Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym

Wielkość: px
Rozpocząć pokaz od strony:

Download "Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym"

Transkrypt

1 Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania optymalnego z ograniczeniami chwilowymi sterowania i z uwik lanym sterowaniem w równaniach stanu Rozważmy zadanie optymalnego sterowania docelowego z uwik lanym sterowaniem w równaniach stanu i z ograniczeniami chwilowymi sterowania: zminimalizować wskaźnik jakości G(x, u) = uwzglȩdniaj ac równanie stanu warunki graniczne oraz ograniczenia chwilowe sterowania g(x(t), u(t), t)dt ẋ(t) = f(x(t), u(t), t), t [, t 1 ], x( ) = x 0, x(t 1 ) = x 1 u(t) U, t [, t 1 ]. Za lóżmy chwilowe ograniczenia w postaci u(t) u max, t [, t 1 ]. Wprowadzamy funkcjȩ kary za przekroczenie ograniczeń chwilowych K j (u j (t)) = 0 jeśli u j (t) u max j i K j (u j (t)) = ρ j ( u j (t) u max j ) 2 jeśli u j (t) > u max j, gdzie ρ j > 0 jest wspó lczynnikiem kary. Wraz ze wzrostem wspó lczynnika kary ρ j > + funkcja kary staje siȩ coraz bardziej stroma i tym samym coraz dok ladniejsza. Stosuj ac metodȩ funkcyjnych mnożników Lagrange a λ(t) dla równań stanu i funkcjȩ kary K(u(t)) =. m j=1 K j(u j (t)) dla ograniczeń chwilowych sterowania w l aczamy te ograniczenia do wskaźnika jakości G(x, λ, u). = ( g(x(t), u(t), t) + λ T (t)(ẋ(t) f(x(t), u(t), t)) + K(u(t)) ) dt 1

2 minimalizowanego przy jedynych pozosta lych ograniczeniach jakimi s a warunki graniczne x( ) = x 0, x(t 1 ) = x 1. Tak wiȩc rozszerzamy zakres zmiennych do postaci wektora zmiennych funkcyjnych (x, λ, u) traktuj ac je jako równoprawne zmienne optymalizacyjne z przestrzeni C 1. Warunki konieczne optymalności określimy definiuj ac funkcjȩ g jak nastȩpuje g(x(t), ẋ(t), λ(t), λ(t), u(t), u(t), t) = g(x(t), u(t), t) + λ T (t)(ẋ(t) f(x(t), u(t), t)) + K(u(t)) i zapisujemy warunki konieczne optymalności w postaci nastȩpuj acego uk ladu równań Eulera-Lagrange a g o x(t) d dt gȯ x(t) = 0, t [, t 1 ], ( ) g o λ(t) d dt gȯ λ (t) = 0, t [, t 1 ], ( ) g u(t) o d dt gȯ u(t) = 0, t [, t 1 ], ( ). Jest to uk lad 2n + m równań różniczkowych dla 2n + m zmiennych funkcyjnych. Mnożnik funkcyjny λ(t) nazywany jest także zmienn a sprzȩżon a lub zmienn a kostanu (wektorem kostanu). Równanie (*) nazywane jest równaniem sprzȩżonym lub równaniem kostanu optymalnego, równanie (**) jest równaniem stanu optymalnego, zaś (***) jest równaniem sterowania optymalnego. Uk lad tych równań pozwala dla niektórych klas problemów sterowania optymalnego efektywnie sparametryzować sterowanie optymalne, co u latwia jego dookreślenie za pomoc a prostego dodatkowego algorytmu obliczeniowego. Minimalnoczasowe sterowanie docelowe dla uk ladów liniowych Zadanie polega na minimalizacji czasu realizacji procesu docelowego G(x, u) = dt = t 1 z uwzglȩdnieniem liniowego stacjonarnego równania stanu uk ladu ẋ(t) = Ax(t) + Bu(t), t [, t 1 ], 2

3 warunków dwugranicznych x( ) = x 0, x(t 1 ) = x 1 oraz ograniczeń chwilowych sterowania u(t) u max, t [, t 1 ]. Rozszerzamy zestaw zmiennych i zapisujemy zmodyfikowany wskaźnik jakości G(x, λ, u) = ( 1 + λ T (t)(ẋ(t) Ax(t) Bu(t)) + K(u(t)) ) dt. Mamy wiȩc g x = λ T (t)a, gẋ = λ T (t), g λ = (ẋ(t) Ax(t) Bu(t)) T, g λ = 0, g u λ T (t)b + K u (u(t)), g u = 0. Uk lad równań Eulera-Lagrange a przyjmie postać równanie kostanu optymalnego λ T (t)a λ T (t) = 0, równanie stanu optymalnego ẋ(t) Ax(t) Bu(t) = 0, równanie sterowania optymalnego λ T (t) + K u (u(t)) = 0. Przyk lad: minimalnoczasowe sprowadzanie oscylatora idealnego do po lożenia równowagi, jeśli jest on opisywany równaniami stanu ẋ 1 (t) = x 2 (t), ẋ 2 = x 1 (t) + u(t), t [0, t 1 ], z warunkami granicznymi x i (0) = x i0, x i (t 1 ) = 0, i = 1, 2 i z ograniczeniami chwilowymi sterowania u(t) 1. 3

