SZKO LA PODSTAWOWA HELIANTUS WARSZAWA ul. BAŻANCIA 16. Hyperbola 1 x FUNKCJE ELEMENTARNE WYMIERNE POTȨGOWE LOGARYTMICZNE.
|
|
- Krystian Wójtowicz
- 5 lat temu
- Przeglądów:
Transkrypt
1 1 SZKO LA PODSTAWOWA HELIANTUS 0-89 WARSZAWA ul. BAŻANCIA x Hyperbola 1 x FUNKCJE ELEMENTARNE WYMIERNE POTȨGOWE LOGARYTMICZNE Prof. dr. Tadeusz STYŠ Warszawa Projekt dziesi aty
2
3 Contents 1 Funkcje elementarne Funkcje Wymierne Przy lady funkcji wymiernych Rozk lad Funkcji Wymiernych na U lamki Proste Funkcja Pierwiastek Kwadratowy f(x) = x Równaia z wyrażeniem x Funkcja Wyk ladnicza W lasnoṡci funkcji wyk ladniczej Równania Wyk ladnicze Funkcja logarytmiczna Logarytm naturalny W lasnoṡci funkcji logarytmicznej Rȯwnania logarytmiczne Zdania
4 4
5 Chapter 1 Funkcje elementarne Do funkcji elementarnych zaliczamy wielomiany, funkcje wymierne, funkcje wyk ladnicze, funkcje logarytmiczne, funkcje trygonometryczne i funkcja pierwiastek kwadratowy. W rozszerzonym programie szko ly podstawowej wiedza o funkcjach elementarnych ma charakter wstȩpny. W rozdziale Wielomiany opisane zosta ly fukcje liniowe, trȯjmian kwadratowy i wielomiany stopnia n. W tym rozdziele przedstawimy niektȯre z funkcji elementarnych w zakresie podstawowym wsparte licznymi przyk ladamy i ċwiczeniamy. 1.1 Funkcje Wymierne Zbiȯr liczb wymiernych jest rozszerzeniem zbioru liczb ca lkowitych. Podobnie zbiȯr funkcji wymiernych jest rozszerzeniem zbioru wielomianȯw. Mianowicie, funkcje wymierne określamy jako iloraz wielomianów w(x) = p n(x) q m (x) = a nx n + a n 1 x n a 1 x + a 0 b m x m + b m 1 x n b 1 x + b 0 stopni n i m, odpowiednio. Dziedzin a funkcji wymiernych jest zbiór tych liczb rzeczywistych x R dla których mianownik q m (x) 0 jest różny od zera. Zatem dziedzin a funkcji wymiernej w(x) jest zbiór liczb rzczywistych D = {x R : q m (x) 0} Przy lady funkcji wymiernych Hyperbola w(x) = 1 x, x 0 jest najprostrz a a zarazem podstawow a funkcj a wymiern a, ktȯra chrakteryzuje ważne w lasnoṡci wszystkich funkcji wymiernych. Rozpatrzmy nastȩpuj ace w lasnoṡci hyperboli: 5
6 6 1. dziedzinȩ. zbiór wartości 3. postać u lamka prostego 4. asymptoty Dziedzin a tej funkcji wymiernej jest zbiór liczb rzeczywistych różnych od zera. Piszemy D = {x R : x 0.} Również zbiorem jej wartości też jest zbiór liczb rzczywistych różnych od zera, gdyż 1 0 dla x 0. Wykresem tej funkcji wynmiernej jest hyperbola x Fig. 3.9 Hyperbola Zauważmy, że ta hyperbola ma dwie asymptoty poziom a oś x i pionow a oś y Przyk lad 1.1 Rozpatrzmy funkcje wymiern a podaj 1. dziedzinȩ. zbiór wartości 3. postać u lamka prostego 4. asymptoty w(x) = x 1 x + 1, x 1. Dziedzin a tej funkcji wymiernej jest zbiór liczb rzeczywistych różnych od 1. Piszemy D = {x R : x 0.} T a funkcjȩ wymiern a zapiszmy wpostaci u lamków prosych u lamki proste w(x) = x 1 x + 1 = x 1 + x + 1 = (x + 1) x + 1 = 1 x + 1, x 1. Zbiorem wartości tej funkcji jest zbiór liczb rzczywistych różnych od 1, gdyż w(x) = 1 1 dla x 1. x + 1 Wykresem tej funkcji wynmiernej jest hyperbola Fig Asymptoty Hyperboli Zauważmy, że ta hyperbola ma dwie asymptoty poziom a x = 1 i pionow a przzechodz ac a przez punkt x = 1 to jest punkt w którym funkcja jest nieokreślona.
7 7 Przyk lad 1. Rozpatrzmy funkcje wymiern a podaj 1. dziedzinȩ. zbiór wartości 3. asymptoty w(x) = 1, < x <. x + 1 Dziedzin a tej funkcji wymiernej jest zbiór liczb rzeczywistych. Piszemy D = {x R : < x <.} Zbiorem wartości tej funkcji jest przedzia l otwarty (0, 1) liczb rzczywistych dodatnich oznaczany symbolem R +. Istotnie, zauważamy, że wartości tej funkcji spe lniaja a nierówność 0 < 1 < 1, x R. x + 1 Wykresem tej funkcji wymiernej jest krzywa Fig Funkcja Wymierna Ta funkcja wymierna ma jedn a asymptotȩ poziom a x = 0 to jest oś x. Przyk lad 1.3 Rozpatrzmy funkcje wymiern a podaj 1. dziedzinȩ. zbiór wartości 3. asymptoty w(x) = x 1, < x <. x + 1 Dziedzin a tej funkcji wymiernej jest zbiór wszystkich liczb rzeczywistych, gdyż mianownik x + 1 > 1 jest dodatni dla każdego rzeczywistego x R. Piszemy D = {x R : < x <.} Zbiorem wartości funkcji jest przedzia l [ 1, 1) liczb rzczywistych. Mianowicie, latwo sprawdzamy nierówność: 1 x 1 x + 1 < 1. Wykresem tej funkcji wymiernej jest nastȩpuj aca krzywa: Fig. 3.1 Funkcja Wymierna Ta funkcja wymierna ma jedn a asymptotȩ poziom a x = 0 to jest oś x.
