Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka
|
|
- Adam Krawczyk
- 8 lat temu
- Przeglądów:
Transkrypt
1 Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka
2 Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach liniowych c 1 x 1 + c 2 x c n x n (1) a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2... (2) a m1 x 1 + a m2 x a mn x n = b m x j 0, j = 1, 2,..., n gdzie a ij, b i, c j s a sta lymi oraz m < n. 1
3 Oznaczenia stosowane w prezentacji A = [a ij ] macierz wspó lczynników, c = (c 1,..., c n ) wektor kosztów, b = (b 1,..., b m ) wektor ograniczeń, 0 = (0,..., 0) n-wymiarowy wektor sk ladaj acy siȩ z samych zer, P j j-ta kolumna macierzy A, P 0 = b. 2
4 Zapis macierzowy zadania PL. Zminimalizować funkcje celu c T X (3) przy ograniczeniach AX = b X 0 (4) 3
5 Przydatne twierdzenia powtórzenie Twierdzenie 1 Zbiór wszystkich rozwi azań dopuszczalnych zagadnienia programowania liniowego jest zbiorem wypuk lym. Twierdzenie 2 Funkcja celu przyjmuje wartość minimaln a w punkcie wierzcho lkowym zbioru wypuk lego, utworzonego na zbiorze rozwi azań dopuszczalnych zagadnienia programowania liniowego. Twierdzenie 3 Jeżeli można znaleźć zbiór wektorów P 1, P 2,..., P k (k m) liniowo niezależnych takich, że x 1 P 1 + x 2 P x k P k = P 0, oraz wszystkie x j 0, to punkt X = (x 1, x 2,..., x k, 0,...0) jest punktem wierzcho lkowym zbioru wypuk lego rozwi azań dopuszczalnych. 4
6 Wnioski 1 Każdemu punktowi wierzcho lkowemu zbioru wypuk lego rozwi azań dopuszczalnych odpowiada zbiór m wektorów liniowo niezależnych z danego zbioru P 1, P 2,..., P n. Twierdzenie 4 Jeżeli dla dowolnego rozwi azania dopuszczalnego X = (x 10, x 20,..., x m0 ) któremu odpowiada zbiór liniowo niezależnych wektorów P 1, P 2,..., P m spe lnione s a warunki z j c j 0 dla wszystkich j = 1, 2,..., n, to x 10 P 1 + x 20 P x m0 P m = P 0 x 10 c 1 + x 20 c x m0 c m = z 0, określaj a minimalne rozwi azanie dopuszczalne. 5
7 Przyk lad 1 Zminimalizować funkcjȩ celu: x 2 3x 3 + 2x 5 przy ograniczeniach: x 1 + 3x 2 x 3 + 2x 5 = 7 2x 2 + 4x 3 + x 4 = 12 4x 2 + 3x 3 + 8x 5 + x 6 = 10 x 1,..., x 6 0 6
8 Rozwia zanie zadania I krok SIMPLEKS c j Baza c P 0 P 1 P 2 P 3 P 4 P 5 P 6 P P P z j c j
9 II krok SIMPLEKS c j Baza c P 0 P 1 P 2 P 3 P 4 P 5 P 6 P P P z j c j
10 III krok SIMPLEKS c j Baza c P 0 P 1 P 2 P 3 P 4 P 5 P 6 P P P z j c j
11 Niesymetryczne zagadnienie dualne PL Zagadnienie pierwotne min c T X przy ograniczeniach AX = b X 0 Zagadnienie dualne max λ T b przy ograniczeniach λ T A c T UWAGA: Zadanie dualne zadania dualnego jest pocz atkowym zagadnieniem pierwotnym. 10
12 Lemat 1 S laby lemat o dualności. Za lóżmy, że X i λ s a rozwi azaniami dopuszczalnymi, odpowiednio, zadania pierwotnego i dualnego. Wówczas prawdziwa jest nastȩpuj aca nierówność: c T X λ T b. Twierdzenie 5 Niech X 0 i λ 0 bȩd a rozwi azaniami dopuszczalnymi, odpowiednio, zadania pierwotnego i dualnego. Jeżeli c T X 0 = λ 0 T b, to X 0 i λ 0 s a optymalnymi rozwi azaniami, odpowiednio, zadania pierwotnego i dualnego. 11
13 Twierdzenie o dualności Twierdzenie 6 Jeżeli zagadnienie pierwotne (albo dualne) ma skończone rozwi azanie optymalne, to odpowiednie zagadnienie dualne (albo pierwotne) ma również skończone rozwi azanie optymalne i ekstrema funkcji celu s a sobie równe. Jeżeli jedno z zagadnień (pierwotne lub dualne) nie ma optymalnego rozwi azania ograniczonego, to odpowiadaj ace mu zagadnienie dualne nie ma rozwi azań dopuszczalnych. 12