4 Schemat rozważanego uk ladu przedstawiony jest na rysunku ściana podstawowa amortyzator Obiekt sterowania M si la stabilizuj aca W tym przypadku ( ) ( ) 0 1 A =, A T 0 1 = Oznacza to, że zmienne kostanu spe lniaj a równania λ 1 (t) = λ 2 (t), λ2 (t) = λ 1 (t), λ 1 (t) = λ 1 (t), r 2 = 1, r 1,2 = ±j, λ 1 (t) = c 1 sin(t + c 2 ), λ 2 (t) = c 1 cos(t + c 2 ), K u (u(t)) = λ 2 (t). Kszta lt trajektorii stanu oscylatora ze sterowaniem u = ±1: ẋ 1 (t) = x 2 (t), ẋ 2 (t) = x 1 (t) ± 1 ẍ 1 (t) = x 1 (t) ± 1 x 1 (t) = c 1 cos t+c 2 sin t±1, x 2 (t) = c 1 sin t+c 2 cos t, x 10 = c 1 ±1; x 20 = c 2 x 1 (t) = (x 10 1)cos t + x 20 sin t ± 1; x 2 (t) = (x 10 1)sin t + x 20 cos t. Na tej podstawie ustalamy zwi azek miȩdzy zmiennymi x 1 (t) i x 2 (t) podnosz ac do kwadratu ostatnie zależności (x 1 (t) 1) 2 = (x 10 1) 2 cos 2 t + x 2 20sin 2 t + 2(x 10 1)cos t x 20 sin t, 4

5 x 2 2(t) = (x 10 1) 2 sin 2 t + x 2 20cos 2 t 2(x 10 1)cos t x 20 sin t czyli (x 1 1) 2 + x 2 2 = (x 10 1) 2 + x Tak wiȩc trajektorie stanu oscylatora s a okrȩgami o środku (1, 0) dla sterowania u = +1 i okrȩgami o środku ( 1, 0) dla sterowania u = 1. Promień okrȩgu jest równy ρ = ( ) 1/2. (x 10 1) 2 + x 20 Trajektorie stanu oscylatora idealnego dla sterowania u(t) = +1 x 2 1 x 1 5

6 Trajektorie stanu oscylatora idealnego dla sterowania u(t) = 1 x 2-1 x 1 Wnioski z równania sterowania optymalnego: Sterowanie minimalnoczasowe przyjmuje wartości +1 lub 1 (jest typu bang-bang). Czas sta lości sterowania minimalnoczasowego na poziomie +1 lub 1 nie może być d luższy niż π jednostek czasu (okres drgań badanego oscylatora wynosi 2π, a czas przebiegu po lowy okrȩgu wynosi π). Tylko pierwszy i ostatni przedzia l sta lości sterowania może być mniejszy od π, a wszystkie pośrednie przedzia ly (jeśli wszystkich przedzia lów sta lości sterowania jest wiȩcej niż dwa) musz a być równe π. 6

7 Innym przyk ladem uk ladu, dla którego minimalnoczasowe sterowanie jest typu bang-bang jest uk lad z lożony z dwóch powi azanych oscylatorów opisywany równaniami stanu ẋ x ( ) ẋ 2 = x u ẋ 3 ẋ x 3 x Jednak każde ze sterowań u 1 (t) i u 2 (t) może mieć w tym przypadku inne przedzia ly sta lości sterowania określone przez parametry poduk ladów. u 2 Minimalnoenergetyczne sterowanie docelowe dla uk ladów liniowych Zadanie polega na minimalizacji strat energetycznych na realizacjȩ procesu docelowego w ustalonym przedziale czasowym [, t 1 ] G(x, u) = u 2 (t)dt z uwzglȩdnieniem liniowego stacjonarnego równania stanu uk ladu ẋ(t) = Ax(t) + Bu(t), t [, t 1 ], warunków dwugranicznych x( ) = x 0, x(t 1 ) = x 1 oraz ograniczeń chwilowych sterowania u(t) u max, t [, t 1 ]. Rozszerzamy zestaw zmiennych i zapisujemy zmodyfikowany wskaźnik jakości G(x, λ, u) = ( u 2 + λ T (t)(ẋ(t) Ax(t) Bu(t)) + K(u(t)) ) dt. W tym przypadku funkcja g przybiera postać g(x(t), ẋ(t), λ(t), λ(t), u(t), u(t), t) = u 2 (t)+λ T (t)(ẋ(t) Ax(t) Bu(t))+K(u(t)). 7

8 Obliczamy pochodne funkcji g g x = λ T (t)a, gẋ = λ T (t), g λ = (ẋ(t) Ax(t) Bu(t)) T, g λ = 0, g u = 2u(t) λ T (t)b + K u (u(t)), g u = 0. Zapisujemy uk lad równań Eulera-Lagrange a równanie optymalnego kostanu λ T (t)a λ T (t) = 0, równanie optymalnego stanu ẋ(t) Ax(t) Bu(t) = 0, równanie optymalnego sterowania 2u(t) λ T (t)b + K u (u(t)) = 0. Z równania optymalnego sterowania wynika, że przebieg optymalnego sterowania może być scharakteryzowany na podstawie przebiegu zmiennych sprzȩżonych 2u(t) + K u (u(t)) = λ T (t)b. Sterowanie minimalnoenergetyczne, w odróżnieniu od sterowania minimalnoczasowego, może przyjmować wartości znajduj ace siȩ wewn atrz zakresu dopuszczalnego u o (t) < u max na skończonym podprzedziale czasowym przedzia lu sterowania [, t 1 ]. Postać tego sterowania udaje siȩ sparametryzować za pomoc a momentów charakterystycznych τ k, k = 1,..., K, w których nastȩpuje zmiana charakteru sterowania. Dla niektórych zastosowań parametryzacja ta 8

9 pozwala ca lkowicie określić przebieg sterowania minimalnoenergetycznego. Przyk lad: Minimalnoenergetyczne sterowanie tarcz a obrotow a tarcza obrotowa θ(t), Ω(t) U(t) silnik rewersyjny przek ladnia zmienna steruj aca - napiȩcie obwodu steruj acego silnika u(t) = U(t), zmienne stanu - po lożenie k atowe tarczy x 1 (t) = θ(t), prȩdkość k atowa tarczy x 2 (t) = Ω(t). Zadanie minimalnoenergetycznego sterowania docelowego tarcz a obrotow a bez tarcia polega na minimalizacji wskaźnika jakości G(x, u) = z uwzglȩdnieniem równań stanu 1 0 u 2 (t)dt ẋ 1 (t) = x 2 (t), ẋ 2 (t) = bu(t), t [0, 1], warunków dwugranicznych x i (0) = x i0, x i (1)) = x i1, oraz ograniczeń amplitudy sterowania u(t) 1, t [0, 1]. Zapisujemy równania sprzȩżone λ 1 (t) = 0, λ2 (t) = λ 1 (t) i ich rozwi azania λ 1 (t) = c 1, λ 2 (t) = c 1 t + c 2. Z równania sterowania optymalnego dla rozważanego przypadku 2u(t) + K u (u(t)) = C 1 t + C 2, t [0, 1] 9

10 wynika, że sterowanie minimalnoenergetyczne jest funkcj a przedzia lami liniow a z trzema przedzia lami liniowości i np. dla warunków granicznych x 10 < 0, x 20 = 0, x 11 = 0, x 20 = 0 sterowanie to można sparametryzować za pomoc a dwóch momentów charakterystycznych τ 1, τ 2 jak nastȩpuje +1, t [0, τ 1 ) u o (t) = C 1 t + C 2, t [τ 1, τ 2 ) (1) 1, t [τ 2, 1] W zwi azku z tym również problem minimalnoenergetycznego sterowania tarcz a obrotow a udaje siȩ sprowadzić do zadania optymalizacji funkcji dwóch zmiennych Ǧ(τ 1, τ 2 ) =. 1 0 u 2 (t, τ 1, τ 2 )dt z ograniczeniami równościowymi wynikaj acymi z zadanych warunków końcowych stanu x 1 (1, τ 1, τ 2 ) = 0, x 2 (1, τ 1, τ 2 ) = 0, gdzie x 1 (1, τ 1, τ 2 ) i x 2 (1, τ 1, τ 2 ) s a rozwi azaniami równań stanu tarczy obrotowej bez tarcia w chwili końcowej t 1 = 1. Zadanie minimalnoenergetycznego sterowania docelowego tarcz a obrotow a z tarciem polega na minimalizacji wskaźnika jakości G(x, u) = z uwzglȩdnieniem równań stanu 1 0 u 2 (t)dt ẋ 1 (t) = x 2 (t), ẋ 2 (t) = ax 2 (t) + bu(t), t [0, 1], warunków dwugranicznych x i (0) = x i0, x i (1)) = x i1, oraz ograniczeń amplitudy sterowania u(t) 1, t [0, 1], gdzie a jest wspó lczynnikiem tarcia tarczy. 10

11 Zapisujemy równania sprzȩżone λ 1 (t) = 0, λ2 (t) = aλ 2 (t) λ 1 (t) i ich rozwi azania λ 1 (t) = c, λ 2 (t) = c 1 e at + c 2. Z równania sterowania optymalnego dla rozważanego przypadku 2u(t) + K u (u(t)) = C 1 e at + C 2, t [0, 1] wynika, że sterowanie minimalnoenergetyczne jest funkcj a sta l a lub eksponencjaln a z trzema przedzia lami charakterystycznymi i np. dla warunków granicznych x 10 < 0, x 20 = 0, x 11 = 0, x 20 = 0 sterowanie to można sparametryzować za pomoc a dwóch momentów charakterystycznych τ 1, τ 2 jak nastȩpuje +1, t [0, τ 1 ) u o (t) = C 1 e at + C 2, t [τ 1, τ 2 ) (2) 1, t [τ 2, 1] W zwi azku z tym również problem minimalnoenergetycznego sterowania tarcz a obrotow a z tarciem udaje siȩ sprowadzić do zadania optymalizacji funkcji dwóch zmiennych Ǧ(τ 1, τ 2 ). = 1 0 u 2 (t, τ 1, τ 2 )dt z ograniczeniami równościowymi wynikaj acymi z zadanych warunków końcowych stanu x 1 (1, τ 1, τ 2 ) = 0, x 2 (1, τ 1, τ 2 ) = 0, gdzie x 1 (1, τ 1, τ 2 ) i x 2 (1, τ 1, τ 2 ) s a rozwi azaniami równań stanu tarczy obrotowej z tarciem w chwili końcowej t 1 = 1. 11

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania optymalnego

Bardziej szczegółowo

Sterowanie minimalnoczasowe dla uk ladów liniowych. Krzywe prze l aczeń.

Sterowanie minimalnoczasowe dla uk ladów liniowych. Krzywe prze l aczeń. Sterowanie minimalnoczasowe dla uk ladów liniowych. Krzywe prze l aczeń. Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania

Bardziej szczegółowo

Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina.

Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina. Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina. Podstawowy problem sterowania optymalnego dla uk ladów nieliniowych W podstawowym problemie sterowania optymalnego minimalizacji

Bardziej szczegółowo

Wprowadzenie do metod sterowania optymalnego

Wprowadzenie do metod sterowania optymalnego Wprowadzenie do metod sterowania optymalnego Pojȩcie procesu sterowania obejmuje zestaw trajektorii stanu i sterowania (x, u) X U, gdzie X jest przestrzeni a trajektorii stanu, a U jest przestrzeni a sterowania.