8 8 Zadanie 1.1 dla nastȩpuj acej funkcji wymiernej: podaj (i) w(x) = x 1 x, (ii) w(x) = x x 4, 1. dziwdzinȩ. zbiór wartości 3. postać u lamka prostego 4. asymptoty 1.1. Rozk lad Funkcji Wymiernych na U lamki Proste U lamkiem prostym nazywamy nastȩpuj ace funkcje wymierne: A x a, A (x a)k, Ax + B x + px + q, Ax + B (x + px + q) k, p 4q < 0. Przyk lad 1.4 Roz lóż funkcje wymiern a na u lamki proste podaj w(x) = x 1 x 1 1. dziwdzinȩ. zbiór wartości 3. postać u lamka prostego 4. asymptoty Rozwi azanie. Dziedzin a tej funkcji wymiernej jest zbiór liczb rzeczywistych dla których mianownik jest różny od zera. To znaczy D = {x R : x 1 = (x 1)(x + 1) 0} = {x R : (x 1) (x 1)} Rozk ladu tej funkcji wymiernej szukamy metod a wspó lczynników nieoznaczonych. Mianowicie, znajdziemy A i B takie, że nastȩpuj aca równość zachodzi w(x) = x 1 x 1 = x 1 (x 1)(x + 1) = A x 1 + B x + 1
9 9 dla każdego x D z dziedziny funkcji w(x), to znaczy dla każdego x 1 lub x 1 Zatem, wspó lczynniki A i B wyznaczamy z tożsamości x 1 (x 1)(x + 1) = A x 1 + B x + 1 która jest spe lniona dla każdego x D z dziedziny funkcji, to znaczy dla każdego x 1 lub x 1. Napiszemy t a tożsamość we wspólnym mianowniku x 1 (x 1)(x + 1) = A(x + 1) + B(x 1) (x 1)(x + 1) = (A + B)x + (A B) (x 1)(x + 1) Porównuj ac wspȯ lóczynniki w licznikach przy x oraz wyrazy wolne, otrzymamy równania na niewiadome A i B A + B =, A B = 1. Obliczamy A = B 1 oraz (B 1) + B =, B = 3. Sk ad znajdujemy B = 3, A = B 1 = 3 1 = 1. Odpowiedź: Rozk lad tej funkcji wymiernej na u lamki proste jest nastȩpuj acy: w(x) = x + 1 x 1 = 3 (x 1) + 1 (x + 1) Przyk lad 1.5 Roz lóż funkcje wymiern a na u lamki proste 1. dziwdzinȩ. zbiór wartości 3. postać u lamka prostego 4. asymptoty w(x) = x 1 (x 1)(x + 1) Rozwi azanie. Dziedzin a tej funkcji wymiernej jest zbiór liczb rzeczywistych dla których mianownik jest różny od zera. To znaczy D = {x R : x 1 0} = {x R : x 1}, bo zawsze x + 1 > 1. Określamy zbiór wartości tej funkcji. W dziedzinie D = {x R : x 1 0} = {x R : x 1}, ta funkcja ma postać u lamka prostego w(x) = x + 1 (x + 1) = x (x + 1) + 1 (x + 1)
10 10 Zauważamy, że 1 Rzeczywiście, znamy nierówność (x ± 1) 0, x x + 1, Również oczywista jest nierówność 0 < 1 x + 1 x (x + 1) 1, dla wszystkich x D x x + 1 1, 1 x x , wszystkich rzczywistych x R. dodaj ac stronami te nierówności, otrzymamy oczekiwan a nierówność 1 x (x + 1) < 1 x < x + 1 x Zatem zbiorem wartości tej funkcji wymiernej jest przedzia l ( 1, 3 ]. Wykres funkcji Fig Funkcja Wymierna Z wykresu widzimy, że asymptot a tej funkcji wymiernej jest oś x, gdy y = 0. Zadanie 1. Roz lóż funkcje wymiern a na u lamki proste podaj 1. dziwdzinȩ. zbiór wartości 3. postać u lamka prostego 4. asymptoty w(x) = x 9 (x 3)(x + 4) 1. Funkcja Pierwiastek Kwadratowy f(x) = x Funkcje pierwiastek kwadratowy piszemy w symbolach f(x) = x, lub f(x) = x 1, dla x 0.
11 11 Ogólnie, pierwiastek n tego stopnia piszemy f(x) = n x, lub f(x) = x 1 n. Dziedzin a funkcji pierwiastek kwadratowy jest zbiór liczb rzeczywistych nieujemnych, to jest przedzia l lewostronnie domkniȩty [0, ). Również zbiorem wartości tej funkcji jest przedzi l [0, ), czyli wszystkie liczby rzeczywiste nieujemne, w l aczaj ac zero. Wykres funkcji pierwiastek kwadratowy Fig Funkcja Pierwiastek Kwadratowy Równania i nierówności z wyrażeniami zawieraj acymi pierwiastek kwadratowy rozwi azujemy ze szczególn a ostrożności a maj ac na uwadze stosowanie relacji nie równoważnych Równaia z wyrażeniem x Rozwi azywanie równań z wyrażeniem x wyjaśniamy w nastȩpuj acych przyk ladach: Przyk lad 1.6 Rozwi aż rownanie: x = x, x 0. Rozwi azanie. Naturalnie rozwi azania szukamy w dziedzinie tego równania, to jest w przedzle [0, ) Podnosz ac stronami do kwadratu to równanie, otrzymamy równanie nie równoważne x = x, < x <, które ma sens liczbowy dla wszystkich liczb rzeczywistych w l aczaj ac liczby ujemne. Zatem te dwa równania maj a różne dziedziny i dlatego nie s a równoważne. Latwo znajdujemy rozwi azanie x x = 0, x(x 1) = 0, x = 0, lub x 1 = 0, x = 1. Sprawdzmy, że oba zera funkcji x = 0 lub x = 1 należ a do dziedziny [0, ). Zatem to równanie ma dwa zera x = 0, x = 1. Przyk lad 1.7 Rozwi aż równanie: x + 1 x 1 = 1, x 1. Rozwi azanie. Naturalnie rozwi azania szukamy w dziedzinie tego równania, to jest w przedzle (1, ) Podnosz ac stronami do kwadratu to równanie, otrzymamy równanie nie równoważne (x+1) (x + 1)(x 1)+(x 1) = 1, lub x x 1 = 1 1 < x <, które ma sens liczbowy dla wszystkich liczb rzeczywistych x < 1 lub x > 1 w l aczaj ac liczby ujemne mniejsze od 1. Zatem te dwa równania maj a różne
12 1 dziedziny i dlatego nie s a równoważne. To równanie piszmy w postaci x 1 = 1 x, x 1. Jeszcze raz podnosz ac stronami, otrzymamy równanie też nie równoażne x 1 = ( 1 x), lub x 1 = 1 4 x + x, lub, x 5 4 = 0, które ma sens liczbowy dla wszystkich liczb rzeczywistych. Rozwi azaniem tego równania jest liczba x = 5 > 1, która należy do dziedzny 4 równania. Sprawdzamy, że = 1, = Funkcja Wyk ladnicza Funkcjȩ wyk ladnicz a określamy nastȩpuj acym wzorem: f(x) = a x, a > 0, a 1. Liczbȩ rzeczywist a a > 0, a 1 dodatni a i różn a od jeden nazywamy podstaw a funkcji wyk ladniczej. Dziedzin a funkcji wyk ladniczej jest ca ly zbiór liczb rzczywistych D = {x R : < x < }. Zbiorem wartości funkcji wyk ladniczej jest zbiór R + liczb dodatnich. Wykres funkcji wyk ladniczej f(x) = x, < x < Fig Funkcja Wyk ladnicza Zauważmy z wykresu, że funkcja wyk ladnicza ma jedn a asymptotȩ, któr a jest oś x. To jest zbiór punktów (x, 0) gdy wspó lrzȩdna y = 0. Funkcja wyk ladnicza f(x) = a x jest rosn aca jeżeli jej podstawa a > 1. Natomiast funkcja wyk ladnicza f(x) = a x jest malej aca, jeżeli jej podstawa 0 < a < 1. Na rysunku funkcja f(x) = x jest rosn aca ponieważ jej wykres wzrasta gdy argument x też wzrasta. Wykres funkcji wyk ladniczej f(x) = ( 1 )x, gdy jej podstawa 0< a = 1 < 1. Fig Funkcja Wyk ladnicza Widzimy z powyższego wykresu, że, funkcja wyk ladnicza f(x) = ( 1 )x jest malej aca, gdyż jej wykres maleje podczas gdy argument rośnie.