14 Przyk lad 2 Znaleźć rozwi azanie optymalne zagadnienia dualnego z przyk ladu 1 Zadanie pierwotne Zminimalizować: Zadanie dualne Zmaksymalizować: x 2 3x 3 + 2x 5 7λ λ λ 3 przy ograniczeniach przy ograniczeniach λ 1 0 x 1 + 3x 2 x 3 + 2x 5 = 7 3λ 1 2λ 2 4λ 3 1 2x 2 + 4x 3 + x 4 = 12 λ 1 + 4λ 2 + 3λ 3 3 4x 2 + 3x 3 + 8x 5 + x 6 = 10 λ 2 0 x 1,..., x 6 0 2λ 1 + 8λ 3 2 λ
15 Baza końcowa metody SIMPLEKS P 2, P 3, P 6 : B = [P 2 P 3 P 6 ] = B 1 = UWAGA: Jeżeli oryginalna macierz wspó lczynników A zawiera macierz jednostkow a, albo zostanie uzupe lniona macierz a jednostkow a, to w każdym kroku obliczeń w odpowiednich kolumnach macierzy jednostkowej otrzymamy macierz odwrotn a bazy. 14
16 Optymalne rozwi azanie zadania pierwotnego: X 0 = B 1 b = ( x 0 2, x 0 3, x 0 6) = (4, 5, 11), c 0 = ( c 0 2, c 0 3, c 0 6) = (1, 3, 0). Minimalna wartość funkcji celu: c 0 X 0 = (1, 3, 0) T (4, 5, 11) = 11. Wektor rozwi azania minimalnego: Z = c T 0 X c T = ( 0.2, 0, 0, 0.8, 2.4, 0). 15
17 Optymalne rozwi azania zadania dualnego: λ 0 = c 0 B 1 = (1, 3, 0) = ( 0.2, 0.8, 0) Wartość dualnej funkcji celu: λ T 0 b = ( 0.2, 0.8, 0) =
18 Sprawdzenie: ( 15, 45, 0 )
19 Symetryczne zagadnienie dualne Zagadnienie pierwotne min c T X przy ograniczeniach AX b X 0 Zagadnienie dualne max λ T b przy ograniczeniach λ T A c T λ 0. UWAGA: Twierdzenie o dualności może być zastosowane również do symetrycznych zagadnień dualnych. 18
20 Przekszta lcenie symetryczne zagadnienia programowania liniowego do postaci równości a 11 x a 1n x n b 1 a 21 x a 2n x n b 2... a m1 x a mn x n b m a 11 x a 1n x n x n+1 = b 1 a 21 x a 2n x n x n+2 = b 2... a m1 x a mn x n x n+m = b m a 11 λ a m1 λ m c 1 a 21 λ a m2 λ m c 2... a 1n λ a mn λ m c n a 11 λ a m1 λ m + λ m+1 = c 1 a 21 λ a m2 λ m + λ m+2 = c 2... a 1n λ a mn λ m + λ m+n = c n 19
21 Niech wektor kolumnowy Y = (y 1, y 2,..., y m ) sk lada siȩ ze zmiennych os labiaj acych, które przekszta lcaj a uk lad nierówności ograniczaj acych w uk lad równań. Równoważne zagadnienie PL zapisane za pomoc a macierzy z lożonych: max [ c T, 0 T ] X Y przy ograniczeniach: [A, I] X Y = b, X Y 0. Zagadnie dualne tego przekszta lconego zadania pierwotnego jest postaci: max λ T b przy ograniczeniach λ T [A, I] [ c T, 0 T ]. 20
22 Twierdzenie o zmiennych os labiaja cych Twierdzenie 7 Dla optymalnych rozwi azań dopuszczalnych uk ladów pierwotnego i dualnego, jeżeli tylko wystȩpuje nierówność w k tej zależności dowolnego uk ladu (odpowiednia zmienna os labiaj aca jest dodatnia), to k-ta zmienna w jego uk ladzie dualnym znika. Jeżeli k-ta zmienna jest dodatnia w dowolnym uk ladzie, to k-ta zależność w jego uk ladzie dualnym jest równości a ( odpowiednia zmienna os labiaj aca jest zerem). 21
23 Complementary Slackness Condition Twierdzenie 8 Dopuszczalne rozwi azania X i λ dualnej pary problemów s a optymalne, wtedy i tylko wtedy gdy: ( c T λ T A ) X = 0 oraz λ T (AX b) = 0. 22
24 Dziȩkujȩ za uwagȩ. 23
Niesimpleksowe metody rozwia zywania zadań PL. Seminarium Szkoleniowe Edyta Mrówka
Niesimpleksowe metody rozwia zywania zadań PL Seminarium Szkoleniowe Metoda Simplex: wady i zalety Algorytm SIMPLEX jest szeroko znany i stosowany do rozwi azywania zadań programowania liniowego w praktyce.
Dualność w programowaniu liniowym
2016-06-12 1 Dualność w programowaniu liniowym Badania operacyjne Wykład 2 2016-06-12 2 Plan wykładu Przykład zadania dualnego Sformułowanie zagadnienia dualnego Symetryczne zagadnienie dualne Niesymetryczne
Sterowalność liniowych uk ladów sterowania
Sterowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t), u(t), t), t [t,
Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010
R. Rȩbowski 1 WPROWADZENIE Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 1 Wprowadzenie Powszechnie uważa siȩ, że metoda simplex, jako uniwersalny algorytm pozwalaj acyznaleźć rozwi azanie optymalne
Wprowadzenie do badań operacyjnych - wykład 2 i 3
Wprowadzenie do badań operacyjnych - wykład 2 i 3 Hanna Furmańczyk 14 listopada 2008 Programowanie liniowe (PL) - wszystkie ograniczenia muszą być liniowe - wszystkie zmienne muszą być ciągłe n j=1 c j
Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina.
Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina. Podstawowy problem sterowania optymalnego dla uk ladów nieliniowych W podstawowym problemie sterowania optymalnego minimalizacji
y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =
Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,
Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas
Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1. Dowieść, że jeśli U i V s a podprzestrzeniami n-wymiarowej przestrzeni wektorowej oraz dim U = r i dim V = s, to max(0,
Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego
Wyk lad 8 Rzad macierzy i twierdzenie Kroneckera-Capellego 1 Określenie rz edu macierzy Niech A bedzie m n - macierza Wówczas wiersze macierzy A możemy w naturalny sposób traktować jako wektory przestrzeni
Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania
Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania 1 Przekszta lcenia liniowe i ich w lasności Definicja 9.1. Niech V i W bed przestrzeniami liniowymi. Przekszta lcenie f : V W spe lniajace warunki:
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje
Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas
Pierwsze kolokwium z Matematyki I 4. listopada 03 r. J. de Lucas Uwagi organizacyjne: Każde zadanie rozwi azujemy na osobnej kartce, opatrzonej imieniem i nazwiskiem w lasnym oraz osoby prowadz acej ćwiczenia,
Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty
Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty November 20, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Znajdź równanie asymptot funkcji f jeśli: a) f(x)
ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej:
A Kasperski, M Kulej Badania Operacyjne- programowanie liniowe 1 ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej: max z = c 1 x 1 + c 2 x 2 + +
Po wprowadzeniu zmiennych uzupe lniaj acych otrzymamy równoważny mu problem w postaci kanonicznej:
ROZDZIA L Metoda sympleksowa Motto: Matematyka nie może wype lnić życia ale jej nieznajomość już niejednemu je wype lni la H Steinhaus Tablica sympleksowa Rozważmy ZPL w postaci klasycznej maksymalizować
Wyk lad 7 Baza i wymiar przestrzeni liniowej
Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem
Wyk lad 14 Formy kwadratowe I
Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można
ANALIZA II 15 marca 2014 Semestr letni. Ćwiczenie 1. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la?
Ci ag lość i norma Ćwiczenie. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la? f (x, y) = x2 y 2 x 2 + y 2, f 2(x, y) = x2 y x 2 + y 2 f 3 (x, y) = x2 y
Wyk lad 11 1 Wektory i wartości w lasne
Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V
Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera
Wyk lad 7 Metoda eliminacji Gaussa Wzory Cramera Metoda eliminacji Gaussa Metoda eliminacji Gaussa polega na znalezieniu dla danego uk ladu a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n =
Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym
Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania optymalnego
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar liniowej Baza liniowej Niech V bedzie nad cia lem K Powiemy, że zbiór wektorów {α,, α n } jest baza V, jeżeli wektory α,, α n sa liniowo niezależne oraz generuja V tzn V = L(α,,
Liczby zespolone, liniowa zależność i bazy Javier de Lucas. a d b c. ad bc
Liczby zespolone, liniowa zależność i bazy Javier de Lucas Ćwiczenie. Dowieść, że jeśli µ := c d d c, to homografia h(x) = (ax+b)/(cx+d), a, b, c, d C, ad bc, odwzorowuje oś rzeczywist a R C na okr ag
liniowych uk ladów sterowania
Sterowalność i obserwowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t),
Teoretyczne podstawy programowania liniowego
Teoretyczne podstawy programowania liniowego Elementy algebry liniowej Plan Kombinacja liniowa Definicja Kombinacja liniowa wektorów (punktów) x 1, x 2,, x k R n to wektor x R n k taki, że x = i=1 λ i
KOLOKWIUM Z ALGEBRY I R
Instrucje: Każde zadanie jest za 4 puntów. Rozwi azanie ażdego zadania musi znajdować siȩ na osobnej artce oraz być napisane starannie i czytelnie. W nag lówu ażdego rozwi azania musz a znajdować siȩ dane
CHEMIA KWANTOWA MONIKA MUSIA L. Ćwiczenia. mm
CHEMIA KWANTOWA MONIKA MUSIA L Ćwiczenia METODY PRZYBLIŻONE ROZWIA ZYWANIA RÓWNANIA SCHRÖDINGERA METODA WARIACYJNA metoda wariacyjna ĤΨ n = E n Ψ n Ψ n ortonormalne Szukamy rozwi azań dla stanu podstawowego,
POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy
POCHODNA KIERUNKOWA Pochodne cz astkowe funkcji f(m) = f(x, y, z) wzglȩdem x, wzglȩdem y i wzglȩdem z wyrażaj a prȩdkość zmiany funkcji w kierunku osi wspó lrzȩdnych; np. f x jest prȩdkości a zmiany funkcji
Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym
Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania optymalnego
Programowanie liniowe
Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.
W poszukiwaniu kszta ltów kulistych
W poszukiwaniu kszta ltów kulistych Piotr Mankiewicz April 4, 2005 Konwersatorium dla doktorantów Notacje 1 Cia lo wypuk le - wypuk ly, domkniȩty podzbiór ograniczony w R n. Odleg lość geometryczna dwóch
Sterowanie minimalnoczasowe dla uk ladów liniowych. Krzywe prze l aczeń.
Sterowanie minimalnoczasowe dla uk ladów liniowych. Krzywe prze l aczeń. Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania
PROGRAMOWANIE KWADRATOWE
PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej
Wyk lad 6 Podprzestrzenie przestrzeni liniowych
Wyk lad 6 Podprzestrzenie przestrzeni liniowych 1 Określenie podprzestrzeni Definicja 6.1. Niepusty podzbiór V 1 V nazywamy podprzestrzeni przestrzeni liniowej V, jeśli ma on nastepuj ace w lasności: (I)
Ekonomia matematyczna i dynamiczna optymalizacja
Ekonomia matematyczna i dynamiczna optymalizacja Ramy wyk ladu i podstawowe narz edzia matematyczne SGH Semestr letni 2012-13 Uk lady dynamiczne Rozwiazanie modelu dynamicznego bardzo czesto można zapisać
Suma i przeciȩcie podprzestrzeń, suma prosta, przestrzeń ilorazowa Javier de Lucas
Suma i przeciȩcie podprzestrzeń suma prosta przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1 W zależności od wartości parametru p podaj wymiar przestrzeni W = v 1 v v 3 gdzie p 0 v 1 = 1 + p 3 v = 5 3
Programowanie liniowe
Programowanie liniowe Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 8, 2016 Łukasz Kowalik (UW) LP April 8, 2016 1 / 15 Problem diety Tabelka wit. A (µg) wit. B1 (µg) wit. C (µg) (kcal)
Metody Numeryczne Wykład 4 Wykład 5. Interpolacja wielomianowa
Sformułowanie zadania interpolacji Metody Numeryczne Wykład 4 Wykład 5 Interpolacja wielomianowa Niech D R i niech F bȩdzie pewnym zbiorem funkcji f : D R. Niech x 0, x 1,..., x n bȩdzie ustalonym zbiorem
Asymptota pozioma: oṡ x, gdy y = 0 Asymptota pionowa: oṡ y, gdy x = 0. Hyperbola 1 x
1 SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 Asymptota pozioma: oṡ x, gdy y = 0 Asymptota pionowa: oṡ y, gdy x = 0 2 1 0 3 1 2 x Hyperbola 1 x FUNKCJE ELEMENTARNE WYMIERNE POTȨGOWE LOGARYTMICZNE
Wyk lad 11 Przekszta lcenia liniowe a macierze
Wyk lad 11 Przekszta lcenia liniowe a macierze 1 Izomorfizm przestrzeni L(V ; W ) i M m n (R) Twierdzenie 111 Niech V i W bed a przestrzeniami liniowymi o bazach uporzadkowanych (α 1,, α n ) i (β 1,, β
Funkcje wielu zmiennych
Funkcje wielu zmiennych 8 Pochodna kierunkowa funkcji Definicja Niech funkcja f określona bȩdzie w otoczeniu punktu P 0 = (x 0, y 0 ) oraz niech v = [v x, v y ] bȩdzie wektorem. Pochodn a kierunkow a funkcji
Podprzestrzeń wektorowa, baza, suma prosta i wymiar Javier de Lucas
Podprzestrzeń wektorowa, baza, suma prosta i wymiar Javier de Lucas Ćwiczenie 1. Niech W = {(x 1, x 2, x 3 ) K 3 : x 2 1 + x 2 2 + x 2 3 = x 1 x 2 + x 2 x 3 + x 3 x 1 }. Czy W jest podprzestrzeni a gdy
Liniowe uk lady sterowania.
Liniowe uk lady sterowania Rozwi azywanie liniowych rownań stanu Uk lady z czasem ci ag lym Liniowe stacjonarne równania stanu Przyk lad: Uk lad sterowania tarcz a obrotow a prȩt sprȩżysty tarcza obrotowa
Przestrzenie wektorowe, liniowa niezależność Javier de Lucas
Przestrzenie wektorowe, liniowa niezależność Javier de Lucas Ćwiczenie 1. W literaturze można znaleźć pojȩcia przestrzeni liniowej i przestrzeni wektorowej. Obie rzeczy maj a tak a sam a znaczenie. Nastȩpuj
TOZ -Techniki optymalizacji w zarządzaniu
TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Wykład 2 Optymalizacja
Programowanie liniowe
Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10
Standardowe zadanie programowania liniowego. Gliwice 1
Standardowe zadanie programowania liniowego 1 Standardowe zadanie programowania liniowego Rozważamy proces, w którym zmiennymi są x 1, x 2,, x n. Proces poddany jest m ograniczeniom, zapisanymi w postaci
Funkcje wielu zmiennych
Funkcje wielu zmiennych 13 Zbiory w przestrzeni Definicja Przestrzeni a trójwymiarow a (przestrzeni a) nazywamy zbiór wszystkich trójek uporz adkowanych (x y z) gdzie x y z R. Przestrzeń tȩ oznaczamy symbolem
SZKO LA PODSTAWOWA HELIANTUS WARSZAWA ul. BAŻANCIA 16. Hyperbola 1 x FUNKCJE ELEMENTARNE WYMIERNE POTȨGOWE LOGARYTMICZNE.
1 SZKO LA PODSTAWOWA HELIANTUS 0-89 WARSZAWA ul. BAŻANCIA 16 1 0 3 1 x Hyperbola 1 x FUNKCJE ELEMENTARNE WYMIERNE POTȨGOWE LOGARYTMICZNE Prof. dr. Tadeusz STYŠ Warszawa 018 1 1 Projekt dziesi aty Contents
CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA. Ćwiczenia. http://zcht.mfc.us.edu.pl/ mm
CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA Ćwiczenia Zwi azki organiczne zawieraj ace uk lady π-elektronowe Sprzȩżony uk lad wi azań podwójnych: -C=C-C=C-C=C-C=C- Skumulowany uk lad wi azań podwójnych:
Programowanie liniowe. Tadeusz Trzaskalik
Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków
Normy wektorów i macierzy
Rozdzia l 3 Normy wektorów i macierzy W tym rozdziale zak ladamy, że K C. 3.1 Ogólna definicja normy Niech ψ : K m,n [0, + ) b edzie przekszta lceniem spe lniaj acym warunki: (i) A K m,n ψ(a) = 0 A = 0,
Monika Musia l. METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) (ujȩcie wyznacznikowe)
Monika Musia l METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) (ujȩcie wyznacznikowe) ĤΨ i = E i Ψ i W metodzie mieszania konfiguracji wariacyjna funkcja falowa, jest liniow a kombinacj a
g liczb rzeczywistych (a n ) spe lnia warunek
. Czy jest prawda, że a) R y R z R y + yz + = 0 ; b) R y R z R y + yz + 0 ; c) R y R z R y + yz + = 0 ; d) R y R z R y + yz + 0? 2. Czy jest prawdziwa nierówność a) ctg > ; b) tg < cos ; c) cos < sin ;
Wprowadzenie z dynamicznej optymalizacji
Wprowadzenie z dynamicznej optymalizacji Lukasz Woźny 29 kwietnia 2007 Spis treści 1 Optymalizacja statyczna a optymalizacja dynamiczna 2 1.1 Ekstrema lokalne funkcji wielu zmiennych - statyka...... 2
1 Przestrzenie unitarne i przestrzenie Hilberta.
Przestrzenie unitarne i przestrzenie Hilberta.. Wykazać, że iloczyn skalarny w przestrzeni wektorowej X nad cia lem K ma nastepuj ace w lasności: (i) x, y + z = x, y + x, z, (ii) x, λy = λ x, y, (iii)
Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w
Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych
Matematyka A, klasówka, 24 maja zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le. rozwia
Matematyka A, klasówka, 4 maja 5 Na prośbe jednej ze studentek podaje zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le dów Podać definicje wektora w lasnego i wartości w lasnej
Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE
Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE Niech K = R lub K = C oraz X - dowolny zbiór. Określmy dwa dzia lania: dodawanie + : X X X i mnożenie przez liczbȩ : K X X, spe lniaj ace nastȩpuj ace
Rozdział 1 PROGRAMOWANIE LINIOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując
Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.
Rozdzia l 11 Przestrzenie Euklidesowe 11.1 Definicja, iloczyn skalarny i norma Definicja 11.1 Przestrzenia Euklidesowa nazywamy par e { X K,ϕ }, gdzie X K jest przestrzenia liniowa nad K, a ϕ forma dwuliniowa
Podstawowe działania w rachunku macierzowym
Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy:
Synteza optymalnego regulatora stanu. Uk lady z czasem ci ag lym.
Synteza optymalnego regulatora stanu. Uk lady z czasem ci ag lym. Po wyznaczeniu optymalnego nominalnego) procesu sterowania x o, u o nasuwa siȩ kwestia podtrzymywania tego procesu w warunkach ma lych
Wyk lad 10 Przestrzeń przekszta lceń liniowych
Wyk lad 10 Przestrzeń przekszta lceń liniowych 1 Określenie przestrzeni przekszta lceń liniowych Niech V i W bed a przestrzeniami liniowymi Oznaczmy przez L(V ; W ) zbór wszystkich przekszta lceń liniowych
Programowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2010 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Homo oeconomicus=
Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem
Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,
Wersja testu A 15 lutego 2011 r. jest, że a) x R y R y 2 > Czy prawda. b) y R x R y 2 > 1 c) x R y R y 2 > 1 d) x R y R y 2 > 1.
1. Czy prawda jest, że a) x R y R y 2 > 1 1+x 2 ; b) y R x R y 2 > 1 1+x 2 ; c) x R y R y 2 > 1 1+x 2 ; d) x R y R y 2 > 1 1+x 2? 2. Czy naste puja ca relacja na zbiorze liczb rzeczywistych jest relacja
Programowanie matematyczne. czȩść I: programowanie liniowe. Andrzej Cegielski
Programowanie matematyczne czȩść I: programowanie liniowe Andrzej Cegielski ii Spis treści 1 Wstȩp 1 1.1 Zadania programowania matematycznego.......... 1 1. Oznaczenia i proste fakty...................
DZYSZKOLNE ZAWODY MATEMATYCZNE. Eliminacje rejonowe. Czas trwania zawodów: 150 minut
XLIII MIE DZYSZKOLNE ZAWODY MATEMATYCZNE Eliminacje rejonowe Czas trwania zawodów: 150 minut Każdy uczeń rozwia zuje dwadzieścia cztery zadania testowe, w których podano za lożenia oraz trzy (niekoniecznie
Dyskretne modele populacji
Dyskretne modele populacji Micha l Machtel Adam Soboczyński 17 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których
Stabilność liniowych uk ladów sterowania
Stabilność liniowych uk ladów sterowania Stabilność uk ladów z czasem ci ag lym W teorii stabilności uk ladów sterowania badamy wrażliwość trajektorii stanu na zaburzenia stanu pocz atkowego. Interesuje
Programowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
LOGIKA ALGORYTMICZNA
LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R
Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik
Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda
Wyk lad 5 W lasności wyznaczników. Macierz odwrotna
Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy
Algorytm simplex i dualność
Algorytm simplex i dualność Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 15, 2016 Łukasz Kowalik (UW) LP April 15, 2016 1 / 35 Przypomnienie 1 Wierzchołkiem wielościanu P nazywamy
SZKO LA PODSTAWOWA HELIANTUS WARSZAWA ul. BAŻANCIA 16. Szeṡcian w uk ladzie wspȯ lrzȩdnych x, y, z GEOMETRIA PRZESTRZENNA STEREOMETRIA
SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 z y 0 x Szeṡcian w uk ladzie wspȯ lrzȩdnych x, y, z GEOMETRIA PRZESTRZENNA STEREOMETRIA Prof. dr. Tadeusz STYŠ Warszawa 2018 1 1 Projekt trzynasty
Przestrzenie wektorowe, liniowa niezależność wektorów, bazy przestrzeni wektorowych
Grupa, cia lo Zadanie 1. Jakie w lasności w zbiorze liczb naturalnych, ca lkowitych, wymiernych, rzeczywistych maj dzia lania a b = a b, a b = a 2 + b 2, a b = a+b, a b = b. 2 Zadanie 2. Pokazać, że (R
MATEMATYKA DZIELENIE LICZB Z RESZTA CECHY PODZIELNOṠCI
1 SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 Opercja modulo a b( mod c) MATEMATYKA DZIELENIE LICZB Z RESZTA CECHY PODZIELNOṠCI Prof. dr. Tadeusz STYŠ WARSZAWA 2018 1 1 Projekt pi aty
Badania operacyjne. te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze.
BADANIA OPERACYJNE Badania operacyjne Badania operacyjne są sztuką dawania złych odpowiedzi na te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze. T. Sayty 2 Standardowe zadanie
Wyk lad 13 Funkcjona ly dwuliniowe
1 Izomorfizmy kanoniczne Wyk lad 13 Funkcjona ly dwuliniowe Definicja 13.1. Niech V i W bed przestrzeniami liniowymi. Funkcje ξ : V W R nazywamy funkcjona lem dwuliniowym, jeżeli i a,b R α,β V γ W ξa α
Definicja problemu programowania matematycznego
Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i
Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie
1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z
Rozdzia 5. Uog lniona metoda najmniejszych kwadrat w : ::::::::::::: Podstawy uog lnionej metody najmniejszych kwadrat w :::::: Zastos
Spis tre ci PRZEDMOWA :::::::::::::::::::::::::::::::::::::::::::::::::::::::: 11 CZ I. Wprowadzenie do modelowania ekonometrycznego ::::::::::: 13 Rozdzia 1. Modelowanie ekonometryczne ::::::::::::::::::::::::::::::
Algebra i jej zastosowania konspekt wyk ladu, czȩść druga
Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Anna Romanowska January 29, 2016 4 Kraty i algebry Boole a 41 Kraty zupe lne Definicja 411 Zbiór uporza dkowany (P, ) nazywamy krata zupe lna,
Tomasz Downarowicz Instytut Matematyki i Informatyki Politechnika Wroc lawska Wroc law Wroc law, kwiecień 2011
Tomasz Downarowicz Instytut Matematyki i Informatyki Politechnika Wroc lawska 50-370 Wroc law Wroc law, kwiecień 2011 Analiza Funkcjonalna WPPT IIr. Wyk lady 4 i 5: Przestrzenie unitarne i Hilberta (rzeczywiste
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń
c ze wzoru dwumianowego Newtona obliczyć sumy: a) 3 2 obliczyć wartości wyrazów będa cych liczbami ca lkowitymi,
3 Korzystaja c ze wzoru dwumianowego Newtona obliczyć sumy: a) n ( n n k) ; b) 4 W rozwinie ciu dwumianowym: ( 4 a) ) 1, 3 2 obliczyć wartości wyrazów będa cych liczbami ca lkowitymi, ( ) b) 3 13, 5 +
Pierwiastki arytmetyczne n a
Chapter 1 Pierwiastki arytmetyczne n a Operacja wyci aganie pierwiastka stopnia n z liczby a jest odwrotn a operacj a do potȩgowania, jeżeli operacja odwrotna jest wykonalna w liczbach rzeczywistych. Zacznijmy
Cia la i wielomiany Javier de Lucas
Cia la i wielomiany Javier de Lucas Ćwiczenie 1. Za lóż, że (F, +,, 1, 0) jest cia lem i α, β F. w laściwości s a prawd a? Które z nastȩpuj acych 1. 0 α = 0. 2. ( 1) α = α. 3. Każdy element zbioru F ma
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia
STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1
1 STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 Klasyczny Rachunek Prawdopodobieństwa. 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany. Posiadamy
Wersja testu D 14 września 2011 r. 1. Czy prawda jest, że a) x Z y Z y 2 = 2 ; b) x Z y Z x 2 = 1 ; c) x Z y Z x 2 = 2 ; d) x Z y Z y 2 = 1?
1. Czy prawda jest, że a) x Z y Z y 2 = 2 ; b) x Z y Z x 2 = 1 ; c) x Z y Z x 2 = 2 ; d) x Z y Z y 2 = 1? 2. Czy prawda jest, że a) 5 8 1 jest podzielne przez 4 ; b) 5 7 1 jest podzielne przez 4 ; c) 3
Matematyka A, egzamin, 17 czerwca 2005 rozwia zania
Matematyka A, egzamin, 7 czerwca 00 rozwia zania Mam nadzieje, że nie ma tu b le dów poza jakimiś literówkami, od których uwolnić sie trudno. Zache cam do obejrzenia rozwia zań zadań z egzaminu dla matematyki
FUNKCJE LICZBOWE. x 1
FUNKCJE LICZBOWE Zbiory postaci {x R: x a}, {x R: x a}, {x R: x < a}, {x R: x > a} oznaczane sa symbolami (,a], [a, ), (,a) i (a, ). Nazywamy pó lprostymi domknie tymi lub otwartymi o końcu a. Symbol odczytujemy
Wyk lad 3 Wielomiany i u lamki proste
Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a
Programowanie nieliniowe Badania operacyjne Wykład 3 Metoda Lagrange a Plan wykładu Przykład problemu z nieliniową funkcją celu Sformułowanie problemu programowania matematycznego Podstawowe definicje
ci agi i szeregi funkcji Javier de Lucas Ćwiczenie 1. Zbadać zbieżność (punktow a i jednostajn a) ci agu funkcji nx 2 + x
ci agi i szeregi funkcji Javier de Lucas Ćwiczenie 1 Zbadać zbieżność (punktow a i jednostajn a) ci agu funkcji f n : [, [ x nx + x nx + 1, Rozwi azanie: Mówi siȩ, że ci ag funkcji f n zd aży punktowo