Bardziej szczegółowo

Sterowalność liniowych uk ladów sterowania

Sterowalność liniowych uk ladów sterowania Sterowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t), u(t), t), t [t,

Bardziej szczegółowo

Wprowadzenie do teorii sterowania

Wprowadzenie do teorii sterowania Wprowadzenie do teorii sterowania Literatura podstawowa T. Kaczorek i inni, Podstawy teorii sterowania, WNT, Warszawa 2005. T. Kaczorek, Teoria sterowania i systemów, PWN, Warszawa 1996. T. Kaczorek, Teoria

Bardziej szczegółowo

Liniowe uk lady sterowania.

Liniowe uk lady sterowania. Liniowe uk lady sterowania Rozwi azywanie liniowych rownań stanu Uk lady z czasem ci ag lym Liniowe stacjonarne równania stanu Przyk lad: Uk lad sterowania tarcz a obrotow a prȩt sprȩżysty tarcza obrotowa

Bardziej szczegółowo

Sterowanie optymalne

Sterowanie optymalne Sterowanie optymalne Sterowanie Procesami Ciągłymi 2017 Optymalizacja statyczna funkcji Funkcja celu/kryterialna/kosztów Ograniczenie Q(x) min x x = arg min Q(x) x x X, gdzie X zbiór rozwiązań dopuszczalnych

Bardziej szczegółowo

Ekonomia matematyczna i dynamiczna optymalizacja

Ekonomia matematyczna i dynamiczna optymalizacja Ekonomia matematyczna i dynamiczna optymalizacja Ramy wyk ladu i podstawowe narz edzia matematyczne SGH Semestr letni 2012-13 Uk lady dynamiczne Rozwiazanie modelu dynamicznego bardzo czesto można zapisać

Bardziej szczegółowo

Synteza optymalnego regulatora stanu. Uk lady z czasem ci ag lym.

Synteza optymalnego regulatora stanu. Uk lady z czasem ci ag lym. Synteza optymalnego regulatora stanu. Uk lady z czasem ci ag lym. Po wyznaczeniu optymalnego nominalnego) procesu sterowania x o, u o nasuwa siȩ kwestia podtrzymywania tego procesu w warunkach ma lych

Bardziej szczegółowo

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach

Bardziej szczegółowo

Metody kierunków poprawy dla nieliniowych problemów sterowania optymalnego

Metody kierunków poprawy dla nieliniowych problemów sterowania optymalnego Metody kierunków poprawy dla nieliniowych problemów sterowania optymalnego Problem optymalnego sterowania procesem dynamicznym może polegać na polega na minimalizacji wskaźnika jakości obejmuj acego koszty

Bardziej szczegółowo

Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk

Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk Opis systemów dynamicznych Mieczysław Brdyś 27.09.2010, Gdańsk Rozważmy układ RC przedstawiony na rysunku poniżej: wejscie u(t) R C wyjście y(t)=vc(t) Niech u(t) = 2 + sin(t) dla t t 0 gdzie t 0 to chwila

Bardziej szczegółowo

Liczby zespolone, liniowa zależność i bazy Javier de Lucas. a d b c. ad bc

Liczby zespolone, liniowa zależność i bazy Javier de Lucas. a d b c. ad bc Liczby zespolone, liniowa zależność i bazy Javier de Lucas Ćwiczenie. Dowieść, że jeśli µ := c d d c, to homografia h(x) = (ax+b)/(cx+d), a, b, c, d C, ad bc, odwzorowuje oś rzeczywist a R C na okr ag

Bardziej szczegółowo

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy POCHODNA KIERUNKOWA Pochodne cz astkowe funkcji f(m) = f(x, y, z) wzglȩdem x, wzglȩdem y i wzglȩdem z wyrażaj a prȩdkość zmiany funkcji w kierunku osi wspó lrzȩdnych; np. f x jest prȩdkości a zmiany funkcji

Bardziej szczegółowo

Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas

Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas Pierwsze kolokwium z Matematyki I 4. listopada 03 r. J. de Lucas Uwagi organizacyjne: Każde zadanie rozwi azujemy na osobnej kartce, opatrzonej imieniem i nazwiskiem w lasnym oraz osoby prowadz acej ćwiczenia,

Bardziej szczegółowo

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) = Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,

Bardziej szczegółowo

Stabilność liniowych uk ladów sterowania

Stabilność liniowych uk ladów sterowania Stabilność liniowych uk ladów sterowania Stabilność uk ladów z czasem ci ag lym W teorii stabilności uk ladów sterowania badamy wrażliwość trajektorii stanu na zaburzenia stanu pocz atkowego. Interesuje

Bardziej szczegółowo

liniowych uk ladów sterowania

liniowych uk ladów sterowania Sterowalność i obserwowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t),

Bardziej szczegółowo

Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty

Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty November 20, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Znajdź równanie asymptot funkcji f jeśli: a) f(x)

Bardziej szczegółowo

CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA. Ćwiczenia. http://zcht.mfc.us.edu.pl/ mm

CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA. Ćwiczenia. http://zcht.mfc.us.edu.pl/ mm CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA Ćwiczenia Zwi azki organiczne zawieraj ace uk lady π-elektronowe Sprzȩżony uk lad wi azań podwójnych: -C=C-C=C-C=C-C=C- Skumulowany uk lad wi azań podwójnych:

Bardziej szczegółowo

Wprowadzenie do teorii sterowania. Procesy sterowania o parametrach skupionych.

Wprowadzenie do teorii sterowania. Procesy sterowania o parametrach skupionych. Dr hab. inż. Krystyn Styczeń, prof. PWr Wprowadzenie do teorii sterowania. Procesy sterowania o parametrach skupionych. http://staff.iiar.pwr.wroc.pl/krystyn.styczen/ http://krystyn.styczen.staff.iiar.pwr.wroc.pl/

Bardziej szczegółowo

na p laszczyźnie kartezjaṅskiej prowadzimy prost a o rȯwnaniu s 1. (1.1) s 0 + t 1 t 0

na p laszczyźnie kartezjaṅskiej prowadzimy prost a o rȯwnaniu s 1. (1.1) s 0 + t 1 t 0 Chapter 1 Interpolacja 1.1 Interpolacja liniowa Zacznijmy opis pojȩcia inter-polacji od prostego przyk ladu. Przyk lad 1.1 Oblicz ile kilometrȯw przejecha l samochȯd po 3 godzinach jazdy, jeżeli po jednej

Bardziej szczegółowo

Suma i przeciȩcie podprzestrzeń, suma prosta, przestrzeń ilorazowa Javier de Lucas

Suma i przeciȩcie podprzestrzeń, suma prosta, przestrzeń ilorazowa Javier de Lucas Suma i przeciȩcie podprzestrzeń suma prosta przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1 W zależności od wartości parametru p podaj wymiar przestrzeni W = v 1 v v 3 gdzie p 0 v 1 = 1 + p 3 v = 5 3

Bardziej szczegółowo

Zasada optymalności Bellmana. Uogólniony optymalny regulator stanu.

Zasada optymalności Bellmana. Uogólniony optymalny regulator stanu. Zasada optymalności Bellmana. Uogólniony optymalny regulator stanu. Podstawowy problem sterowania optymalnego dla uk ladów nieliniowych z czasem ci ag lym W podstawowym problemie sterowania optymalnego

Bardziej szczegółowo

Po wprowadzeniu zmiennych uzupe lniaj acych otrzymamy równoważny mu problem w postaci kanonicznej:

Po wprowadzeniu zmiennych uzupe lniaj acych otrzymamy równoważny mu problem w postaci kanonicznej: ROZDZIA L Metoda sympleksowa Motto: Matematyka nie może wype lnić życia ale jej nieznajomość już niejednemu je wype lni la H Steinhaus Tablica sympleksowa Rozważmy ZPL w postaci klasycznej maksymalizować

Bardziej szczegółowo

SZKO LA PODSTAWOWA HELIANTUS WARSZAWA ul. BAŻANCIA 16. Szeṡcian w uk ladzie wspȯ lrzȩdnych x, y, z GEOMETRIA PRZESTRZENNA STEREOMETRIA

SZKO LA PODSTAWOWA HELIANTUS WARSZAWA ul. BAŻANCIA 16. Szeṡcian w uk ladzie wspȯ lrzȩdnych x, y, z GEOMETRIA PRZESTRZENNA STEREOMETRIA SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 z y 0 x Szeṡcian w uk ladzie wspȯ lrzȩdnych x, y, z GEOMETRIA PRZESTRZENNA STEREOMETRIA Prof. dr. Tadeusz STYŠ Warszawa 2018 1 1 Projekt trzynasty

Bardziej szczegółowo

Regulator liniowo kwadratowy na przykładzie wahadła odwróconego

Regulator liniowo kwadratowy na przykładzie wahadła odwróconego Regulator liniowo kwadratowy na przykładzie wahadła odwróconego kwiecień 2012 Sterowanie Teoria Przykład wahadła na wózku Dany jest system dynamiczny postaci: ẋ = f (x, u) (1) y = h(x) (2) Naszym zadaniem

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1 STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany.

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1

STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 1 STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 Klasyczny Rachunek Prawdopodobieństwa. 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany. Posiadamy

Bardziej szczegółowo

Wprowadzenie do teorii sterowania. Procesy o parametrach skupionych

Wprowadzenie do teorii sterowania. Procesy o parametrach skupionych Politechnika Wroc lawska Wydzia l Elektroniki Katedra K8 Prof. dr hab. inż. Krystyn Styczeń http://staff.iiar.pwr.wroc.pl/krystyn.styczen/ Wprowadzenie do teorii sterowania. Procesy o parametrach skupionych

Bardziej szczegółowo

Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala

Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala November 12, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Oblicz pochodne nastȩpuj

Bardziej szczegółowo

Równania różniczkowe o zmiennych rozdzielonych

Równania różniczkowe o zmiennych rozdzielonych I Newton sformu lowa l podstawowe zasady dynamiki Druga zasada dynamiki ma postać wzoru F = m a F oznacza tu si le dzia laja ca na cia lo o masie m, a oznacza przyspieszenie tego cia la Przyspieszenie

Bardziej szczegółowo

CHEMIA KWANTOWA MONIKA MUSIA L. Ćwiczenia. mm

CHEMIA KWANTOWA MONIKA MUSIA L. Ćwiczenia.   mm CHEMIA KWANTOWA MONIKA MUSIA L Ćwiczenia METODY PRZYBLIŻONE ROZWIA ZYWANIA RÓWNANIA SCHRÖDINGERA METODA WARIACYJNA metoda wariacyjna ĤΨ n = E n Ψ n Ψ n ortonormalne Szukamy rozwi azań dla stanu podstawowego,

Bardziej szczegółowo

Inżynieria Systemów Dynamicznych (4)

Inżynieria Systemów Dynamicznych (4) Inżynieria Systemów Dynamicznych (4) liniowych (układów) Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili? 1 2 WE OKREŚLO 3 ASYMPTO 4 DYNAMICZ

Bardziej szczegółowo

ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej:

ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej: A Kasperski, M Kulej Badania Operacyjne- programowanie liniowe 1 ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej: max z = c 1 x 1 + c 2 x 2 + +

Bardziej szczegółowo

Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych

Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych [ ] e Zadanie 1 Pokazać, że X(t) = 2t cos t sin t e 2t jest specjalną macierzą fundamentalną w sin t cos t [ 2 cos chwili τ = 0 układu

Bardziej szczegółowo

Wprowadzenie z dynamicznej optymalizacji

Wprowadzenie z dynamicznej optymalizacji Wprowadzenie z dynamicznej optymalizacji Lukasz Woźny 29 kwietnia 2007 Spis treści 1 Optymalizacja statyczna a optymalizacja dynamiczna 2 1.1 Ekstrema lokalne funkcji wielu zmiennych - statyka...... 2

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych 8 Pochodna kierunkowa funkcji Definicja Niech funkcja f określona bȩdzie w otoczeniu punktu P 0 = (x 0, y 0 ) oraz niech v = [v x, v y ] bȩdzie wektorem. Pochodn a kierunkow a funkcji

Bardziej szczegółowo

Modelowanie układów dynamicznych

Modelowanie układów dynamicznych Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 11 Równania Eulera-Lagrange a Rozważmy układ p punktów materialnych o współrzędnych uogólnionych q i i zdefiniujmy lagranżian

Bardziej szczegółowo

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 R. Rȩbowski 1 WPROWADZENIE Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 1 Wprowadzenie Powszechnie uważa siȩ, że metoda simplex, jako uniwersalny algorytm pozwalaj acyznaleźć rozwi azanie optymalne

Bardziej szczegółowo

1 Przestrzenie unitarne i przestrzenie Hilberta.

1 Przestrzenie unitarne i przestrzenie Hilberta. Przestrzenie unitarne i przestrzenie Hilberta.. Wykazać, że iloczyn skalarny w przestrzeni wektorowej X nad cia lem K ma nastepuj ace w lasności: (i) x, y + z = x, y + x, z, (ii) x, λy = λ x, y, (iii)

Bardziej szczegółowo

WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3

WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń

Bardziej szczegółowo

Wyk lad 14 Formy kwadratowe I

Wyk lad 14 Formy kwadratowe I Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można

Bardziej szczegółowo

Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE

Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE Niech K = R lub K = C oraz X - dowolny zbiór. Określmy dwa dzia lania: dodawanie + : X X X i mnożenie przez liczbȩ : K X X, spe lniaj ace nastȩpuj ace

Bardziej szczegółowo

LOGIKA ALGORYTMICZNA

LOGIKA ALGORYTMICZNA LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R

Bardziej szczegółowo

ANALIZA II 15 marca 2014 Semestr letni. Ćwiczenie 1. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la?

ANALIZA II 15 marca 2014 Semestr letni. Ćwiczenie 1. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la? Ci ag lość i norma Ćwiczenie. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la? f (x, y) = x2 y 2 x 2 + y 2, f 2(x, y) = x2 y x 2 + y 2 f 3 (x, y) = x2 y

Bardziej szczegółowo

edzi (local edge detectors) Lokalne operatory wykrywania kraw

edzi (local edge detectors) Lokalne operatory wykrywania kraw Lokalne operatory wykrywania kraw edzi (local edge detectors) Jeśli dwie reprezentacje sa zbyt odleg le, by można by lo latwo określić transformacje miedzy nimi, to u latwić zadanie można przez wprowadzenie

Bardziej szczegółowo

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2012/2013. Forma studiów: Stacjonarne Kod kierunku: 06.

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2012/2013. Forma studiów: Stacjonarne Kod kierunku: 06. Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 2012/2013 Kierunek studiów: Zarządzanie i inżynieria

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 17 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

Równania różniczkowe liniowe drugiego rze

Równania różniczkowe liniowe drugiego rze Przyk lad 14.1 Omówimy jeszcze jeden przyk lad zagadnienia prowadza cego do równania pierwszego rze. Za lóżmy, że spadochroniarz wyskoczy l z samolotu na wysokości 1500 m i że spada swobodnie aż do wysokości

Bardziej szczegółowo

Zasada maksimum Pontriagina

Zasada maksimum Pontriagina 25.04.2015 Abstrakt Wiele zagadnień praktycznych dotyczących układów dynamicznych wymaga optymalizacji pewnych wielkości. Jednakże zwykła teoria gładkich układów dynamicznych zajmuje się jednak tylko opisem

Bardziej szczegółowo

Metody rzutowania i funkcji barierowych dla problemów sterowania optymalnego

Metody rzutowania i funkcji barierowych dla problemów sterowania optymalnego Metody rzutowania i funkcji barierowych dla problemów sterowania optymalnego Problem optymalnego sterowania procesem dynamicznym z ograniczeniami zasobowymi może polegać na polega na minimalizacji wskaźnika

Bardziej szczegółowo

Niesimpleksowe metody rozwia zywania zadań PL. Seminarium Szkoleniowe Edyta Mrówka

Niesimpleksowe metody rozwia zywania zadań PL. Seminarium Szkoleniowe Edyta Mrówka Niesimpleksowe metody rozwia zywania zadań PL Seminarium Szkoleniowe Metoda Simplex: wady i zalety Algorytm SIMPLEX jest szeroko znany i stosowany do rozwi azywania zadań programowania liniowego w praktyce.

Bardziej szczegółowo

Asymptota pozioma: oṡ x, gdy y = 0 Asymptota pionowa: oṡ y, gdy x = 0. Hyperbola 1 x

Asymptota pozioma: oṡ x, gdy y = 0 Asymptota pionowa: oṡ y, gdy x = 0. Hyperbola 1 x 1 SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 Asymptota pozioma: oṡ x, gdy y = 0 Asymptota pionowa: oṡ y, gdy x = 0 2 1 0 3 1 2 x Hyperbola 1 x FUNKCJE ELEMENTARNE WYMIERNE POTȨGOWE LOGARYTMICZNE

Bardziej szczegółowo

SZKO LA PODSTAWOWA HELIANTUS WARSZAWA ul. BAŻANCIA 16. Hyperbola 1 x FUNKCJE ELEMENTARNE WYMIERNE POTȨGOWE LOGARYTMICZNE.

SZKO LA PODSTAWOWA HELIANTUS WARSZAWA ul. BAŻANCIA 16. Hyperbola 1 x FUNKCJE ELEMENTARNE WYMIERNE POTȨGOWE LOGARYTMICZNE. 1 SZKO LA PODSTAWOWA HELIANTUS 0-89 WARSZAWA ul. BAŻANCIA 16 1 0 3 1 x Hyperbola 1 x FUNKCJE ELEMENTARNE WYMIERNE POTȨGOWE LOGARYTMICZNE Prof. dr. Tadeusz STYŠ Warszawa 018 1 1 Projekt dziesi aty Contents

Bardziej szczegółowo

Wprowadzenie do równań ró znicowych i ró zniczkowych.

Wprowadzenie do równań ró znicowych i ró zniczkowych. Wprowadzenie do równań ró znicowych i ró zniczkowych. Adam Kiersztyn Lublin 2013 Adam Kiersztyn () Wprowadzenie do równań ró znicowych i ró zniczkowych. maj 2013 1 / 11 Przyjmijmy nast ¾epuj ¾ace oznaczenia:

Bardziej szczegółowo

Równania różniczkowe cz astkowe rzȩdu pierwszego

Równania różniczkowe cz astkowe rzȩdu pierwszego Równania różniczkowe cz astkowe rzȩd pierwszego 1 Równania liniowe jednorodne Rozważmy równanie a 1 ( 1,..., n ) 1 +... + a n ( 1,..., n ) n = 0, (1) gdzie a i, i = 1,..., n s a dane, a fnkcja = ( 1,...,

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Marta Zelmańska

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Marta Zelmańska RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Marta Zelmańska Toruń 009 1 Rozdział 1 Wstęp Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie: F (t, x, x, x,..., x (n) ) = 0 (1.1) Rozwiązaniem równania

Bardziej szczegółowo

1. Podstawowe pojęcia

1. Podstawowe pojęcia 1. Podstawowe pojęcia Sterowanie optymalne obiektu polega na znajdowaniu najkorzystniejszej decyzji dotyczącej zamierzonego wpływu na obiekt przy zadanych ograniczeniach. Niech dany jest obiekt opisany

Bardziej szczegółowo

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y

Bardziej szczegółowo

Matematyka A, klasówka, 24 maja zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le. rozwia

Matematyka A, klasówka, 24 maja zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le. rozwia Matematyka A, klasówka, 4 maja 5 Na prośbe jednej ze studentek podaje zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le dów Podać definicje wektora w lasnego i wartości w lasnej

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 19 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)

Bardziej szczegółowo

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi

Bardziej szczegółowo

g liczb rzeczywistych (a n ) spe lnia warunek

g liczb rzeczywistych (a n ) spe lnia warunek . Czy jest prawda, że a) R y R z R y + yz + = 0 ; b) R y R z R y + yz + 0 ; c) R y R z R y + yz + = 0 ; d) R y R z R y + yz + 0? 2. Czy jest prawdziwa nierówność a) ctg > ; b) tg < cos ; c) cos < sin ;

Bardziej szczegółowo

Seria zadań z Algebry IIR nr kwietnia 2017 r. i V 2 = B 2, B 4 R, gdzie

Seria zadań z Algebry IIR nr kwietnia 2017 r. i V 2 = B 2, B 4 R, gdzie Seria zadań z Algebry IIR nr 29 kwietnia 207 r Notacja: We wszystkich poniższych zadaniach K jest ciałem, V wektorow a nad K zaś jest przestrzeni a Zadanie Niechaj V = K 4 [t] Określmy podprzestrzenie

Bardziej szczegółowo

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji

Bardziej szczegółowo

Wykład z modelowania matematycznego.

Wykład z modelowania matematycznego. Załóżmy, że równanie różniczkowe x (t) = f (t, x) (1) ma rozwiązanie ogólne x(t) = ϕ(t, c). (2) Załóżmy, że równanie różniczkowe x (t) = f (t, x) (1) ma rozwiązanie ogólne x(t) = ϕ(t, c). (2) Rodzina funkcji

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji

Bardziej szczegółowo

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

Aproksymacja kraw. Od wielu lokalnych cech (edge elements) do spójnej, jednowymiarowej. epnej aproksymacji

Aproksymacja kraw. Od wielu lokalnych cech (edge elements) do spójnej, jednowymiarowej. epnej aproksymacji Aproksymacja kraw edzi Od wielu lokalnych cech (edge elements) do spójnej, jednowymiarowej cechy (edge). Różne podejścia: szukanie w pobliżu wst epnej aproksymacji transformacja Hough a. Wiedza o obiektach:

Bardziej szczegółowo

Sekantooptyki owali i ich własności

Sekantooptyki owali i ich własności Sekantooptyki owali i ich własności Magdalena Skrzypiec Wydział Matematyki, Fizyki i Informatyki Uniwersytet Marii Curie-Skłodowskiej 19 października 2009r. Informacje wstępne Definicja Owalem nazywamy

Bardziej szczegółowo

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015. Forma studiów: Stacjonarne Kod kierunku: 06.

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015. Forma studiów: Stacjonarne Kod kierunku: 06. Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 201/201 Kierunek studiów: Mechatronika Profil: Ogólnoakademicki

Bardziej szczegółowo

Metody Numeryczne Wykład 4 Wykład 5. Interpolacja wielomianowa

Metody Numeryczne Wykład 4 Wykład 5. Interpolacja wielomianowa Sformułowanie zadania interpolacji Metody Numeryczne Wykład 4 Wykład 5 Interpolacja wielomianowa Niech D R i niech F bȩdzie pewnym zbiorem funkcji f : D R. Niech x 0, x 1,..., x n bȩdzie ustalonym zbiorem

Bardziej szczegółowo

Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu

Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 5 1. Iloczyn ortogonalny funkcji Wróćmy na chwilȩ do dowodu wzorów Eulera-Fouriera. Kluczow a rolȩ odgrywa l wzór:

Bardziej szczegółowo

MATEMATYKA REPREZENTACJA LICZB W KOMPUTERZE

MATEMATYKA REPREZENTACJA LICZB W KOMPUTERZE 1 SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 B l ad bezwzglȩdny zaokr aglenia liczby ɛ = fl() B l ad wzglȩdny zaokr aglenia liczby 0 δ = fl() B l ad procentowy zaokr aglenia liczby 0

Bardziej szczegółowo

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1 SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

y(t) = y 0 + R sin t, t R. z(t) = h 2π t

y(t) = y 0 + R sin t, t R. z(t) = h 2π t SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem

Bardziej szczegółowo

Laboratorium Mechaniki Technicznej

Laboratorium Mechaniki Technicznej Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Wyk lad 11 1 Wektory i wartości w lasne

Wyk lad 11 1 Wektory i wartości w lasne Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V

Bardziej szczegółowo

Matematyka A kolokwium: godz. 18:05 20:00, 24 maja 2017 r. rozwiązania. ) zachodzi równość: x (t) ( 1 + x(t) 2)

Matematyka A kolokwium: godz. 18:05 20:00, 24 maja 2017 r. rozwiązania. ) zachodzi równość: x (t) ( 1 + x(t) 2) Matematyka A kolokwium: godz. 18:05 0:00, 4 maja 017 r. rozwiązania 1. 7 p. Znaleźć wszystkie takie funkcje t xt, że dla każdego t π, π zachodzi równość: x t 1 + xt 1+4t 0. p. Wśród znalezionych w poprzedniej

Bardziej szczegółowo

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie 1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z

Bardziej szczegółowo

KOLOKWIUM Z ALGEBRY I R

KOLOKWIUM Z ALGEBRY I R Instrucje: Każde zadanie jest za 4 puntów. Rozwi azanie ażdego zadania musi znajdować siȩ na osobnej artce oraz być napisane starannie i czytelnie. W nag lówu ażdego rozwi azania musz a znajdować siȩ dane

Bardziej szczegółowo

Stabilność II Metody Lapunowa badania stabilności

Stabilność II Metody Lapunowa badania stabilności Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Zbiory na p laszczyźnie Przestrzeni a dwuwymiarow a (p laszczyzn a) nazywamy zbiór wszystkich par uporz adkowanych (x, y), gdzie x, y R. Przestrzeń tȩ oznaczamy symbolem R 2 : R

Bardziej szczegółowo

Równania różniczkowe. Notatki z wykładu.

Równania różniczkowe. Notatki z wykładu. Równania różniczkowe Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej

Bardziej szczegółowo

gęstością prawdopodobieństwa

gęstością prawdopodobieństwa Funkcja falowa Zgodnie z hipotezą de Broglie'a, cząstki takie jak elektron czy proton, mają własności falowe. Własności falowe cząstki (lub innego obiektu) w mechanice kwantowej opisuje tzw. funkcja falowa(,t)

Bardziej szczegółowo

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA DYNAMICZNYCH LOKAT KAPITAŁOWYCH Krzysztof Gąsior Uniwersytet Rzeszowski Streszczenie Celem referatu jest zaprezentowanie praktycznego zastosowania

Bardziej szczegółowo

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-28.06.07 współrzędne uogólnione punkt materialny... wektor wodzący: prędkość: przyspieszenie: liczba

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych 13 Zbiory w przestrzeni Definicja Przestrzeni a trójwymiarow a (przestrzeni a) nazywamy zbiór wszystkich trójek uporz adkowanych (x y z) gdzie x y z R. Przestrzeń tȩ oznaczamy symbolem

Bardziej szczegółowo

Matematyka A, egzamin, 17 czerwca 2005 rozwia zania

Matematyka A, egzamin, 17 czerwca 2005 rozwia zania Matematyka A, egzamin, 7 czerwca 00 rozwia zania Mam nadzieje, że nie ma tu b le dów poza jakimiś literówkami, od których uwolnić sie trudno. Zache cam do obejrzenia rozwia zań zadań z egzaminu dla matematyki

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE zadania z odpowiedziami

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE zadania z odpowiedziami RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści I Równania pierwszego rzędu 2 o rozdzielonych zmiennych 2 jednorodne 3 liniowe 3 Bernoulliego

Bardziej szczegółowo

Dynamika manipulatora. Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska. Podstawy robotyki wykład VI

Dynamika manipulatora. Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska. Podstawy robotyki wykład VI Podstawy robotyki Wykład VI Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska Dynamika opisuje sposób zachowania się manipulatora poddanego wymuszeniu w postaci

Bardziej szczegółowo