13 W lasnoṡci funkcji wyk ladniczej 1. Wartoṡċ funkcji wyk ladniczej w zerze x = 0 rȯwna jest jeden. f(0) = 1, poniewaz f(0) = a 0 = 1, dla każdej podstawy a > 0.. Wartoṡċ funkcji wyk ladniczej dla x = 1 rȯwna jest podstawie a. f(1) = a, poniewaz f(a) = a 1 = a, 3. funkcja wyk ladnicza od sumy argumentȯw rȯwna jest iloczynowi wartoṡci Istotnie sprawdzamy, że f(x + t) = f(x) f(t) f(x + t) = a x+t = a x a t = f(x) f(t) 4. funkcja wyk ladnicza od rȯżnicy argumentȯw rȯwna jest ilorazowi wartoṡci Rzeczywiṡcie sprawdzamy, że f(x t) = f(x) f(t) f(x t) = a x t = a x a t = ax a = f(x) t f(t) 5. funkcja wyk ladnicza od iloczynu argumentȯw rȯwna jest potȩdze Sprawdzamy, że f(x t) = (f(x)) t f(x t) = a x t = (a x ) t = (f(x)) t 6. funkcja wyk ladnicza od argumentu m n stopnia z wartoṡci m-tej potȩgi rȯwna jest pierwiastkowi n-tego f( m n ) = n f(m) Mianowicie f( m n ) = a m n = n a m = n f(m) Przyk lad 1.8 Oblicz wartoṡċ wyrażenia
14 14 Rozwi azanie: W tym przyk ladzie stosujemy w lasnoṡ do funkcji wyk ladniczej f(x) = a x gdy podstawa a = 3 i argumenty x = 8 i x = 5. Zatem stosuj ac w lasnoṡċ, obliczamy f(3) f( 5) = = = 3 3 = 7 Przyk lad 1.9 Oblicz wartoṡċ wyrażenia Rozwi azanie: Korzystaj ac z w lasnoṡci funkcji wyk ladniczej, obliczamy = 3 5 (3 4) 1 = = = 3 = 18 Zadanie 1.3 Oblicz wartoṡċ wyrażenia (i) (3 1 3 ), (ii) Zadanie 1.4 Rozpatrz funkcjȩ wyk ladnicz a Naszkicuj wykres funkcji wyk ladniczej f(x) = x, < x <. y = f(x 1) + 1, < x <. w uk ladzie wspȯ lrzȩdnych x, y Oblicz wartoṡċ funkcji f(x 1) + 1 dla x = Równania Wyk ladnicze Równania wyk ladnicze i nierówności wk ladnicze rozwi azujemy korzystaj a z nastȩpuj acych w lasności: funkcja wyk ladnicza f(x) = a x > 0 jest dodatnia na ca lej osi liczbowej dla < x <. zbiórem wartości funkcji wyk ladniczej s a wszystkie liczby dodatnie, R + = (0, ). funkcja wyk ladnicza f(0) = 0 dla każdej podstawy a > 0, a 1 funkcja wyk ladnicza f(x) = a x jest rosn aca na ca lej osi liczbowej < x <, jeżel podstawa a > 1. funkcja wyk ladnicza f(x) = a x jest malej aca na ca lej osi liczbowej < x <, jeżel podstawa 0 < a < 1.
15 15 Niżej podajemy przyk lady rozwi azań równań wyk ladniczych Przyk lad 1.10 Rozwi aż równanie x 3 x + = 0 Rozwi azanie. Dziedzin a tego równania jest ca ly zbiór liczb rzczywistych R. Teraz, to równanie napiszemy w postaci ( x ) 3 x + = 0 Stosuj ac podstawienie t = x, otrzymamy równanie kwadratowe t 3t + = 0, = ( 3) 4 = 1. Oblicczamy pierwiastki tego równania t 1 = 3 1 = 1, Wracaj ac do zmiennej x, obliczamy rozawi azanie: Jeżeli x = 1, to x = 0. Jeżeli x =, to x = 1. Przyk lad 1.11 Rozwi aż równanie =. 3 x 1 3x 1 = 9 Rozwi azanie. Dziedzin a tego równania jest zbiór liczb rzczywistych różnych od 1 3. to znaczy D = r {1 3 }. Teraz, to równanie napiszemy w postaci 3 x 1 3x 1 = 3 Sk ad mamy równie Obliczamy rozwi azanie x 1 3x 1 =, x 1 = (3x 1), x 1 = 6x, 4x = 1, x = 1 4 Zadanie 1.5 Rozwi aż równanie 3 x x 1 = 0. Zadanie 1.6 Rozwi aż równanie 5 3x 1 x 3 = 5.
16 Funkcja logarytmiczna Funkcja logarytmiczna jest funkcj a odwrotn a do funkcji wyk ladniczej. To znaczy, jeżeli funkcja wyk ladnicza ustala zależnoṡċ zmiennej y od zmiennej x wzorem y = a x, a > 0, a 1 to funkcja odwrotna ustala zależnoṡċ zmiennej x od zmiennej y wzorem x = log a y, y > 0. Wtedy sta l a a > 0, a 1 nazywamy podstaw a logarytmu. Na przyk lad logarytm dziesiȩtny, gdy a = 10 piszemy x = log 10 y, dla y > 0 Logarytm dziesiȩtny jest zwi azany z systemem liczbowym pozycyjnym dziesiȩtnym i ma charakter podstawowy-standardowy. Bez istotnej zmiany, możemy zamieniċ role zmiennych x i y. Mianowicie, zmienn a niezależn a oznaczamy liter a x, natomiast zmienn a zależn a oznaczamy liter a y, ktȯra zależy od x. Dlatego logarytm dziesiȩtny jest oznaczany symbolem bez pisania podstawy logarytmy 10. y = log x, x > 0, 1.5 Logarytm naturalny Logarytme naturalny jest odwrot a funkcj a do funkcj potȩgowej y = e x, lub y = Exp[x], < x <. Tutaj podstawa e =, ; jest liczb a rzeczywist a o nieskoṅczonej iloṡci cyfr W lasnoṡci funkcji logarytmicznej 1. Wartoṡċ funkcji logarytmicznej dla x = 1 rȯwna jest zero. g(1) = log a 1 = 0, poniewaz a 0 = 1, a > 0, a 1.. Wartoṡċ funkcji logarytmicznej dla x = a rȯwna jest jeden. g(a) = log a = 1, poniewaz a 1 = a, a > 0, a 1.
17 17 3. funkcja logarytmiczna od iloczynu argumentȯw rȯwna jest sumie wartoṡci log a x t = log a x + log a t, x > 0, t > 0, a > 0, a 1. W symbolach ogȯlnych t a w lasnoṡċ piszemy g(x) = log a x, g(x t) = g(x) + g(t), x > 0, t > 0. Istotnie sprawdzamy, że Sk ad znajdujemy y 1 = log a x, to x = a y 1, a > 0, a 1, y = log a t, to t = a y, a > 0, a 1. x t = a y 1 a y = a y 1+y, a > 0, a 1. log a x t = log a a y 1+y = y 1 + y = log a x + log a t 4. funkcja logarytmiczna od ilorazu argumentȯw rȯwna jest rȯżnicy wartoṡci log a x t = log a x log a t, x > 0, t > 0, a > 0, a 1. W symbolach ogȯlnych t a w lasnoṡċ piszemy g(x) = log a x, g( x ) = g(x) g(t), x > 0, t > 0. t Istotnie sprawdzamy, że y 1 = log a x, to x = a y 1, a > 0, a 1, y = log a t, to t = a y, a > 0, a 1. Sk ad znajdujemy x t x log a t = ay 1 a y = a y 1 y, a > 0, a 1. = log a a y 1 y = y 1 y = log a x log a t 5. funkcja logarytmiczna od argumentu x k, k = 0, 1,,, 3,..., ; rȯwna jest iloczynowi wyk ladnika potȩgi k razy logarytm podstawy potȩgi x log a x k = k log a x, x > 0, k = 0, 1,, 3,...; W lasnoṡċ ta bezporednio wynika z w lasnoṡci o logarytmie z iloczynu. Mianowicie log a x k = log a x x x }{{} k = log a x + log a x + + log a x = k log }{{} a x k
18 18 6. funkcja logarytmiczna od argumentu x m n rȯwna jest logarytmowi log x m n = m log n x Mianowicie sprawdzamy korzystaj ac z w lasnoṡci funkcji logarytmiczej i wyk ladniczej log a x m n = n loga x + log n a x + + log n a x = m log n }{{} a x. m 7. Przy za lożeniach a > 0, a 1, c > 0, c 1, b > 0, możemy zmieniċ podastawȩ a logarytmu log a b na podstawȩ c wed lug wzoru log a b = log c b log c a Dla sprawdzenia tego wzoru wprowadźmy oznaczenia Z definicji logarytmu mamy Sk ad wynika rȯwnoṡċ p = log a b, q = log c b, r = log c a b = a p, b = c q, a = c r b = (c r ) p, b = c p r, log c b = p r log c c, log c c = 1, log c b = p r, log c b = log a b log c a, log a b = log cb log c a, 8. W przypadku c = b zamiana podstawy z liczb a logarytminowan a b prowadzi do odwrotnoṡci logarytmu log a b = 1 log b a Rzeczywiṡcie z w lasnoṡci 7, dla c = b mamy Przyk lad 1.1 Oblicz logarytm Prosto z definicji logarytmu obliczamy log a b = log b b log b a = 1 log b a, bo log b b = 1 (i) log 64, (ii) log 5 15 (i) log 64 = log 6 = 6, bo 6 = 64, (ii) log 5 15 = log = 5 bo 5 5 = 15.
19 19 Przyk lad 1.13 Oblicz wartoṡċ wyrażeṅ logarytmicznych (i) (ii) log 3 65 log 3 5, log 8 5 log 5, (iii) log (log 5) log (log 5), Korzystaj ac z w lasnoṡci logarytmȯw, obliczamy log (i) 3 65 log 3 5 = log log 3 5 = 4log 3 5 log 3 5 = 4 log (ii) 8 5 log 5 = log 5 log 8log 5 = 1 log = log (iii) log (log 5) log (log 5) = log 5 log 5 = 1 log 5 1 = log log 5 = 1 Przyk lad 1.14 Oblicz wartoṡċ wyrażeṅ logarytmicznych (i) log (log 4 16), (ii) log 3 (log 5 15). Korzystaj ac z w lasnoṡci logarytmȯw, obliczamy (i) log (log 4 16) = log log 4 4 = log = 1, (ii) log 3 (log 5 15) = log 3 log = log 3 3log 5 5 = log 3 3 = 1, Zadanie 1.7 Oblicz logarytm (i) log 3 81, (ii) log Zadanie 1.8 Oblicz wartoṡċ wyrażeṅ logarytmicznych (i) (ii) log log 7 5, log 9 8 log 3, (iii) log 3 (log 3 7) log3 (log 3 7), Zadanie 1.9 Oblicz wartoṡċ wyrażeṅ logarytmicznych (i) log 5 (log 5 315), (ii) log 4 (log ).
20 0 1.6 Rȯwnania logarytmiczne Rȯwnanie w ktȯrym niewiadoma wystȩpuje pod znakiem logarytmu nazywa siȩ rȯwnaniem logarytmicznym. Rozwi azuj ac rȯwnanie logarytmiczne w pierwszej kolejnoṡci należy okre.sliċ dziedzinȩ rȯwnania. To jest ten zbiȯr argumentu x dla ktȯrego rȯwnanie logarytmiczne ma sense liczbowy. W dziedzinie rȯwnania logarytmicznego szukamy jego pierwiastaka. Okreṡlenie dziedziny rȯwnania jest istotne, ponieważ rozwi azuj ac rȯwnianie orginalne przekszta lcamy to rȯwnania w rȯwnania o prosztrzej strukturze, ktȯre mog a mieċ pierwiastki z poza dziedziny rȯwnania orginalnego, nazywane pierwiastkami obcymi. Metody rozwi azywania rȯwnaṅ logarytmicznych oparte s a na w lasnoṡciach funkcji logarytmicznej i wyk ladniczej. Niżej na przyk ladach wyjaṡniamy sposoby rozwi azywania rȯwnaṅ logarytmicznych. Przyk lad 1.15 Rozwi aż rȯwnanie log x = 4 Rozwi azanie: Najpierw okreṡlamy dziedzinȩ rȯwnania logarytmicznego. Mianowicie, logarytm jest okreṡlony tylko dla dodatnich wartoṡci argumentu x. Zatem dziedzin a tego rȯwnania jest zbiȯr x > 0. piszemy 0 < x < lub x (0, ). Z definicji logarytmu jako funkcji odwrotnej do funkcji wyk ladniczej wynika rȯwnoṡċ x = 4 = 16. Sprawdzamy, że rozwi azanie x = 16 (0, ) należy do dziedziny rȯwnania oraz log 4 = 4log = 4, log = 1. Przyk lad 1.16 Rozwi aż rȯwnanie log 3 (5 x) + log 3 (5 + x) = Rozwi azanie: Najpierw okreṡlamy dziedzinȩ rȯwnania logarytmicznego. Mianowicie, logarytm jest okreṡlony tylko dla dodatnich wartoṡci argumentu 5 x > 0 i 5 + x > 0. Zatem dziedzin a tego rȯwnania jest zbiȯr x < 5 lub x > 5. Wtedy piszemy dziedziȩ tego rȯwnania jako odcinek otwarty 5 < x < 5 lub x ( 5, 5).
21 1 Z w lasnoṡci sumy logarytmȯw wynika rȯwnoṡċ log 3 (5 x) + log 3 (5 + x) = log 3 (5 x)(5 + x) =. Z definicji logarytmu mamy rȯwnoṡċ (5 x)(5 + x) = 3, lub 5 x = 9 lub x = 16. Obliczamy pierwiastki kwadratowe x = x, 16 = 4. Sk ad mamy dwa rozwi azania gdy x = 4 to x 1 = 4 lub x = 4. Sprawdzamy, że rozwi azanie x 1 = 4 ( 5, 5) i x = 4 ( 5, 5) należy do dziedziny rȯwnania log 3 (5 + 4) + log 3 (5 4) = log = log 3 3 = oraz log 3 (5 4) + log 3 (5 + 4) = log = log 3 3 =. Zauważamy, że oba rozwi azania x 1 = 4 ( 5, 5) i x = 4 ( 5, 5) należ a do dziedziny tego rȯwnania. Zaznaczmy dziedzinȩ i rozwi azanie na osi liczbowej 5 x 1 = 4 0 x = 4 5 Oṡ liczbowa. Dziedzina rȯwnania przedzia l otwarty ( 5, 5) x Przyk lad 1.17 Rozwi aż rȯwnanie log 3 (x ) + log 3 (x 4) = 1 Rozwi azanie: Najpierw okreṡlamy dziedzinȩ rȯwnania logarytmicznego. Mianowicie, logarytm jest okreṡlony tylko dla dodatnich wartoṡci argumentu x > 0 i x 4 > 0. Zatem dziedzin a tego rȯwnania jest zbiȯr x > lub x > 4. Wtedy piszemy dziedziȩ tego rȯwnania jako odcinek nieskoṅczony lewo stronnie otwarty x > 4 lub x (4, ).
22 Z w lasnoṡci sumy logarytmȯw wynika rȯwnoṡċ log 3 (x ) + log 3 (x 4) = log 3 (x )(x 4) = 1. Z definicji logarytmu mamy rȯwnoṡċ (x )(x 4) = 3 1, lub x 6x + 8 = 3 lub x 6x + 5 = 0. Obliczamy pierwiastki rȯwnania: Wyrȯżnik rȯwnania x 6x + 5 = 0 o wspȯ lczynnikach a = 1, = 6, c = 5 = b 4 a c = = 36 0 = 16. Sk ad obliczamy pierwiastki rȯwnania x 1 = 1 (6 16) = 6 4 = 1, x = 1 (6 + 16) = = 5. Sprawdzamy, że obcy pierwiastek x 1 = 1 / (4, ) nie należy do dziedziny rȯwnania, natomiast pierwiastek x = 5 (4, ) należy do dziedziny rȯwnania. Zatem sprawdzamy, że drugi pierwiastek x = 5 spe lnia rȯwnanie log 3 (5 ) + log 3 (5 4) = log = log 3 3 = 1 Zauważamy, że tylko pierwiastek x = 5 (4, ) należy do dziedziny tego rȯwnania. Zaznaczmy dziedzinȩ i rozwi azanie na osi liczbowej x = 5 Oṡ liczbowa. Dziedzina rȯwnania przedzia l otwarty (4, ) x Przyk lad 1.18 Rozwi aż rȯwnanie log (log 4 x) = 1. Rozwi azanie: Dziedzin a tego rȯwnania jest zbȯr tych x dla ktȯrych Z definicji logarytmu wynika rȯwnoṡċ log 4 x > 1, x > 4, x (4, ) log 4 x = 1, x = 4, x = 16 Rozwi azanie x = 16 (4, ) należy do dziedziny. Sprawdzamy, że x = 16 spe lnia rȯwnanie log (log 4 16) = log (log 4 4 ) = log (log 4 4) = log = 1
23 Zdania Zadanie 1.10 Rozwi aż rȯwnanie log 4 x = 3 Zadanie 1.11 Rozwi aż rȯwnanie log 4 (1 x) log 4 (1 + x) = 0. Zadanie 1.1 Rozwi aż rȯwnanie log (x 1) + log (x ) = 1 Zadanie 1.13 Rozwi aż rȯwnanie log 4 (log 8 x) = 1.
Asymptota pozioma: oṡ x, gdy y = 0 Asymptota pionowa: oṡ y, gdy x = 0. Hyperbola 1 x
1 SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 Asymptota pozioma: oṡ x, gdy y = 0 Asymptota pionowa: oṡ y, gdy x = 0 2 1 0 3 1 2 x Hyperbola 1 x FUNKCJE ELEMENTARNE WYMIERNE POTȨGOWE LOGARYTMICZNE
Pierwiastki arytmetyczne n a
Chapter 1 Pierwiastki arytmetyczne n a Operacja wyci aganie pierwiastka stopnia n z liczby a jest odwrotn a operacj a do potȩgowania, jeżeli operacja odwrotna jest wykonalna w liczbach rzeczywistych. Zacznijmy
Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty
Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty November 20, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Znajdź równanie asymptot funkcji f jeśli: a) f(x)
MATEMATYKA DZIELENIE LICZB Z RESZTA CECHY PODZIELNOṠCI
1 SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 Opercja modulo a b( mod c) MATEMATYKA DZIELENIE LICZB Z RESZTA CECHY PODZIELNOṠCI Prof. dr. Tadeusz STYŠ WARSZAWA 2018 1 1 Projekt pi aty
MATEMATYKA W SZKOLE HELIANTUS LICZBY NATURALNE I CA LKOWITE
1 SZKO LA PODSTAWOWA HELIANTUS 0-89 WARSZAWA ul. BAŻANCIA 16 3 1 0 1 3 Oś liczbowa. Liczby ca lkowite x MATEMATYKA W SZKOLE HELIANTUS LICZBY NATURALNE I CA LKOWITE Prof. dr. Tadeusz STYŠ WARSZAWA 018 1
Liczby naturalne i ca lkowite
Chapter 1 Liczby naturalne i ca lkowite Koncepcja liczb naturalnych i proste operacje arytmetyczne by ly znane już od oko lo 50000 tysiȩcy lat temu. To wiemy na podstawie archeologicznych i historycznych
Liczba 2, to jest jedyna najmniejsza liczba parzysta i pierwsza. Oś liczbowa. Liczba 1, to nie jest liczba pierwsza
1 SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 3 Liczba 2, to jest jedyna najmniejsza liczba parzysta i pierwsza 2 1 0 1 2 3 x Oś liczbowa. Liczba 1, to nie jest liczba pierwsza MATEMATYKA
Trigonometria. Funkcje trygonometryczne
1 Trigonometria. Funkcje trygonometryczne Trigonometria to wiedza o zwi azkach miarowych pomiedzy bokami i k atami trójk atów. Takie znaczenie s lowa Trigonometria by lo używane w czasach starożytnych
MATEMATYKA REPREZENTACJA LICZB W KOMPUTERZE
1 SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 B l ad bezwzglȩdny zaokr aglenia liczby ɛ = fl() B l ad wzglȩdny zaokr aglenia liczby 0 δ = fl() B l ad procentowy zaokr aglenia liczby 0
Wyk lad 3 Wielomiany i u lamki proste
Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich
MATEMATYKA W SZKOLE HELIANTUS WARSZAWA UL. BAŻANCIA 16 SYSTEMY LICZBOWE POZYCYJNE DECYMALNY, BINARNY, OKTALNY. Warszawa pażdziernik 2017
i MATEMATYKA W SZKOLE HELIANTUS 02-892 WARSZAWA UL. BAŻANCIA 16 SYSTEMY LICZBOWE POZYCYJNE DECYMALNY, BINARNY, OKTALNY Warszawa pażdziernik 2017 ii Contents 0.1 Wstȩp............................... 1 0.2
na p laszczyźnie kartezjaṅskiej prowadzimy prost a o rȯwnaniu s 1. (1.1) s 0 + t 1 t 0
Chapter 1 Interpolacja 1.1 Interpolacja liniowa Zacznijmy opis pojȩcia inter-polacji od prostego przyk ladu. Przyk lad 1.1 Oblicz ile kilometrȯw przejecha l samochȯd po 3 godzinach jazdy, jeżeli po jednej
Kurs wyrównawczy dla kandydatów i studentów UTP
Kurs wyrównawczy dla kandydatów i studentów UTP Część III Funkcja wymierna, potęgowa, logarytmiczna i wykładnicza Magdalena Alama-Bućko Ewa Fabińska Alfred Witkowski Grażyna Zachwieja Uniwersytet Technologiczno
0.1 Sposȯb rozk ladu liczb na czynniki pierwsze
1 Temat 5: Liczby pierwsze Zacznijmy od definicji liczb pierwszych Definition 0.1 Liczbȩ naturaln a p > 1 nazywamy liczb a pierwsz a, jeżeli ma dok ladnie dwa dzielniki, to jest liczbȩ 1 i sam a siebie
System liczbowy binarny.
1 System liczbowy binarny. 0.1 Wstȩp Ogȯlna forma systemów pozycyjnych liczbowych ma postać wielomianu α n 1 ρ n 1 + α n 2 ρ n 2 + + α 2 ρ 2 + α 1 ρ + α 0, (1) gdzie liczbȩ naturaln a ρ 2 nazywamy podstaw
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA
FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA POTĘGA, DZIAŁANIA NA POTĘGACH Potęga o wykładniku naturalnym. Jest to po prostu pomnożenie przez siebie danej liczby tyle razy ile wynosi wykładnik. Zapisujemy
SZKO LA PODSTAWOWA HELIANTUS WARSZAWA ul. BAŻANCIA 16. x2 = x, dlatego 4 = 2, nigdy 2. Oś liczbowa. Liczby rzeczywiste
SZKO LA PODSTAWOWA HELIANTUS 0-89 WARSZAWA ul. BAŻANCIA 6 x = x, dlatego 4 =, nigdy π 0 Oś liczbowa. Liczby rzeczywiste π x MATEMATYKA W SZKOLE HELIANTUS LICZBY WYMIERNE I RZECZYWISTE Prof. dr. Tadeusz
Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala
Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala November 12, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Oblicz pochodne nastȩpuj
III. Funkcje rzeczywiste
. Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja
Funkcje elementarne. Matematyka 1
Funkcje elementarne Matematyka 1 Katarzyna Trąbka-Więcław Funkcjami elementarnymi nazywamy: funkcje wymierne (w tym: wielomiany), wykładnicze, trygonometryczne, odwrotne do wymienionych (w tym: funkcje
Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas
Pierwsze kolokwium z Matematyki I 4. listopada 03 r. J. de Lucas Uwagi organizacyjne: Każde zadanie rozwi azujemy na osobnej kartce, opatrzonej imieniem i nazwiskiem w lasnym oraz osoby prowadz acej ćwiczenia,
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
Funkcje Andrzej Musielak 1. Funkcje
Funkcje Andrzej Musielak 1 Funkcje Funkcja liniowa Funkcja liniowa jest postaci f(x) = a x + b, gdzie a, b R Wartość a to tangens nachylenia wykresu do osi Ox, natomiast b to wartość funkcji w punkcie
Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010
R. Rȩbowski 1 WPROWADZENIE Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 1 Wprowadzenie Powszechnie uważa siȩ, że metoda simplex, jako uniwersalny algorytm pozwalaj acyznaleźć rozwi azanie optymalne
FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c
FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie
Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych
Tematyka do egzaminu ustnego z matematyki 3 semestr LO dla dorosłych I. Sumy algebraiczne 1. Dodawanie i odejmowanie sum algebraicznych 2. Mnożenie sum algebraicznych 3. Wzory skróconego mnożenia - zastosowanie
Funkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
0.1 Reprezentacja liczb w komputerze
1 0.1 Reprezentacja liczb w komputerze Zapis liczb w zmiennym przecinku. U lamki dziesiȩtne w laṡciwe i niew laṡciwe piszemy oddzielaj ac czȩṡċ ca lkowit a od czȩṡci u lamkowej w laṡciwej przecinkiem w
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie
Wstęp do analizy matematycznej
Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w
Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II
Rozwiązania zadań z kolokwium w dniu 10.1.010r. Zarządzanie Inżynierskie, WDAM, grupy I i II Zadanie 1. Wyznacz dziedzinę naturalną funkcji f (x) = x 4x + 3 x + x + log arc sin 1 x. Rozwiązanie. Wymagane
Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO
Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Dział programowy. Zakres realizacji 1. Liczby, działania i procenty Liczby wymierne i liczby niewymierne-działania, kolejność
Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy
Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka
Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 6 Teoria funkcje cz. 2
1 FUNKCJE Wykres i własności funkcji kwadratowej Funkcja kwadratowa może występować w 3 postaciach: postać ogólna: f(x) ax 2 + bx + c, postać kanoniczna: f(x) a(x - p) 2 + q postać iloczynowa: f(x) a(x
2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24
SPIS TREŚCI WYRAŻENIA ALGEBRAICZNE RÓWNANIA I NIERÓWNOŚCI ALGEBRAICZNE 7 Wyrażenia algebraiczne 0 Równania i nierówności algebraiczne LICZBY RZECZYWISTE 4 Własności liczb całkowitych 8 Liczby rzeczywiste
Informacje pomocnicze
Funkcje wymierne. Równania i nierówno±ci wymierne Denicja. (uªamki proste) Wyra»enia postaci Informacje pomocnicze A gdzie A d e R n N (dx e) n nazywamy uªamkami prostymi pierwszego rodzaju. Wyra»enia
FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI
FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI DEFINICJA (funkcji elementarnych) Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe wykładnicze logarytmiczne trygonometryczne Funkcje, które można
KONSPEKT FUNKCJE cz. 1.
KONSPEKT FUNKCJE cz. 1. DEFINICJA FUNKCJI Funkcją nazywamy przyporządkowanie, w którym każdemu elementowi zbioru X odpowiada dokładnie jeden element zbioru Y Zbiór X nazywamy dziedziną, a jego elementy
. Funkcja ta maleje dla ( ) Zadanie 1 str. 180 b) i c) Zadanie 2 str. 180 a) i b)
Lekcja 1 -. Lekcja organizacyjna kontrakt diagnoza i jej omówienie Podręcznik: W. Babiański, L. Chańko, D. Ponczek Matematyka. Zakres podstawowy. Wyd. Nowa Era. Zakres materiału: Funkcje kwadratowe Wielomiany
Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Licencjackie, WDAM, grupy I i II
Rozwiązania zadań z kolokwium w dniu 15.1.010r. Zarządzanie Licencjackie, WDAM, grupy I i II Zadanie 1. Wyznacz dziedzinę naturalną funkcji f x) = arc cos x x + x 5 ) ) log x + 5. Rozwiązanie. Wymagane
WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE
WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE Definicja 1 Algebra abstrakcyjna nazywamy teorie, której przedmiotem sa dzia lania na
1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)
1) Wykresem funkcji kwadratowej f jest parabola o wierzchołku w początku układu współrzędnych i przechodząca przez punkt. Wobec tego funkcja f określona wzorem 2) Punkt należy do paraboli o równaniu. Wobec
2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.
ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)
Indukcja matematyczna
Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.
1. Wielomiany Podstawowe definicje i twierdzenia
1. Wielomiany Podstawowe definicje i twierdzenia Definicja wielomianu. Wielomianem stopnia n zmiennej rzeczywistej x nazywamy funkcję w określoną wzorem w(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, przy
Otrzymaliśmy w ten sposób ograniczenie na wartości parametru m.
Dla jakich wartości parametru m dziedziną funkcji f ( x) = x + mx + m 1 jest zbiór liczb rzeczywistych? We wzorze funkcji f(x) pojawia się funkcja kwadratowa, jednak znajduje się ona pod pierwiastkiem.
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie
Granice funkcji. XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21
Granice funkcji XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21 Granica funkcji Definicje Granica właściwa funkcji w punkcie wg Heinego Liczbę g nazywamy granicą właściwą funkcji f w punkcie
Sterowalność liniowych uk ladów sterowania
Sterowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t), u(t), t), t [t,
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu
1 Funkcje elementarne
1 Funkcje elementarne Funkcje elementarne, które będziemy rozważać to: x a, a x, log a (x), sin(x), cos(x), tan(x), cot(x), arcsin(x), arccos(x), arctan(x), arc ctg(x). 1.1 Funkcje x a. a > 0, oraz a N
FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str
FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci
Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina.
Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina. Podstawowy problem sterowania optymalnego dla uk ladów nieliniowych W podstawowym problemie sterowania optymalnego minimalizacji
Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych
Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Pawe l Józiak 007-- Poje cia wste pne Wielomianem zmiennej rzeczywistej t nazywamy funkcje postaci:
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi
ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ
ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z
1 Wyrażenia potęgowe i logarytmiczne.
Wyrażenia potęgowe i logarytmiczne. I. Wyrażenia potęgowe (wykładnik całkowity). Dla a R, n N mamy a = a, a n = a n a. Zatem a n = } a a {{... a}. n razy Przyjmujemy ponadto, że a =, a. Dla a R \{}, n
WIELOMIANY SUPER TRUDNE
IMIE I NAZWISKO WIELOMIANY SUPER TRUDNE 27 LUTEGO 2011 CZAS PRACY: 210 MIN. SUMA PUNKTÓW: 200 ZADANIE 1 (5 PKT) Dany jest wielomian W(x) = x 3 + 4x + p, gdzie p > 0 jest liczba pierwsza. Znajdź p wiedzac,
Wyk lad 14 Formy kwadratowe I
Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można
FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(
Zad Przedstaw funkcję kwadratową w postaci ogólnej Przykład y = ( x ) + 5 (postać kanoniczna) FUNKCJA KWADRATOWA Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( a 0) Aby ją uzyskać pozbywamy się
FUNKCJE LICZBOWE. x 1
FUNKCJE LICZBOWE Zbiory postaci {x R: x a}, {x R: x a}, {x R: x < a}, {x R: x > a} oznaczane sa symbolami (,a], [a, ), (,a) i (a, ). Nazywamy pó lprostymi domknie tymi lub otwartymi o końcu a. Symbol odczytujemy
6. FUNKCJE. f: X Y, y = f(x).
6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco
Funkcja f jest ograniczona, jeśli jest ona ograniczona z
FUNKCJE JEDNEJ ZMIENNEJ. PODSTAWOWE POJĘCIA. PODSTAWOWE FUNKCJE ELEMENTARNE R - zbiór liczb rzeczywistych, D R, P R Definicja. Jeżeli każdemu elementowi ze zbioru D jest przyporządkowany dokładnie jeden
RACHUNEK RÓŻNICZKOWY- sprawdziany i kartkówki. klasa II 2018/19. Adam Stachura
RACHUNEK RÓŻNICZKOWY- sprawdziany i kartkówki klasa II 08/9 Adam Stachura Sprawdzian. Granice funkcji- przykładowe zadania ) 8 ZADANIE. Obliczyć granicę. 4 +6 4 Rozwiazanie. Dziedzina funkcji, której granice
Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław
Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.
10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych
Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony
Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY
Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.
Treści programowe Matematyka 1 Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
Matematyka i Statystyka w Finansach. Rachunek Różniczkowy
Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)
LOGIKA ALGORYTMICZNA
LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R
Logarytmy. Historia. Definicja
Logarytmy Historia Logarytmy po raz pierwszy pojawiły się w książce szkockiego matematyka - Johna Nepera "Opis zadziwiających tablic logarytmów" z 1614 roku. Szwajcarski astronom i matematyk Jost Burgi
Cia la i wielomiany Javier de Lucas
Cia la i wielomiany Javier de Lucas Ćwiczenie 1. Za lóż, że (F, +,, 1, 0) jest cia lem i α, β F. w laściwości s a prawd a? Które z nastȩpuj acych 1. 0 α = 0. 2. ( 1) α = α. 3. Każdy element zbioru F ma
V. WYMAGANIA EGZAMINACYJNE
V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny
( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x
Arkusz I Zadanie. Wartość bezwzględna Rozwiąż równanie x + 3 x 4 x 7. Naszkicujmy wykresy funkcji f ( x) x + 3 oraz g ( x) x 4 uwzględniając tylko ich miejsca zerowe i monotoniczność w ten sposób znajdziemy
Lista 3 Funkcje. Środkowa częśd podanej funkcji, to funkcja stała. Jej wykresem będzie poziomy odcinek na wysokości 4.
Lista 3 Funkcje. Zad 1. Narysuj wykres funkcji. Przykład 1:. Zacznijmy od sporządzenia tabelki dla każdej części podanej funkcji, uwzględniając podany zakres argumentów (dziedzinę): Weźmy na początek funkcję,
Arytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm
Arytmetyka Działania na liczbach, potęga, pierwiastek, logarytm Zbiory liczbowe Zbiór liczb naturalnych N = {1,2,3,4, }. Zbiór liczb całkowitych Z = {, 3, 2, 1,0,1,2,3, }. Zbiory liczbowe Zbiór liczb wymiernych
x a 1, podając założenia, przy jakich jest ono wykonywalne. x a 1 = x a 2 ( a 1) = x 1 = 1 x.
Zestaw. Funkcja potęgowa, wykładnicza i logarytmiczna. Elementarne równania i nierówności. Przykład 1. Wykonać działanie x a x a 1, podając założenia, przy jakich jest ono wykonywalne. Rozwiązanie. Niech
Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:
Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11
Podstawy nauk przyrodniczych Matematyka Wstęp
Podstawy nauk przyrodniczych Matematyka Wstęp Katarzyna Kluzek i Adrian Silesian Zakład Genetyki Molekularnej Człowieka tel. 61 829 58 33 adrian.silesian@amu.edu.pl katarzyna.kluzek@amu.edu.pl Pokój 1.117
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości
KLASA II LO Poziom rozszerzony (wrzesień styczeń)
KLASA II LO Poziom rozszerzony (wrzesień styczeń) Treści nauczania wymagania szczegółowe: ZAKRES PODSTAWOWY: 1) na podstawie wykresu funkcji y = f(x) szkicuje wykresy funkcji y = f(x), y = c f(x), y =
EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015
EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem
Liczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
Standardy wymagań maturalnych z matematyki - matura
Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania
Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień.
Zadanie Należy zacząć od sprawdzenia, co studenci pamiętają ze szkoły średniej na temat funkcji jednej zmiennej. Na początek można narysować kilka krzywych na tle układu współrzędnych (funkcja gładka,
WIELOMIANY. Poziom podstawowy
WIELOMIANY Poziom podstawowy Zadanie (5 pkt) Liczba 7 jest miejscem zerowym W(x) Wyznacz resztę z dzielenia tego wielomianu przez wielomian P ( x) = x + 54, jeśli wiadomo, że w wyniku dzielenia wielomianu
ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne
CZĘŚĆ II ZAKRES PODSTAWOWY Wyrażenia wymierne Temat: Wielomiany-przypomnienie i poszerzenie wiadomości. (2 godz.) znać i rozumieć pojęcie jednomianu (2) znać i rozumieć pojęcie wielomianu stopnia n (2)
Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki
Standardy wymagań na egzaminie maturalnym z matematyki mają dwie części. Pierwsza część opisuje pięć podstawowych obszarów umiejętności matematycznych. Druga część podaje listę szczegółowych umiejętności.
Matematyka licea ogólnokształcące, technika
Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem
BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA
BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA 1. Podaj zbiór wartości i monotoniczność funkcji: b) c) j) k) l) wskazówka: - oblicz wierzchołek (bez miejsc zerowych!) i naszkicuj wykres (zwróć uwagę na
=, wariacje bez powtorzen. (n k)! = n k, wariacje z powtorzeniami.
1 SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 Silnia, Kombinacje i Wariacje n! = 1 2 3 (n 1) n, silnia Cn k n! = k!(n k)!, kombinacje Vn k n! =, wariacje bez powtorzen. (n k)! = n k, wariacje
1. Równania i nierówności liniowe
Równania i nierówności liniowe Wykonać działanie: Rozwiązać równanie: ( +x + ) x a) 5x 5x+ 5 = 50 x 0 b) 6(x + x + ) = (x + ) (x ) c) x 0x (0 x) 56 = 6x 5 5 ( x) Rozwiązać równanie: a) x + x = 4 b) x x
III. STRUKTURA I FORMA EGZAMINU
III. STRUKTURA I FORMA EGZAMINU Egzamin maturalny z matematyki jest egzaminem pisemnym sprawdzającym wiadomości i umiejętności określone w Standardach wymagań egzaminacyjnych i polega na rozwiązaniu zadań
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach