias wzory skróconego mnożenia metodę grupowania wyrazów rozkład trójmianu kwadratowego na czynniki w zależności od znaku wyróżnika (K D) rozwiązywać równania wielomianowe (K D) określać liczbę pierwiastków równania kwadratowego w zależności od znaku wyróżnika znajdować pierwiastki danych wielomianów i ustalać ich krotności (P D) rozwiązywać nierówności wyższych rzędów (D) wykonywać działania na wielomianach i przedstawiać otrzymane wielomiany w najprostszej postaci podawać przykłady wielomianów spełniających określone warunki ustalać liczbę rozwiązań równania wielomianowego ustalać wartości parametrów, dla których dany wielomian ma określoną liczbę pierwiastków określać, dla jakich wartości parametru zbiorem rozwiązań nierówności wyższego rzędu jest dany zbiór (D)

4 5-6 Wyrażenia wymierne. pojęcie wyrażenia wymiernego pojęcie wartości liczbowej wyrażenia wymiernego pojęcie dziedziny wyrażenia wymiernego pojęcie równości wyrażeń wymiernych 7-10 Równania wymierne. pojęcie równania wymiernego sposoby rozwiązywania równań wymiernych (K- P) Nierówności wymierne. pojęcie nierówności wymiernej Hiperbola. Przesuwanie hiperboli. pojęcie hiperboli pojęcie osi symetrii hiperboli (P) pojęcie wierzchołków hiperboli (P) zasady sporządzania wykresów funkcji: y = f (x), y = f (x + a) + b, gdy dany jest wykres funkcji y = f (x) (P D) pojęcie wyrażenia wymiernego pojęcie wartości liczbowej wyrażenia wymiernego pojęcie dziedziny wyrażenia wymiernego pojęcie równości wyrażeń wymiernych pojęcie równania wymiernego sposoby rozwiązywania równań wymiernych (K P) pojęcie nierówności wymiernej pojęcie hiperboli położenie gałęzi hiperboli w zależności od znaku a pojęcie asymptot poziomej i pionowej wykresu funkcji a f (x) =,a 0 x obliczać wartości liczbowe wyrażeń wymiernych dla podanych wartości zmiennej (K P) określać dziedzinę wyrażenia wymiernego (P R) podawać przykłady wyrażeń wymiernych spełniających dane warunki (P R) upraszczać wyrażenia wymierne (K P) dodawać, odejmować, mnożyć wyrażenia wymierne rozwiązywać równania wymierne określać założenia, przy których dane równanie wymierne ma sens dzielić wyrażenia wymierne (P R) przekształcać wzory tak, aby wyznaczyć wskazaną wielkość rozwiązywać nierówności wymierne określać założenia, przy których nierówność ma sens określać dziedzinę nierówności określać dziedzinę i sporządzać wykres funkcji a f (x) =, a 0 x określać położenie gałęzi hiperboli w zależności od znaku a określać dziedzinę wyrażenia wymiernego oraz wykonywać działania na wyrażeniach wymiernych określać, dla jakich wartości parametrów wyrażenia wymierne spełniają określone warunki zastosowaniem wyrażeń wymiernych (R W) rozwiązywać równania wymierne zastosowaniem równań wymiernych rozwiązywać nierówności wymierne określać dziedzinę nierówności zastosowaniem nierówności wymiernych określać wartość parametru, dla którego funkcja a f (x) = q, a 0 x p spełnia dane warunki (W) określać wzory funkcji, których wykresami są hiperbole spełniające określone warunki (R W)

5 zasady sporządzania wykresów funkcji: y = f (x), y = f (x + a) + b, gdy dany jest wykres funkcji y = f (x) (P D) pojęcie osi symetrii hiperboli (P) pojęcie wierzchołków hiperboli (P) określać przedziały monotoniczności funkcji a y=, a 0 x dopasowywać wzór do wykresu funkcji a f (x)= =, a 0 i x odwrotnie (R) określać wzór funkcji, która powstanie, gdy wykres funkcji f (x) = a, a x 0 odbijemy symetrycznie względem osi układu współrzędnych (P) odbijemy symetrycznie względem początku układu współrzędnych (P) przesuniemy równolegle o a jednostek w prawo lub w lewo i o b jednostek do góry lub w dół (P) określać dziedzinę i sporządzać wykres funkcji f (x) = a q, a 0 (P) x p określać równania asymptot i współrzędne punktów przecięcia wykresu funkcji f (x) = a q, a 0 x p z osiami układu współrzędnych (P) określać przedziały monotoniczności i argumenty, dla których funkcja przyjmuje wartości dodatnie, ujemne (P) określać współrzędne wierzchołków hiperboli (P)

6 18-19 Funkcja homograficzna. pojęcie funkcji homograficznej postać ogólną i postać kanoniczną funkcji homograficznej (P) zasady sporządzania wykresów funkcji: y = f (x), y = f ( x ), gdy dany jest wykres funkcji y = f (x) Funkcje wymierne. definicję funkcji wymiernej pojęcie funkcji homograficznej postać ogólną i postać kanoniczną funkcji homograficznej (P) zasady sporządzania wykresów funkcji: y = f (x), y = f ( x ), gdy dany jest wykres funkcji y = f (x) definicję funkcji wymiernej pojęcie asymptoty poziomej i pionowej wykresu funkcji wymiernej podawać przykłady funkcji homograficznych określać dziedzinę funkcji homograficznej przekształcać wzór funkcji homograficznej z postaci ogólnej do postaci kanonicznej (P R) sporządzać wykresy funkcji homograficznych (R) określać równania asymptot i osi symetrii wykresów funkcji homograficznych (P R) określać współrzędne punktów przecięcia wykresów funkcji homograficznych z osiami układu współrzędnych (P R) dopasować wzory funkcji homograficznych do ich wykresów (P R) podawać przykłady funkcji wymiernych (K P) określać dziedzinę i sporządzać wykres funkcji wymiernej określać równania asymptot i współrzędne punktów przecięcia wykresu funkcji wymiernej z osiami układu współrzędnych określać przedziały monotoniczności funkcji wymiernej określać argumenty, dla których funkcja wymierna przyjmuje wartości dodatnie, ujemne (P R) podawać wzór funkcji wymiernej na podstawie jej wykresu (P R) określać, dla jakiej wartości parametru funkcja homograficzna spełnia określone warunki (R W) podawać przykłady wzorów funkcji homograficznych spełniających określone warunki określać własności funkcji homograficznych sporządzać wykres funkcji homograficznej y = f (x), a następnie, korzystając z jej wykresu, szkicować wykresy funkcji: y = f (x), y = f ( x ), y = f ( x ) (R W) określać, dla jakiej wartości parametru funkcja wymierna spełnia określone warunki (R W) podawać przykłady wzorów funkcji wymiernych spełniających określone warunki określać własności funkcji wymiernych

7 GRANICE FUNKCJI. POCHODNE (27 h) 22 Powtórzenie wiadomości Praca klasowa i jej omówienie Granice funkcji intuicje. zapis granicy funkcji w nieskończoności i w punkcie zapis jednostronnej granicy funkcji właściwej funkcji niewłaściwej funkcji Granice funkcji definicje. właściwej w plus oraz minus nieskończoności(p) niewłaściwej w plus oraz minus nieskończoności(p) definicję granicy funkcji w punkcie (P) definicję granicy niewłaściwej funkcji punkcie (P) definicje granicy lewo i prawostronnej funkcji w punkcie (P) definicje granicy niewłaściwej lewo- i prawostronnej funkcji w punkcie (P) związek między granicami jednostronnymi a granicą funkcji (P) 29 Funkcje ciągłe. pojęcie funkcji ciągłej w punkcie zapis granicy funkcji w nieskończoności i w punkcie zapis jednostronnej granicy funkcji właściwej funkcji niewłaściwej funkcji właściwej w plus oraz minus nieskończoności(p) niewłaściwej w plus oraz minus nieskończoności(p) definicję granicy funkcji w punkcie (P) definicję granicy niewłaściwej funkcji punkcie (P) definicje granicy lewo i prawostronnej funkcji w punkcie (P) definicje granicy niewłaściwej lewo- i prawostronnej funkcji w punkcie (P) związek między granicami jednostronnymi a granicą funkcji (P) pojęcie funkcji ciągłej w punkcie określać granice funkcji na podstawie jej wykresu określać granice jednostronne funkcji na podstawie jej wykresu szkicować wykres funkcji, mając daną jej dziedzinę i granice tej funkcji szkicować wykres funkcji zadanej wzorem i na podstawie wykresu określać granice tej funkcji określać granice funkcji w plus oraz minus nieskończoności, korzystając z definicji (P R) korzystając z definicji, określać granice funkcji w punkcie (P R) korzystając z definicji, wykazać, że dana funkcja nie ma granicy (P R) wskazywać punkty, w których funkcja nie jest ciągła określić wzór funkcji spełniającej określone warunki, a następnie podawać granice tej funkcji korzystając z definicji, określać granice funkcji w plus oraz minus nieskończoności korzystając z definicji, określać granice funkcji w punkcie korzystając z definicji, wykazać, że dana funkcja nie ma granicy określać, dla jakiej wartości parametrów funkcja jest ciągła

8 30-33 Obliczanie granic. Obliczanie granic (cd.) własności funkcji ciągłych własności granic właściwych funkcji w nieskończoności własności granic niewłaściwych funkcji w nieskończoności symbole nieoznaczone Asymptoty. pojęcie asymptoty (prawostronnej, lewostronnej, obustronnej) poziomej wykresu funkcji pojęcie asymptoty (prawostronnej, lewostronnej, obustronnej) pionowej wykresu funkcji pojęcie asymptoty (prawostronnej, lewostronnej, obustronnej) ukośnej wykresu funkcji twierdzenie dotyczące asymptoty ukośnej wykresu funkcji Pochodna funkcji. pojęcie siecznej wykresu funkcji pojęcie stycznej do wykresu funkcji definicję pochodnej funkcji w punkcie związek między pochodną funkcji w punkcie i współczynnikiem kierunkowym stycznej własności funkcji ciągłych własności granic właściwych funkcji w nieskończoności własności granic niewłaściwych funkcji w nieskończoności symbole nieoznaczone pojęcie asymptoty (prawostronnej, lewostronnej, obustronnej) poziomej wykresu funkcji pojęcie asymptoty (prawostronnej, lewostronnej, obustronnej) pionowej wykresu funkcji pojęcie asymptoty (prawostronnej, lewostronnej, obustronnej) ukośnej wykresu funkcji twierdzenie dotyczące asymptoty ukośnej wykresu funkcji pojęcie siecznej wykresu funkcji pojęcie stycznej do wykresu funkcji definicję pochodnej funkcji w punkcie związek między pochodną funkcji w punkcie i współczynnikiem kierunkowym stycznej sprawdzać ciągłość funkcji w punkcie i w całej dziedzinie obliczać granice funkcji w punkcie obliczać granice funkcji w nieskończoności, wykorzystując własności granic właściwych i niewłaściwych obliczać granice funkcji w wypadku symboli nieoznaczonych (P R) określać równania asymptot poziomych i pinowych wykresu funkcji sprawdzać, czy dana prosta jest asymptotą ukośną funkcji określać równania asymptot ukośnych wykresu funkcji obliczać przybliżoną wartość funkcji dla danego argumentu z wykorzystaniem równania asymptoty ukośnej tej funkcji (P R) sprawdzić, czy narysowana prosta jest asymptotą danej funkcji obliczać pochodne funkcji w punkcie, korzystając z definicji sprawdzać, czy funkcja ma pochodną w danym punkcie określać równanie stycznej do wykresu funkcji w danym punkcie w danym punkcie (R W) znajdować punkty, w których funkcja nie jest ciągła (R W) obliczać granice funkcji w nieskończoności, wykorzystując własności granic właściwych i niewłaściwych obliczać granice funkcji w wypadku symboli nieoznaczonych określać równania asymptot poziomych, pionowych oraz ukośnych wykresu danej funkcji wykazać, że funkcja nie ma pochodnej w danym punkcie (P D) korzystając z wykresu funkcji, wskazywać argumenty, dla których pochodna spełnia określone warunki (P D)

9 39-41 Pochodna funkcji (cd.). definicję pochodnej funkcji twierdzenia dotyczące własności pochodnej funkcji dowody twierdzeń o własnościach pochodnej funkcji (P R) 42 Monotoniczność funkcji. twierdzenia dotyczące związku znaku pochodnej funkcji z monotonicznością tej funkcji pojęcie punktu przegięcia (P) Ekstrema. definicję minimum lokalnego właściwego definicję maksimum lokalnego właściwego pojęcie ekstremum warunek konieczny istnienia ekstremum warunek dostateczny istnienia ekstremum Ekstrema (cd.). pojęcie wartości największej funkcji pojęcie wartości najmniejszej funkcji Rysowanie wykresów funkcji. etapy badania własności funkcji definicję pochodnej funkcji twierdzenia dotyczące własności pochodnej funkcji dowody twierdzeń o własnościach pochodnej funkcji (P R) twierdzenia dotyczące związku znaku pochodnej funkcji z monotonicznością tej funkcji pojęcie punktu przegięcia (P) definicję minimum lokalnego właściwego definicję maksimum lokalnego właściwego pojęcie ekstremum warunek konieczny istnienia ekstremum warunek dostateczny istnienia ekstremum pojęcie wartości największej funkcji pojęcie wartości najmniejszej funkcji etapy badania własności funkcji obliczać pochodne funkcji określać równanie stycznej do wykresu funkcji w punkcie obliczać przybliżoną wartość funkcji dla danego argumentu (P R) określać przedziały, w których pochodna funkcji przyjmuje wartości dodatnie, ujemne (P) określać przedziały monotoniczności funkcji na podstawie wykresu jej pochodnej (K P) określać przedziały monotoniczności funkcji określać ekstrema lokalne na podstawie wykresu funkcji (K P) obliczać ekstrema lokalne funkcji obliczać największą i najmniejszą wartość funkcji w danym przedziale zastosowaniem obliczania największej i najmniejszej wartości funkcji (P R) badać własności funkcji sporządzać tabele zawierające informacje o funkcji i jej pochodnej szkicować wykresy funkcji mających określone własności zastosowaniem obliczania pochodnej funkcji fizyki z wykorzystaniem obliczania pochodnej (R-D) określać przedziały monotoniczności funkcji dopasowywać do wykresu pochodnej funkcji wykres tej funkcji i odwrotnie (P D) określać wartość parametru, dla którego dana funkcja jest rosnąca lub malejąca obliczać ekstrema lokalne funkcji dopasować do wykresu pochodnej wykres funkcji i odwrotnie (P D) uzasadniać, że dla parametrów funkcja ma ekstrema (R W) zastosowaniem obliczania największej i najmniejszej wartości funkcji badać własności funkcji (R W) szkicować wykresy funkcji (R W) szkicować wykresy funkcji mających określone własności

10 PRAWDOPODOBIEŃ- STWO (25 h) 49 Powtórzenie wiadomości Praca klasowa i jej omówienie Zdarzenia losowe. pojęcia: doświadczenie losowe, zdarzenie elementarne, przestrzeń zdarzeń elementarnych, zdarzenie losowe klasyczną definicję prawdopodobieństwa pojęcia: doświadczenie losowe, zdarzenie elementarne, przestrzeń zdarzeń elementarnych, zdarzenie losowe klasyczną definicję prawdopodobieństwa określać zbiór wszystkich zdarzeń elementarnych danego doświadczenia losowego określać zbiór zdarzeń elementarnych sprzyjających danemu zdarzeniu losowemu obliczać prawdopodobieństwa zdarzeń, korzystając z klasycznej definicji prawdopodobieństwa (K P) Drzewka. metodę drzewek metodę drzewek obliczać prawdopodobieństwa zdarzeń, korzystając z metody drzewek (K P) obliczać prawdopodobieństwa zdarzeń, korzystając z klasycznej definicji prawdopodobieństwa obliczać prawdopodobieństwa zdarzeń, korzystając z metody drzewek Własności prawdopodobieństwa Prawdopodobieństwo warunkowe. pojęcia: suma, iloczyn, różnica zdarzeń, zdarzenia wykluczające się pojęcie zdarzenia przeciwnego pojęcia: zdarzenie pewne, zdarzenie niemożliwe własności prawdopodobieństwa twierdzenie o prawdopodobieństwie sumy zdarzeń pojęcie prawdopodobieństwa warunkowego (P) pojęcia: suma, iloczyn, różnica zdarzeń, zdarzenia wykluczające się pojęcie zdarzenia przeciwnego pojęcia: zdarzenie pewne, zdarzenie niemożliwe własności prawdopodobieństwa twierdzenie o prawdopodobieństwie sumy zdarzeń pojęcie prawdopodobieństwa warunkowego (P) ustalać zdarzenia przeciwne do danych rozpoznawać zdarzenia wykluczające się (K P) określać sumę, iloczyn, różnicę zdarzeń (K P) obliczać prawdopodobieństwa zdarzeń, korzystając z własności prawdopodobieństwa (K P) obliczać prawdopodobieństwo warunkowe (P R) obliczać prawdopodobieństwa zdarzeń, korzystając z własności prawdopodobieństwa rozwiązywać zadania na prawdopodobieństwo warunkowe

11 STEREOMETRIA (30 h) Prawdopodobieństwo całkowite. twierdzenie o prawdopodobieństwie całkowitym (P) Elementy kombinatoryki. zasadę mnożenia pojęcie silni pojęcie permutacji pojęcia: wariacja bez powtórzeń, wariacja z powtórzeniami (P) Elementy kombinatoryki (cd.) Kombinatoryka i prawdopodobieństwo. symbol Newtona własności symbolu Newtona (K P) pojęcie kombinacji 73 Zdarzenia niezależne. pojęcie niezależności dwóch zdarzeń własności zdarzeń niezależnych (P) pojęcie niezależności trzech zdarzeń (P) 74 Powtórzenie wiadomości Praca klasowa i jej omówienie Wielościany. pojęcie figury wypukłej pojęcia: graniastosłup, ostrosłup pojęcia: podstawa, ściana boczna, wierzchołek, krawędź boczna, krawędź podstawy graniastosłupa i ostrosłupa pojęcia: prostopadłościan, graniastosłup prosty, graniastosłup pochyły twierdzenie o prawdopodobieństwie całkowitym (P) zasadę mnożenia pojęcie silni pojęcie permutacji pojęcia: wariacja bez powtórzeń, wariacja z powtórzeniami (P) symbol Newtona własności symbolu Newtona (K P) pojęcie kombinacji pojęcie niezależności dwóch zdarzeń własności zdarzeń niezależnych (P) twierdzenie o prawdopodobieństwie całkowitym (P) pojęcie figury wypukłej pojęcia: graniastosłup, ostrosłup pojęcia: podstawa, ściana boczna, wierzchołek, krawędź boczna, krawędź podstawy graniastosłupa i ostrosłupa pojęcia: rostopadłościan, graniastosłup prosty, graniastosłup pochyły obliczać prawdopodobieństwo całkowite (P R) stosować zasadę mnożenia ustalać liczbę permutacji ustalać liczby wariacji z powtórzeniami i wariacji bez powtórzeń obliczać symbol Newtona (K P) ustalać liczbę kombinacji (K P) stosować kombinatorykę w rachunku prawdopodobieństwa badać niezależność dwóch zdarzeń stosować własności zdarzeń niezależnych (P R) badać niezależność trzech zdarzeń (P R) wskazywać graniastosłupy pochyłe, graniastosłupy proste wskazywać wierzchołki, podstawy, ściany boczne, krawędzie podstawy i boczne graniastosłupów i ostrosłupów rysować rzuty graniastosłupów i ostrosłupów rysować siatki graniastosłupów i ostrosłupów zastosowaniem twierdzenia o prawdopodobieństwie całkowitym (R) ustalać liczby permutacji, wariacji z powtórzeniami oraz wariacji bez powtórzeń ustalać liczbę kombinacji zastosowaniem własności symbolu Newtona (R W) stosować kombinatorykę w rachunku prawdopodobieństwa zastosowaniem badania niezależności zdarzeń oraz własności zdarzeń niezależnych wyznaczać długości odcinków w graniastosłupach i ostrosłupach, korzystając z twierdzenia Pitagorasa oraz funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym

12 pojęcia: graniastosłup prawidłowy, ostrosłup prawidłowy pojęcie czworościanu pojęcia: wysokość graniastosłupa, wysokość ostrosłupa, spodek wysokości twierdzenia dotyczące ostrosłupów prawidłowych reguły rysowania rzutów brył 79 Wielościany foremne. pojęcia: czworościan foremny, sześcian pojęcia: ośmiościan foremny, dwunastościan foremny, dwudziestościan foremny (P) Kąty w wielościanach. pojęcia: proste równoległe, prostopadłe i skośne w przestrzeni pojęcie prostej prostopadłej do płaszczyzny pojęcia: kąt dwuścienny, kąt między prostą a płaszczyzną Pola powierzchni i objętości graniastosłupów i ostrosłupów. wzór na obliczanie pola powierzchni graniastosłupa wzór na obliczanie objętości graniastosłupa wzór na obliczanie pola powierzchni ostrosłupa wzór na obliczanie objętości ostrosłupa wzory na obliczanie pól figur płaskich pojęcia: graniastosłup prawidłowy, ostrosłup prawidłowy pojęcie czworościanu pojęcia: wysokość graniastosłupa, wysokość ostrosłupa, spodek wysokości twierdzenia dotyczące ostrosłupów prawidłowych reguły rysowania rzutów brył pojęcia: czworościan foremny, sześcian pojęcia: ośmiościan foremny, dwunastościan foremny, dwudziestościan foremny (P) pojęcia: proste równoległe, prostopadłe i skośne w przestrzeni pojęcie prostej prostopadłej do płaszczyzny pojęcia: kąt dwuścienny, kąt między prostą a płaszczyzną wzór na obliczanie pola powierzchni graniastosłupa wzór na obliczanie objętości graniastosłupa wzór na obliczanie pola powierzchni ostrosłupa wzór na obliczanie objętości ostrosłupa wzory na obliczanie pól figur płaskich rozpoznawać siatki graniastosłupów i ostrosłupów (K P) obliczać liczbę wierzchołków, krawędzi, ścian wyznaczać długości odcinków w graniastosłupach i ostrosłupach, korzystając z twierdzenia Pitagorasa oraz funkcji trygonometrycznych kąta w trójkącie prostokątnym rysować siatki oraz rzuty czworościanu foremnego i sześcianu rozpoznawać siatki oraz rzuty ośmiościanu foremnego, dwunastościanu foremnego i dwudziestościanu foremnego (P) wyznaczać długości odcinków w czworościanach foremnych wskazywać kąty między ścianami graniastosłupów i ostrosłupów (P D) wyznaczać miary kątów między odcinkami, odcinkami i ścianami oraz ścianami w graniastosłupach i ostrosłupach obliczać pola graniastosłupów obliczać pola ostrosłupów wyznaczać długości odcinków w wielościanach foremnych (P D) wykorzystaniem obliczania miar kątów między odcinkami, odcinkami i ścianami oraz ścianami w graniastosłupach i ostrosłupach (R W) zastosowaniem obliczania pól powierzchni i objętości graniastosłupów i ostrosłupów (R W)

13 86-87 Przekroje graniastosłupów i ostrosłupów Pola powierzchni i objętości wielościanów. pojęcie przekroju bryły pojęcia: pole powierzchni i objętość wielościanu (P) 90 Powtórzenie wiadomości Praca klasowa i jej omówienie Walec. pojęcie walca pojęcia: tworząca walca, promień podstawy, wysokość walca pojęcia: oś obrotu, przekrój osiowy walca wzór na obliczanie pola powierzchni walca wzór na obliczanie objętości walca Stożek. pojęcie stożka pojęcia: promień podstawy, tworząca, wysokość stożka pojęcia: oś obrotu, przekrój osiowy stożka, spodek wysokości, kąt rozwarcia stożka wzory na obliczanie pola stożka Kula. pojęcia: kula, sfera pojęcia: środek, promień, średnica, koło wielkie wzory na obliczanie pola kuli pojęcie przekroju bryły pojęcia: pole powierzchni i objętość wielościanu (P) pojęcie walca pojęcia: tworząca walca, promień podstawy, wysokość walca pojęcia: oś obrotu, przekrój osiowy walca wzór na obliczanie pola powierzchni walca wzór na obliczanie objętości walca pojęcie stożka pojęcia: promień podstawy, tworząca, wysokość stożka pojęcia: oś obrotu, przekrój osiowy stożka, spodek wysokości, kąt rozwarcia stożka wzory na obliczanie pola stożka pojęcia: kula, sfera pojęcia: środek, promień, średnica, koło wielkie wzory na obliczanie pola kuli zaznaczać przekroje (K P) określać rzeczywiste kształty przekrojów (K P) obliczać pola i obwody danych przekrojów rysować rzuty wielościanów (K D) obliczać pola wielościanów (P D) rysować rzut walca rysować siatkę walca wskazywać kąty między odcinkami oraz odcinkami i podstawami w walcu (K P) obliczać pola powierzchni i objętości walców rysować rzut stożka rysować siatkę stożka wskazywać kąty między odcinkami oraz odcinkami i podstawą w stożku (K P) obliczać pola stożków rysować rzut kuli wskazywać kąty między przekrojami kuli (K P) obliczać pola kul obliczać pola i obwody danych przekrojów (R W) zastosowaniem obliczania pól wielościanów (R W) zastosowaniem obliczania pól powierzchni i objętości walców rozwiązywać zadania na obliczanie pól powierzchni i objętości brył wpisanych w walec i opisanych na walcu (R W) zastosowaniem obliczania pól powierzchni i objętości stożków rozwiązywać zadania na obliczanie pól powierzchni i objętości brył wpisanych w stożek i opisanych na stożku (R W) obliczać pola kul rozwiązywać zadania na obliczanie pól brył wpisanych w kulę i opisanych na kuli (R W)

14 Bryły podobne. pojęcie i własności brył podobnych zależność między polami powierzchni brył podobnych zależność między objętościami brył podobnych Wartości najmniejsze i największe. 104 Powtórzenie wiadomości Praca klasowa i jej omówienie. pojęcie i własności brył podobnych zależność między polami powierzchni brył podobnych zależność między objętościami brył podobnych wykorzystywać zależności między polami powierzchni i objętościami brył podobnych własności pochodnej własności pochodnej znajduje największe bądź najmniejsze wymiary pola brył, korzystając z własności pochodnej zastosowaniem zależności między polami powierzchni i objętościami brył podobnych (R W) znajduje największe bądź najmniejsze wymiary pola brył, korzystając z własności pochodnej Godziny do dyspozycji nauczyciela

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku: 72 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Bardziej szczegółowo

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) 1 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, numer dopuszczenia DKW-4015-37/01. Liczba godzin nauki w tygodniu:

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY)

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY) PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY) Kategorie celów nauczania: A zapamiętanie wiadomości, B rozumienie wiadomości, C stosowanie wiadomości

Bardziej szczegółowo

Przedmiotowe Zasady Oceniania

Przedmiotowe Zasady Oceniania Strona tytułowa Przedmiotowe Zasady Oceniania Matematyka Liceum podstawa Krzysztof Pietrasik Podręcznik: 1. Matematyka III 2. M. Dobrowolska, M. Karpiński, J. Lech 3. GWO Forma 1. Formy sprawdzania wiedzy

Bardziej szczegółowo

ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne

ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne CZĘŚĆ II ZAKRES PODSTAWOWY Wyrażenia wymierne Temat: Wielomiany-przypomnienie i poszerzenie wiadomości. (2 godz.) znać i rozumieć pojęcie jednomianu (2) znać i rozumieć pojęcie wielomianu stopnia n (2)

Bardziej szczegółowo

Kształcenie w zakresie rozszerzonym. Klasa IV

Kształcenie w zakresie rozszerzonym. Klasa IV Kształcenie w zakresie rozszerzonym. Klasa IV Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 4 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO III KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO III KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO III KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Wyrażenia wymierne (19 h) Przekształcanie wielomianów Wyrażenia wymierne 4 Równania

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM W KLASIE III

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM W KLASIE III 1 NAUCZYCIEL BEATA ZAGÓRSKA PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM W KLASIE III KONTRAKT NAUCZYCIEL UCZEŃ 1. Na początku roku szkolnego uczniowie zostają poinformowani przez

Bardziej szczegółowo

Wymagania kl. 3. Zakres podstawowy i rozszerzony

Wymagania kl. 3. Zakres podstawowy i rozszerzony Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych

MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające

Bardziej szczegółowo

Poziom wymagań K P K R K R. 2. Permutacje definicja permutacji definicja n! liczba permutacji zbioru n-elementowego K K K P D

Poziom wymagań K P K R K R. 2. Permutacje definicja permutacji definicja n! liczba permutacji zbioru n-elementowego K K K P D Plan wynikowy klasa 3g - Jolanta Pająk Matematyka 3. dla liceum ogólnokształcącego, liceum profilowanego i technikum. ształcenie ogólne w zakresie rozszerzonym rok szkolny 2015/2016 Wymagania edukacyjne

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa IV technikum

Wymagania edukacyjne z matematyki klasa IV technikum Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje

Bardziej szczegółowo

PDM 3. Zakres podstawowy i rozszerzony. Plan wynikowy. STEREOMETRIA (22 godz.) W zakresie TREŚCI PODSTAWOWYCH uczeń potrafi:

PDM 3. Zakres podstawowy i rozszerzony. Plan wynikowy. STEREOMETRIA (22 godz.) W zakresie TREŚCI PODSTAWOWYCH uczeń potrafi: PDM 3 Zakres podstawowy i rozszerzony Plan wynikowy STEREOMETRIA ( godz.) Proste i płaszczyzny w przestrzeni Kąt nachylenia prostej do płaszczyzny wskazać płaszczyzny równoległe i płaszczyzny prostopadłe

Bardziej szczegółowo

Plan wynikowy klasa 3

Plan wynikowy klasa 3 Plan wynikowy klasa 3 Przedmiot: matematyka Klasa 3 liceum (technikum) Rok szkolny:........................ Nauczyciel:........................ zakres podstawowy: 28 tyg. 3 h = 84 h (78 h + 6 h do dyspozycji

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019

Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019 Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019 Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające,

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego

2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego Wymagania dla kl. 3 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa

Bardziej szczegółowo

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy i rozszerzony

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy i rozszerzony Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające;

Bardziej szczegółowo

Plan wynikowy klasa 3. Zakres podstawowy

Plan wynikowy klasa 3. Zakres podstawowy Plan wynikowy klasa 3 Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające. RACHUNE PRAWDOPODOBIEŃSTWA

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wg programu nauczania Matematyka Prosto do matury

Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wg programu nauczania Matematyka Prosto do matury STEREOMETRIA Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wskazać płaszczyzny równoległe i prostopadłe do danej płaszczyzny wskazać proste równoległe i prostopadłe do danej płaszczyzny

Bardziej szczegółowo

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania

Bardziej szczegółowo

1 wyznacza współrzędne punktów przecięcia prostej danej

1 wyznacza współrzędne punktów przecięcia prostej danej Wymagania edukacyjne z matematyki DLA II i III KLASY ZASADNICEJ SZKOŁY ZAWODOWEJ Gwiazdką * oznaczono te hasła i wymagania, które są rozszerzeniem podstawy programowej. Nauczyciel może je realizować jedynie

Bardziej szczegółowo

PDM 3 zakres podstawowy i rozszerzony PSO

PDM 3 zakres podstawowy i rozszerzony PSO PDM 3 zakres podstawowy i rozszerzony PSO STEREOMETRIA wskazać płaszczyzny równoległe i prostopadłe do danej płaszczyzny wskazać proste równoległe i prostopadłe do danej płaszczyzny odróżnić proste równoległe

Bardziej szczegółowo

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej.

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej. Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające;

Bardziej szczegółowo

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 Rozkład materiału nauczania wraz z celami kształcenia oraz osiągnięciami dla słuchaczy CKU Nr 1 ze specyficznymi potrzebami edukacyjnymi ( z podziałem na semestry

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki - Technikum obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku szkolnego informuję

Bardziej szczegółowo

Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Gimnazjum, klasa 3 Rozkład materiału i plan wynikowy

Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Gimnazjum, klasa 3 Rozkład materiału i plan wynikowy Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa Rozkład materiału i plan wynikowy I. FUNKCJE 1 1. Pojęcie funkcji zbiór i jego elementy pojęcie przyporządkowania pojęcie funkcji

Bardziej szczegółowo

83 Przekształcanie wykresów funkcji (cd.) 3

83 Przekształcanie wykresów funkcji (cd.) 3 Zakres podstawowy Zakres rozszerzony dział temat godz. dział temat godz,. KLASA 1 (3 godziny tygodniowo) - 90 godzin KLASA 1 (5 godzin tygodniowo) - 150 godzin I Zbiory Zbiory i działania na zbiorach 2

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019

WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 Przedmiot Klasa Nauczyciele uczący Poziom matematyka 4e Łukasz Jurczak rozszerzony 2. Elementy analizy matematycznej ocena dopuszczająca ocena dostateczna ocena

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową

Bardziej szczegółowo

MATeMAtyka zakres rozszerzony

MATeMAtyka zakres rozszerzony MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony)

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być

Bardziej szczegółowo

Plan wynikowy, klasa 3 ZSZ

Plan wynikowy, klasa 3 ZSZ Plan wynikowy, klasa 3 ZSZ Nazwa działu Temat Liczba godzin 1. Trójkąty prostokątne powtórzenie 1. Trygonometria (10 h) 2. Funkcje trygonometryczne kąta ostrego 3. 4. Trygonometria zastosowania 5. 6. Związki

Bardziej szczegółowo

odczytywać własności funkcji y = ax 2 na podstawie funkcji y = ax 2 szkicować wykresy funkcji postaci y = ax,

odczytywać własności funkcji y = ax 2 na podstawie funkcji y = ax 2 szkicować wykresy funkcji postaci y = ax, Funkcja kwadratowa Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Zawód: FRYZJER, STOLARZ, MECHANIK POJAZDÓW SAMOCHODOWYCH, BLACHARZ SAMOCHODOWY I inne Rok szkolny 2012/2013 Przedmiot: MATEMATYKA Numer programu

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia uczeń: I. FUNKCJE 14

Temat lekcji Zakres treści Osiągnięcia uczeń: I. FUNKCJE 14 I. FUNKCJE 1 Podstawowe Ponadpodstawowe grupuje dane elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowa opisanych słownie lub za pomocą grafu

Bardziej szczegółowo

Kryteria oceniania z matematyki Klasa III poziom rozszerzony

Kryteria oceniania z matematyki Klasa III poziom rozszerzony Kryteria oceniania z matematyki Klasa III poziom rozszerzony Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja potęgowa - zna i stosuje tw. o potęgach - zna wykresy funkcji potęgowej o dowolnym

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej

Wymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej Wymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej Temat ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Dział I. TRYGONOMETRIA (15 h )

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI ROK SZKOLNY 2018/2019 POZIOM PODSTAWOWY I ROZSZERZONY KLASA 3 UWAGI: 1. Zakłada się,

Bardziej szczegółowo

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. rozszerzonym. dla uczniów technikum. część III

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. rozszerzonym. dla uczniów technikum. część III Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie rozszerzonym dla uczniów technikum część III Granica ciągu liczbowego 1 Pojęcie granicy ciągu i ciągi zbieżne do zera sporządzać

Bardziej szczegółowo

1. Potęgi. Logarytmy. Funkcja wykładnicza

1. Potęgi. Logarytmy. Funkcja wykładnicza 1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności

Bardziej szczegółowo

Matematyka. Wymagania edukacyjne na poszczególne oceny

Matematyka. Wymagania edukacyjne na poszczególne oceny Matematyka Wymagania edukacyjne na poszczególne oceny Klasa III - zakres rozszerzony Rachunek różniczkowy uzasadnia w prostych przypadkach, że funkcja nie ma granicy w punkcie, oblicza granice funkcji

Bardziej szczegółowo

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony Funkcja wykładnicza i funkcja logarytmiczna. Stopień Wiadomości i umiejętności -definiować potęgę

Bardziej szczegółowo

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek

Bardziej szczegółowo

Rozkład materiału: matematyka na poziomie rozszerzonym

Rozkład materiału: matematyka na poziomie rozszerzonym Rozkład materiału: matematyka na poziomie rozszerzonym KLASA I 105h Liczby (30h) 1. Zapis dziesiętny liczby rzeczywistej 2. Wzory skróconego mnoŝenia 3. Nierówności pierwszego stopnia 4. Przedziały liczbowe

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie

Bardziej szczegółowo

Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r.

Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r. Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r. Ocena dopuszczająca: Temat lekcji Stopień i współczynniki wielomianu Dodawanie i odejmowanie wielomianów Mnożenie

Bardziej szczegółowo

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM ROZSZERZONY

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM ROZSZERZONY WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM ROZSZERZONY 1. Funkcja wykładnicza i logarytmiczna Tematyka zajęć: Potęga o wykładniku rzeczywistym - powtórzenie Funkcja wykładnicza i jej własności

Bardziej szczegółowo

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy III gimnazjum

Wymagania edukacyjne z matematyki dla klasy III gimnazjum Wymagania edukacyjne z matematyki dla klasy III gimnazjum Poziomy wymagań edukacyjnych: K konieczny dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować każdy

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;

Bardziej szczegółowo

reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa reguła dodawania definicja n! liczba permutacji zbioru n-elementowego

reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa reguła dodawania definicja n! liczba permutacji zbioru n-elementowego FUNKCJE LOGARYTMICZNE powtórzenie 4 godziny RACHUNEK PRAWDOPODOBIEŃSTWA 28 godz. Moduł - dział -temat Reguła mnożenia. Reguła dodawania Lp 1 2 reguła mnożenia ilustracja zbioru wyników doświadczenia za

Bardziej szczegółowo

MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY

MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KLASA III GIMNAZJUM Wymagania konieczne (K) dotyczą zagadnień elementarnych, podstawowych; powinien je opanować każdy uczeń. Wymagania podstawowe

Bardziej szczegółowo

I. Potęgi. Logarytmy. Funkcja wykładnicza.

I. Potęgi. Logarytmy. Funkcja wykładnicza. WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Potęgi. Logarytmy. Funkcja wykładnicza. dobrą, bardzo - oblicza potęgi o wykładnikach wymiernych; - zna

Bardziej szczegółowo

Kryteria oceniania z matematyki Klasa III poziom podstawowy

Kryteria oceniania z matematyki Klasa III poziom podstawowy Kryteria oceniania z matematyki Klasa III poziom podstawowy Potęgi Zakres Dopuszczający Dostateczny Dobry Bardzo dobry oblicza potęgi o wykładnikach wymiernych; zna prawa działań na potęgach i potrafi

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk

WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk str 1 Klasa 2f: wpisy oznaczone jako: GEOMETRIA ANALITYCZNA (GA), WIELOMIANY (W), FUNKCJE WYMIERNE (FW), FUNKCJE TRYGONOMETRYCZNE

Bardziej szczegółowo

MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych

MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy Klasa 3 Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy. Klasa I (60 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy. Klasa I (60 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy (według podręczników z serii MATeMAtyka) Temat Klasa I (60 h) Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

Szczegółowy rozkład materiału dla klasy 3b poziom rozszerzny cz. 1 - liceum

Szczegółowy rozkład materiału dla klasy 3b poziom rozszerzny cz. 1 - liceum Szczegółowy rozkład materiału dla klasy b poziom rozszerzny cz. - liceum WYDAWNICTWO PAZDRO GODZINY Lp. Tematyka zajęć Liczba godzin I. Funkcja wykładnicza i funkcja logarytmiczna. Potęga o wykładniku

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych:

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych: Wymagania programowe na poszczególne oceny Poziom wymagań edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra) D dopełniający (ocena bardzo dobra)

Bardziej szczegółowo

Uczeń otrzymuje ocenę dostateczną, jeśli opanował wiadomości i umiejętności konieczne na ocenę dopuszczającą oraz dodatkowo:

Uczeń otrzymuje ocenę dostateczną, jeśli opanował wiadomości i umiejętności konieczne na ocenę dopuszczającą oraz dodatkowo: WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI Rok szkolny 2018 / 2019 POZIOM PODSTAWOWY KLASA 3 1. RACHUNEK PRAWDOPODOBIEŃSTWA wypisuje

Bardziej szczegółowo

ZESPÓŁ SZKÓŁ W OBRZYCKU

ZESPÓŁ SZKÓŁ W OBRZYCKU Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

Plan wynikowy z rozkładem materiału MATEMATYKA ZASADNICZA SZKOŁA ZAWODOWA

Plan wynikowy z rozkładem materiału MATEMATYKA ZASADNICZA SZKOŁA ZAWODOWA . Liczby rzeczywiste (3 h) Plan wynikowy z rozkładem materiału MATEMATYKA ZASADNICZA SZKOŁA ZAWODOWA Gwiazdką * oznaczono te hasła i wymagania, które są rozszerzeniem podstawy programowej. Nauczyciel może

Bardziej szczegółowo

MATEMATYKA KL II LO zakres podstawowy i rozszerzony

MATEMATYKA KL II LO zakres podstawowy i rozszerzony MATEMATYKA KL II LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

ZAKRES PODSTAWOWY. Proponowany rozkład materiału kl. I (100 h)

ZAKRES PODSTAWOWY. Proponowany rozkład materiału kl. I (100 h) ZAKRES PODSTAWOWY Proponowany rozkład materiału kl. I (00 h). Liczby rzeczywiste. Liczby naturalne. Liczby całkowite. Liczby wymierne. Liczby niewymierne 4. Rozwinięcie dziesiętne liczby rzeczywistej 5.

Bardziej szczegółowo

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany.

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany. MATEMATYKA kurs uzupełniający dla studentów 1. roku PWSZ w ramach»europejskiego Funduszu Socjalnego«Adam Kolany rozkład materiału Projekt finansowany przez Unię Europejską w ramach Europejskiego Funduszu

Bardziej szczegółowo

Wymagania edukacyjne zakres podstawowy klasa 3A

Wymagania edukacyjne zakres podstawowy klasa 3A Ciągi Pojęcie ciągu. Sposoby opisywania ciągów Monotoniczność ciągów Ciąg arytmetyczny Suma początkowych wyrazów ciągu arytmetycznego Ciąg geometryczny Suma początkowych wyrazów ciągu geometrycznego Procent

Bardziej szczegółowo

Przedmiotowe zasady oceniania i wymagania edukacyjne

Przedmiotowe zasady oceniania i wymagania edukacyjne Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa 3 Przedmiotowe zasady oceniania i wymagania edukacyjne Przed przystąpieniem do omawiania zagadnień programowych i przed rozwiązywaniem

Bardziej szczegółowo

Rozkład materiału KLASA I

Rozkład materiału KLASA I I. Liczby (31 godz.) Rozkład materiału Wg podręczników serii Prosto do matury. Zakres podstawowy i rozszerzony (Na czerwono zaznaczono treści z zakresu rozszerzonego) KLASA I 1. Zapis dziesiętny liczby

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: IV 67 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat

Bardziej szczegółowo

Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08

Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 1. Oprocentowanie lokat i kredytów - zna pojęcie procentu prostego i składanego; - oblicza

Bardziej szczegółowo

Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa III

Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa III Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa III Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja potęgowa - zna i stosuje tw. o potęgach - zna wykresy funkcji potęgowej

Bardziej szczegółowo

MATEMATYKA. Zakres materiału i wymagania edukacyjne KLASA TRZECIA, poziom rozszerzony

MATEMATYKA. Zakres materiału i wymagania edukacyjne KLASA TRZECIA, poziom rozszerzony MATEMATYKA Zakres materiału i wymagania edukacyjne KLASA TRZECIA, poziom rozszerzony 1. RACHUNEK RÓŻNICZKOWY 1. Granica funkcji w punkcie intuicyjne pojęcie granicy określenie granicy funkcji w punkcie

Bardziej szczegółowo

Planimetria 1 12 godz.

Planimetria 1 12 godz. Planimetria 1 1 godz. Funkcje trygonometryczne kąta ostrego 1 definicje funkcji trygonometrycznych kąta ostrego wartości funkcji trygonometrycznych kątów 30º, 45º, 60º Trygonometria zastosowania Rozwiązywanie

Bardziej szczegółowo

Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum

Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum Poziomy wymagań edukacyjnych: K konieczny P podstawowy R rozszerzający D dopełniający W wykraczający Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum Potęgi o wykładnikach naturalnych i całkowitych

Bardziej szczegółowo

Poziom wymagań. Temat lekcji Zakres treści Osiągnięcia ucznia 1. WIELOMIANY 1. Stopień i współczynniki wielomianu

Poziom wymagań. Temat lekcji Zakres treści Osiągnięcia ucznia 1. WIELOMIANY 1. Stopień i współczynniki wielomianu Plan wynikowy klasa 2g - Jolanta Pająk Matematyka 2. dla liceum ogólnokształcącego, liceum profilowanego i technikum. ształcenie ogólne w zakresie rozszerzonym rok szkolny 2015/2016 Wymagania edukacyjne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy IIIa i IIIb Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ 1. FUNKCJE (11h) Uczeń: poda definicję funkcji (2)

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony 563/3/2014

Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony 563/3/2014 Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony 56//0 5 tygodni godzin = 75 godzin Lp. Tematyka zajęć I. Kombinatoryka i rachunek prawdopodobieństwa. Reguła

Bardziej szczegółowo

MATeMAtyka 3. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne

Bardziej szczegółowo

Określenie wymagań edukacyjnych z matematyki w klasie II

Określenie wymagań edukacyjnych z matematyki w klasie II Określenie wymagań edukacyjnych z matematyki w klasie II Potęgi Na ocenę dopuszczającą uczeń : Zna i rozumie pojęcie potęgi o wykładniku naturalnym, zna wzory na mnożenie i dzielenie potęg o tych samych

Bardziej szczegółowo

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA III FUNKCJE rozumie wykres jako sposób prezentacji informacji umie odczytać informacje z wykresu umie odczytać i porówna ć informacje z kilku wykresów

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony

Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony 9 tygodni 6 godzin = 7 godziny Lp. Tematyka zajęć Liczba godzin I. Funkcja wykładnicza i funkcja logarytmiczna.

Bardziej szczegółowo

MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE

MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE - pojęcie liczby naturalnej, całkowitej, wymiernej, niewymiernej, - sposób i potrzebę zaokrąglania liczb, - pojęcie wartości bezwzględnej,

Bardziej szczegółowo

WYMAGANIA WSTĘPNE Z MATEMATYKI

WYMAGANIA WSTĘPNE Z MATEMATYKI WYMAGANIA WSTĘPNE Z MATEMATYKI Wydział Informatyki, Elektroniki i Telekomunikacji Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie I. ZBIORY I.1. Działania na zbiorach I.2. Relacje między

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3

PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3 PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3 I. FUNKCJE grupuje elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowań

Bardziej szczegółowo

Plan wynikowy z rozkładem materiału

Plan wynikowy z rozkładem materiału Plan wynikowy z rozkładem materiału Zamieszczone poniżej zestawienie zagadnień omawianych na lekcjach matematyki to propozycja połączenia planu wynikowego z rozkładem materiału. Dzięki takiemu rozwiązaniu

Bardziej szczegółowo

POZIOMY WYMAGAŃ EDUKACYJNYCH: K ocena dopuszczająca (2) P ocena dostateczna (3) R ocena dobra (4) D ocena bardzo dobra (5) W ocena celująca (6)

POZIOMY WYMAGAŃ EDUKACYJNYCH: K ocena dopuszczająca (2) P ocena dostateczna (3) R ocena dobra (4) D ocena bardzo dobra (5) W ocena celująca (6) YMAGANIA EDUACYJNE MATEMATYA LASA 3LO ZARES ROZSZERZONY OZIOMY YMAGAŃ EDUACYJNYCH: ocena dopuszczająca (2) ocena dostateczna (3) R ocena dobra (4) D ocena bardzo dobra (5) ocena celująca (6) Temat lekcji

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa III zakres rozszerzony

Wymagania edukacyjne z matematyki Klasa III zakres rozszerzony Wymagania edukacyjne z matematyki Klasa III zakres rozszerzony Program nauczania zgodnie z: Kurczab M., Kurczab E., Świda E., Program nauczania w liceach i technikach. Zakres Rozszerzony., Oficyna Edukacyjna

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo