Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym
|
|
- Renata Krupa
- 8 lat temu
- Przeglądów:
Transkrypt
1 Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania optymalnego z ograniczeniami chwilowymi sterowania i z uwik lanym sterowaniem w równaniach stanu Rozważmy zadanie optymalnego sterowania docelowego z uwik lanym sterowaniem w równaniach stanu i z ograniczeniami chwilowymi sterowania: zminimalizować wskaźnik jakości G(x, u) = uwzglȩdniaj ac równanie stanu warunki graniczne oraz ograniczenia chwilowe sterowania g(x(t), u(t), t)dt ẋ(t) = f(x(t), u(t), t), t [, t 1 ], x( ) = x 0, x(t 1 ) = x 1 u(t) U, t [, t 1 ]. Za lóżmy chwilowe ograniczenia w postaci u(t) u max, t [, t 1 ]. Wprowadzamy funkcjȩ kary za przekroczenie ograniczeń chwilowych K j (u j (t)) = 0 jeśli u j (t) u max j i K j (u j (t)) = ρ j ( u j (t) u max j ) 2 jeśli u j (t) > u max j, gdzie ρ j > 0 jest wspó lczynnikiem kary. Wraz ze wzrostem wspó lczynnika kary ρ j > + funkcja kary staje siȩ coraz bardziej stroma i tym samym coraz dok ladniejsza. Stosuj ac metodȩ funkcyjnych mnożników Lagrange a λ(t) dla równań stanu i funkcjȩ kary K(u(t)) =. m j=1 K j(u j (t)) dla ograniczeń chwilowych sterowania w l aczamy te ograniczenia do wskaźnika jakości G(x, λ, u). = ( g(x(t), u(t), t) + λ T (t)(ẋ(t) f(x(t), u(t), t)) + K(u(t)) ) dt 1
2 minimalizowanego przy jedynych pozosta lych ograniczeniach jakimi s a warunki graniczne x( ) = x 0, x(t 1 ) = x 1. Tak wiȩc rozszerzamy zakres zmiennych do postaci wektora zmiennych funkcyjnych (x, λ, u) traktuj ac je jako równoprawne zmienne optymalizacyjne z przestrzeni C 1. Warunki konieczne optymalności określimy definiuj ac funkcjȩ g jak nastȩpuje g(x(t), ẋ(t), λ(t), λ(t), u(t), u(t), t) = g(x(t), u(t), t) + λ T (t)(ẋ(t) f(x(t), u(t), t)) + K(u(t)) i zapisujemy warunki konieczne optymalności w postaci nastȩpuj acego uk ladu równań Eulera-Lagrange a g o x(t) d dt gȯ x(t) = 0, t [, t 1 ], ( ) g o λ(t) d dt gȯ λ (t) = 0, t [, t 1 ], ( ) g u(t) o d dt gȯ u(t) = 0, t [, t 1 ], ( ). Jest to uk lad 2n + m równań różniczkowych dla 2n + m zmiennych funkcyjnych. Mnożnik funkcyjny λ(t) nazywany jest także zmienn a sprzȩżon a lub zmienn a kostanu (wektorem kostanu). Równanie (*) nazywane jest równaniem sprzȩżonym lub równaniem kostanu optymalnego, równanie (**) jest równaniem stanu optymalnego, zaś (***) jest równaniem sterowania optymalnego. Uk lad tych równań pozwala dla niektórych klas problemów sterowania optymalnego efektywnie sparametryzować sterowanie optymalne, co u latwia jego dookreślenie za pomoc a prostego dodatkowego algorytmu obliczeniowego. Minimalnoczasowe sterowanie docelowe dla uk ladów liniowych Zadanie polega na minimalizacji czasu realizacji procesu docelowego G(x, u) = dt = t 1 z uwzglȩdnieniem liniowego stacjonarnego równania stanu uk ladu ẋ(t) = Ax(t) + Bu(t), t [, t 1 ], 2
3 warunków dwugranicznych x( ) = x 0, x(t 1 ) = x 1 oraz ograniczeń chwilowych sterowania u(t) u max, t [, t 1 ]. Rozszerzamy zestaw zmiennych i zapisujemy zmodyfikowany wskaźnik jakości G(x, λ, u) = ( 1 + λ T (t)(ẋ(t) Ax(t) Bu(t)) + K(u(t)) ) dt. Mamy wiȩc g x = λ T (t)a, gẋ = λ T (t), g λ = (ẋ(t) Ax(t) Bu(t)) T, g λ = 0, g u λ T (t)b + K u (u(t)), g u = 0. Uk lad równań Eulera-Lagrange a przyjmie postać równanie kostanu optymalnego λ T (t)a λ T (t) = 0, równanie stanu optymalnego ẋ(t) Ax(t) Bu(t) = 0, równanie sterowania optymalnego λ T (t) + K u (u(t)) = 0. Przyk lad: minimalnoczasowe sprowadzanie oscylatora idealnego do po lożenia równowagi, jeśli jest on opisywany równaniami stanu ẋ 1 (t) = x 2 (t), ẋ 2 = x 1 (t) + u(t), t [0, t 1 ], z warunkami granicznymi x i (0) = x i0, x i (t 1 ) = 0, i = 1, 2 i z ograniczeniami chwilowymi sterowania u(t) 1. 3
4 Schemat rozważanego uk ladu przedstawiony jest na rysunku ściana podstawowa amortyzator Obiekt sterowania M si la stabilizuj aca W tym przypadku ( ) ( ) 0 1 A =, A T 0 1 = Oznacza to, że zmienne kostanu spe lniaj a równania λ 1 (t) = λ 2 (t), λ2 (t) = λ 1 (t), λ 1 (t) = λ 1 (t), r 2 = 1, r 1,2 = ±j, λ 1 (t) = c 1 sin(t + c 2 ), λ 2 (t) = c 1 cos(t + c 2 ), K u (u(t)) = λ 2 (t). Kszta lt trajektorii stanu oscylatora ze sterowaniem u = ±1: ẋ 1 (t) = x 2 (t), ẋ 2 (t) = x 1 (t) ± 1 ẍ 1 (t) = x 1 (t) ± 1 x 1 (t) = c 1 cos t+c 2 sin t±1, x 2 (t) = c 1 sin t+c 2 cos t, x 10 = c 1 ±1; x 20 = c 2 x 1 (t) = (x 10 1)cos t + x 20 sin t ± 1; x 2 (t) = (x 10 1)sin t + x 20 cos t. Na tej podstawie ustalamy zwi azek miȩdzy zmiennymi x 1 (t) i x 2 (t) podnosz ac do kwadratu ostatnie zależności (x 1 (t) 1) 2 = (x 10 1) 2 cos 2 t + x 2 20sin 2 t + 2(x 10 1)cos t x 20 sin t, 4
5 x 2 2(t) = (x 10 1) 2 sin 2 t + x 2 20cos 2 t 2(x 10 1)cos t x 20 sin t czyli (x 1 1) 2 + x 2 2 = (x 10 1) 2 + x Tak wiȩc trajektorie stanu oscylatora s a okrȩgami o środku (1, 0) dla sterowania u = +1 i okrȩgami o środku ( 1, 0) dla sterowania u = 1. Promień okrȩgu jest równy ρ = ( ) 1/2. (x 10 1) 2 + x 20 Trajektorie stanu oscylatora idealnego dla sterowania u(t) = +1 x 2 1 x 1 5
6 Trajektorie stanu oscylatora idealnego dla sterowania u(t) = 1 x 2-1 x 1 Wnioski z równania sterowania optymalnego: Sterowanie minimalnoczasowe przyjmuje wartości +1 lub 1 (jest typu bang-bang). Czas sta lości sterowania minimalnoczasowego na poziomie +1 lub 1 nie może być d luższy niż π jednostek czasu (okres drgań badanego oscylatora wynosi 2π, a czas przebiegu po lowy okrȩgu wynosi π). Tylko pierwszy i ostatni przedzia l sta lości sterowania może być mniejszy od π, a wszystkie pośrednie przedzia ly (jeśli wszystkich przedzia lów sta lości sterowania jest wiȩcej niż dwa) musz a być równe π. 6
7 Innym przyk ladem uk ladu, dla którego minimalnoczasowe sterowanie jest typu bang-bang jest uk lad z lożony z dwóch powi azanych oscylatorów opisywany równaniami stanu ẋ x ( ) ẋ 2 = x u ẋ 3 ẋ x 3 x Jednak każde ze sterowań u 1 (t) i u 2 (t) może mieć w tym przypadku inne przedzia ly sta lości sterowania określone przez parametry poduk ladów. u 2 Minimalnoenergetyczne sterowanie docelowe dla uk ladów liniowych Zadanie polega na minimalizacji strat energetycznych na realizacjȩ procesu docelowego w ustalonym przedziale czasowym [, t 1 ] G(x, u) = u 2 (t)dt z uwzglȩdnieniem liniowego stacjonarnego równania stanu uk ladu ẋ(t) = Ax(t) + Bu(t), t [, t 1 ], warunków dwugranicznych x( ) = x 0, x(t 1 ) = x 1 oraz ograniczeń chwilowych sterowania u(t) u max, t [, t 1 ]. Rozszerzamy zestaw zmiennych i zapisujemy zmodyfikowany wskaźnik jakości G(x, λ, u) = ( u 2 + λ T (t)(ẋ(t) Ax(t) Bu(t)) + K(u(t)) ) dt. W tym przypadku funkcja g przybiera postać g(x(t), ẋ(t), λ(t), λ(t), u(t), u(t), t) = u 2 (t)+λ T (t)(ẋ(t) Ax(t) Bu(t))+K(u(t)). 7
8 Obliczamy pochodne funkcji g g x = λ T (t)a, gẋ = λ T (t), g λ = (ẋ(t) Ax(t) Bu(t)) T, g λ = 0, g u = 2u(t) λ T (t)b + K u (u(t)), g u = 0. Zapisujemy uk lad równań Eulera-Lagrange a równanie optymalnego kostanu λ T (t)a λ T (t) = 0, równanie optymalnego stanu ẋ(t) Ax(t) Bu(t) = 0, równanie optymalnego sterowania 2u(t) λ T (t)b + K u (u(t)) = 0. Z równania optymalnego sterowania wynika, że przebieg optymalnego sterowania może być scharakteryzowany na podstawie przebiegu zmiennych sprzȩżonych 2u(t) + K u (u(t)) = λ T (t)b. Sterowanie minimalnoenergetyczne, w odróżnieniu od sterowania minimalnoczasowego, może przyjmować wartości znajduj ace siȩ wewn atrz zakresu dopuszczalnego u o (t) < u max na skończonym podprzedziale czasowym przedzia lu sterowania [, t 1 ]. Postać tego sterowania udaje siȩ sparametryzować za pomoc a momentów charakterystycznych τ k, k = 1,..., K, w których nastȩpuje zmiana charakteru sterowania. Dla niektórych zastosowań parametryzacja ta 8
9 pozwala ca lkowicie określić przebieg sterowania minimalnoenergetycznego. Przyk lad: Minimalnoenergetyczne sterowanie tarcz a obrotow a tarcza obrotowa θ(t), Ω(t) U(t) silnik rewersyjny przek ladnia zmienna steruj aca - napiȩcie obwodu steruj acego silnika u(t) = U(t), zmienne stanu - po lożenie k atowe tarczy x 1 (t) = θ(t), prȩdkość k atowa tarczy x 2 (t) = Ω(t). Zadanie minimalnoenergetycznego sterowania docelowego tarcz a obrotow a bez tarcia polega na minimalizacji wskaźnika jakości G(x, u) = z uwzglȩdnieniem równań stanu 1 0 u 2 (t)dt ẋ 1 (t) = x 2 (t), ẋ 2 (t) = bu(t), t [0, 1], warunków dwugranicznych x i (0) = x i0, x i (1)) = x i1, oraz ograniczeń amplitudy sterowania u(t) 1, t [0, 1]. Zapisujemy równania sprzȩżone λ 1 (t) = 0, λ2 (t) = λ 1 (t) i ich rozwi azania λ 1 (t) = c 1, λ 2 (t) = c 1 t + c 2. Z równania sterowania optymalnego dla rozważanego przypadku 2u(t) + K u (u(t)) = C 1 t + C 2, t [0, 1] 9
10 wynika, że sterowanie minimalnoenergetyczne jest funkcj a przedzia lami liniow a z trzema przedzia lami liniowości i np. dla warunków granicznych x 10 < 0, x 20 = 0, x 11 = 0, x 20 = 0 sterowanie to można sparametryzować za pomoc a dwóch momentów charakterystycznych τ 1, τ 2 jak nastȩpuje +1, t [0, τ 1 ) u o (t) = C 1 t + C 2, t [τ 1, τ 2 ) (1) 1, t [τ 2, 1] W zwi azku z tym również problem minimalnoenergetycznego sterowania tarcz a obrotow a udaje siȩ sprowadzić do zadania optymalizacji funkcji dwóch zmiennych Ǧ(τ 1, τ 2 ) =. 1 0 u 2 (t, τ 1, τ 2 )dt z ograniczeniami równościowymi wynikaj acymi z zadanych warunków końcowych stanu x 1 (1, τ 1, τ 2 ) = 0, x 2 (1, τ 1, τ 2 ) = 0, gdzie x 1 (1, τ 1, τ 2 ) i x 2 (1, τ 1, τ 2 ) s a rozwi azaniami równań stanu tarczy obrotowej bez tarcia w chwili końcowej t 1 = 1. Zadanie minimalnoenergetycznego sterowania docelowego tarcz a obrotow a z tarciem polega na minimalizacji wskaźnika jakości G(x, u) = z uwzglȩdnieniem równań stanu 1 0 u 2 (t)dt ẋ 1 (t) = x 2 (t), ẋ 2 (t) = ax 2 (t) + bu(t), t [0, 1], warunków dwugranicznych x i (0) = x i0, x i (1)) = x i1, oraz ograniczeń amplitudy sterowania u(t) 1, t [0, 1], gdzie a jest wspó lczynnikiem tarcia tarczy. 10
11 Zapisujemy równania sprzȩżone λ 1 (t) = 0, λ2 (t) = aλ 2 (t) λ 1 (t) i ich rozwi azania λ 1 (t) = c, λ 2 (t) = c 1 e at + c 2. Z równania sterowania optymalnego dla rozważanego przypadku 2u(t) + K u (u(t)) = C 1 e at + C 2, t [0, 1] wynika, że sterowanie minimalnoenergetyczne jest funkcj a sta l a lub eksponencjaln a z trzema przedzia lami charakterystycznymi i np. dla warunków granicznych x 10 < 0, x 20 = 0, x 11 = 0, x 20 = 0 sterowanie to można sparametryzować za pomoc a dwóch momentów charakterystycznych τ 1, τ 2 jak nastȩpuje +1, t [0, τ 1 ) u o (t) = C 1 e at + C 2, t [τ 1, τ 2 ) (2) 1, t [τ 2, 1] W zwi azku z tym również problem minimalnoenergetycznego sterowania tarcz a obrotow a z tarciem udaje siȩ sprowadzić do zadania optymalizacji funkcji dwóch zmiennych Ǧ(τ 1, τ 2 ). = 1 0 u 2 (t, τ 1, τ 2 )dt z ograniczeniami równościowymi wynikaj acymi z zadanych warunków końcowych stanu x 1 (1, τ 1, τ 2 ) = 0, x 2 (1, τ 1, τ 2 ) = 0, gdzie x 1 (1, τ 1, τ 2 ) i x 2 (1, τ 1, τ 2 ) s a rozwi azaniami równań stanu tarczy obrotowej z tarciem w chwili końcowej t 1 = 1. 11
Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym
Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania optymalnego
Sterowanie minimalnoczasowe dla uk ladów liniowych. Krzywe prze l aczeń.
Sterowanie minimalnoczasowe dla uk ladów liniowych. Krzywe prze l aczeń. Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania
Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina.
Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina. Podstawowy problem sterowania optymalnego dla uk ladów nieliniowych W podstawowym problemie sterowania optymalnego minimalizacji
Wprowadzenie do metod sterowania optymalnego
Wprowadzenie do metod sterowania optymalnego Pojȩcie procesu sterowania obejmuje zestaw trajektorii stanu i sterowania (x, u) X U, gdzie X jest przestrzeni a trajektorii stanu, a U jest przestrzeni a sterowania.
Sterowalność liniowych uk ladów sterowania
Sterowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t), u(t), t), t [t,
Wprowadzenie do teorii sterowania
Wprowadzenie do teorii sterowania Literatura podstawowa T. Kaczorek i inni, Podstawy teorii sterowania, WNT, Warszawa 2005. T. Kaczorek, Teoria sterowania i systemów, PWN, Warszawa 1996. T. Kaczorek, Teoria
Liniowe uk lady sterowania.
Liniowe uk lady sterowania Rozwi azywanie liniowych rownań stanu Uk lady z czasem ci ag lym Liniowe stacjonarne równania stanu Przyk lad: Uk lad sterowania tarcz a obrotow a prȩt sprȩżysty tarcza obrotowa
Sterowanie optymalne
Sterowanie optymalne Sterowanie Procesami Ciągłymi 2017 Optymalizacja statyczna funkcji Funkcja celu/kryterialna/kosztów Ograniczenie Q(x) min x x = arg min Q(x) x x X, gdzie X zbiór rozwiązań dopuszczalnych
Ekonomia matematyczna i dynamiczna optymalizacja
Ekonomia matematyczna i dynamiczna optymalizacja Ramy wyk ladu i podstawowe narz edzia matematyczne SGH Semestr letni 2012-13 Uk lady dynamiczne Rozwiazanie modelu dynamicznego bardzo czesto można zapisać
Synteza optymalnego regulatora stanu. Uk lady z czasem ci ag lym.
Synteza optymalnego regulatora stanu. Uk lady z czasem ci ag lym. Po wyznaczeniu optymalnego nominalnego) procesu sterowania x o, u o nasuwa siȩ kwestia podtrzymywania tego procesu w warunkach ma lych
Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka
Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach
Metody kierunków poprawy dla nieliniowych problemów sterowania optymalnego
Metody kierunków poprawy dla nieliniowych problemów sterowania optymalnego Problem optymalnego sterowania procesem dynamicznym może polegać na polega na minimalizacji wskaźnika jakości obejmuj acego koszty
Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk
Opis systemów dynamicznych Mieczysław Brdyś 27.09.2010, Gdańsk Rozważmy układ RC przedstawiony na rysunku poniżej: wejscie u(t) R C wyjście y(t)=vc(t) Niech u(t) = 2 + sin(t) dla t t 0 gdzie t 0 to chwila
Liczby zespolone, liniowa zależność i bazy Javier de Lucas. a d b c. ad bc
Liczby zespolone, liniowa zależność i bazy Javier de Lucas Ćwiczenie. Dowieść, że jeśli µ := c d d c, to homografia h(x) = (ax+b)/(cx+d), a, b, c, d C, ad bc, odwzorowuje oś rzeczywist a R C na okr ag
POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy
POCHODNA KIERUNKOWA Pochodne cz astkowe funkcji f(m) = f(x, y, z) wzglȩdem x, wzglȩdem y i wzglȩdem z wyrażaj a prȩdkość zmiany funkcji w kierunku osi wspó lrzȩdnych; np. f x jest prȩdkości a zmiany funkcji
Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas
Pierwsze kolokwium z Matematyki I 4. listopada 03 r. J. de Lucas Uwagi organizacyjne: Każde zadanie rozwi azujemy na osobnej kartce, opatrzonej imieniem i nazwiskiem w lasnym oraz osoby prowadz acej ćwiczenia,
y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =
Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,
Stabilność liniowych uk ladów sterowania
Stabilność liniowych uk ladów sterowania Stabilność uk ladów z czasem ci ag lym W teorii stabilności uk ladów sterowania badamy wrażliwość trajektorii stanu na zaburzenia stanu pocz atkowego. Interesuje
liniowych uk ladów sterowania
Sterowalność i obserwowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t),
Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty
Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty November 20, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Znajdź równanie asymptot funkcji f jeśli: a) f(x)
CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA. Ćwiczenia. http://zcht.mfc.us.edu.pl/ mm
CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA Ćwiczenia Zwi azki organiczne zawieraj ace uk lady π-elektronowe Sprzȩżony uk lad wi azań podwójnych: -C=C-C=C-C=C-C=C- Skumulowany uk lad wi azań podwójnych:
Wprowadzenie do teorii sterowania. Procesy sterowania o parametrach skupionych.
Dr hab. inż. Krystyn Styczeń, prof. PWr Wprowadzenie do teorii sterowania. Procesy sterowania o parametrach skupionych. http://staff.iiar.pwr.wroc.pl/krystyn.styczen/ http://krystyn.styczen.staff.iiar.pwr.wroc.pl/
na p laszczyźnie kartezjaṅskiej prowadzimy prost a o rȯwnaniu s 1. (1.1) s 0 + t 1 t 0
Chapter 1 Interpolacja 1.1 Interpolacja liniowa Zacznijmy opis pojȩcia inter-polacji od prostego przyk ladu. Przyk lad 1.1 Oblicz ile kilometrȯw przejecha l samochȯd po 3 godzinach jazdy, jeżeli po jednej
Suma i przeciȩcie podprzestrzeń, suma prosta, przestrzeń ilorazowa Javier de Lucas
Suma i przeciȩcie podprzestrzeń suma prosta przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1 W zależności od wartości parametru p podaj wymiar przestrzeni W = v 1 v v 3 gdzie p 0 v 1 = 1 + p 3 v = 5 3
Zasada optymalności Bellmana. Uogólniony optymalny regulator stanu.
Zasada optymalności Bellmana. Uogólniony optymalny regulator stanu. Podstawowy problem sterowania optymalnego dla uk ladów nieliniowych z czasem ci ag lym W podstawowym problemie sterowania optymalnego
Po wprowadzeniu zmiennych uzupe lniaj acych otrzymamy równoważny mu problem w postaci kanonicznej:
ROZDZIA L Metoda sympleksowa Motto: Matematyka nie może wype lnić życia ale jej nieznajomość już niejednemu je wype lni la H Steinhaus Tablica sympleksowa Rozważmy ZPL w postaci klasycznej maksymalizować
SZKO LA PODSTAWOWA HELIANTUS WARSZAWA ul. BAŻANCIA 16. Szeṡcian w uk ladzie wspȯ lrzȩdnych x, y, z GEOMETRIA PRZESTRZENNA STEREOMETRIA
SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 z y 0 x Szeṡcian w uk ladzie wspȯ lrzȩdnych x, y, z GEOMETRIA PRZESTRZENNA STEREOMETRIA Prof. dr. Tadeusz STYŠ Warszawa 2018 1 1 Projekt trzynasty
Regulator liniowo kwadratowy na przykładzie wahadła odwróconego
Regulator liniowo kwadratowy na przykładzie wahadła odwróconego kwiecień 2012 Sterowanie Teoria Przykład wahadła na wózku Dany jest system dynamiczny postaci: ẋ = f (x, u) (1) y = h(x) (2) Naszym zadaniem
STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA
1 STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany.
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e
STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1
1 STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 Klasyczny Rachunek Prawdopodobieństwa. 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany. Posiadamy
Wprowadzenie do teorii sterowania. Procesy o parametrach skupionych
Politechnika Wroc lawska Wydzia l Elektroniki Katedra K8 Prof. dr hab. inż. Krystyn Styczeń http://staff.iiar.pwr.wroc.pl/krystyn.styczen/ Wprowadzenie do teorii sterowania. Procesy o parametrach skupionych
Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala
Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala November 12, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Oblicz pochodne nastȩpuj
Równania różniczkowe o zmiennych rozdzielonych
I Newton sformu lowa l podstawowe zasady dynamiki Druga zasada dynamiki ma postać wzoru F = m a F oznacza tu si le dzia laja ca na cia lo o masie m, a oznacza przyspieszenie tego cia la Przyspieszenie
CHEMIA KWANTOWA MONIKA MUSIA L. Ćwiczenia. mm
CHEMIA KWANTOWA MONIKA MUSIA L Ćwiczenia METODY PRZYBLIŻONE ROZWIA ZYWANIA RÓWNANIA SCHRÖDINGERA METODA WARIACYJNA metoda wariacyjna ĤΨ n = E n Ψ n Ψ n ortonormalne Szukamy rozwi azań dla stanu podstawowego,
Inżynieria Systemów Dynamicznych (4)
Inżynieria Systemów Dynamicznych (4) liniowych (układów) Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili? 1 2 WE OKREŚLO 3 ASYMPTO 4 DYNAMICZ
ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej:
A Kasperski, M Kulej Badania Operacyjne- programowanie liniowe 1 ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej: max z = c 1 x 1 + c 2 x 2 + +
Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych
Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych [ ] e Zadanie 1 Pokazać, że X(t) = 2t cos t sin t e 2t jest specjalną macierzą fundamentalną w sin t cos t [ 2 cos chwili τ = 0 układu
Wprowadzenie z dynamicznej optymalizacji
Wprowadzenie z dynamicznej optymalizacji Lukasz Woźny 29 kwietnia 2007 Spis treści 1 Optymalizacja statyczna a optymalizacja dynamiczna 2 1.1 Ekstrema lokalne funkcji wielu zmiennych - statyka...... 2
Funkcje wielu zmiennych
Funkcje wielu zmiennych 8 Pochodna kierunkowa funkcji Definicja Niech funkcja f określona bȩdzie w otoczeniu punktu P 0 = (x 0, y 0 ) oraz niech v = [v x, v y ] bȩdzie wektorem. Pochodn a kierunkow a funkcji
Modelowanie układów dynamicznych
Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 11 Równania Eulera-Lagrange a Rozważmy układ p punktów materialnych o współrzędnych uogólnionych q i i zdefiniujmy lagranżian
Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010
R. Rȩbowski 1 WPROWADZENIE Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 1 Wprowadzenie Powszechnie uważa siȩ, że metoda simplex, jako uniwersalny algorytm pozwalaj acyznaleźć rozwi azanie optymalne
1 Przestrzenie unitarne i przestrzenie Hilberta.
Przestrzenie unitarne i przestrzenie Hilberta.. Wykazać, że iloczyn skalarny w przestrzeni wektorowej X nad cia lem K ma nastepuj ace w lasności: (i) x, y + z = x, y + x, z, (ii) x, λy = λ x, y, (iii)
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń
Wyk lad 14 Formy kwadratowe I
Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można
Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE
Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE Niech K = R lub K = C oraz X - dowolny zbiór. Określmy dwa dzia lania: dodawanie + : X X X i mnożenie przez liczbȩ : K X X, spe lniaj ace nastȩpuj ace
LOGIKA ALGORYTMICZNA
LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R
ANALIZA II 15 marca 2014 Semestr letni. Ćwiczenie 1. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la?
Ci ag lość i norma Ćwiczenie. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la? f (x, y) = x2 y 2 x 2 + y 2, f 2(x, y) = x2 y x 2 + y 2 f 3 (x, y) = x2 y
edzi (local edge detectors) Lokalne operatory wykrywania kraw
Lokalne operatory wykrywania kraw edzi (local edge detectors) Jeśli dwie reprezentacje sa zbyt odleg le, by można by lo latwo określić transformacje miedzy nimi, to u latwić zadanie można przez wprowadzenie
Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2012/2013. Forma studiów: Stacjonarne Kod kierunku: 06.
Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 2012/2013 Kierunek studiów: Zarządzanie i inżynieria
Dyskretne modele populacji
Dyskretne modele populacji Micha l Machtel Adam Soboczyński 17 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których
Równania różniczkowe liniowe drugiego rze
Przyk lad 14.1 Omówimy jeszcze jeden przyk lad zagadnienia prowadza cego do równania pierwszego rze. Za lóżmy, że spadochroniarz wyskoczy l z samolotu na wysokości 1500 m i że spada swobodnie aż do wysokości
Zasada maksimum Pontriagina
25.04.2015 Abstrakt Wiele zagadnień praktycznych dotyczących układów dynamicznych wymaga optymalizacji pewnych wielkości. Jednakże zwykła teoria gładkich układów dynamicznych zajmuje się jednak tylko opisem
Metody rzutowania i funkcji barierowych dla problemów sterowania optymalnego
Metody rzutowania i funkcji barierowych dla problemów sterowania optymalnego Problem optymalnego sterowania procesem dynamicznym z ograniczeniami zasobowymi może polegać na polega na minimalizacji wskaźnika
Niesimpleksowe metody rozwia zywania zadań PL. Seminarium Szkoleniowe Edyta Mrówka
Niesimpleksowe metody rozwia zywania zadań PL Seminarium Szkoleniowe Metoda Simplex: wady i zalety Algorytm SIMPLEX jest szeroko znany i stosowany do rozwi azywania zadań programowania liniowego w praktyce.
Asymptota pozioma: oṡ x, gdy y = 0 Asymptota pionowa: oṡ y, gdy x = 0. Hyperbola 1 x
1 SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 Asymptota pozioma: oṡ x, gdy y = 0 Asymptota pionowa: oṡ y, gdy x = 0 2 1 0 3 1 2 x Hyperbola 1 x FUNKCJE ELEMENTARNE WYMIERNE POTȨGOWE LOGARYTMICZNE
SZKO LA PODSTAWOWA HELIANTUS WARSZAWA ul. BAŻANCIA 16. Hyperbola 1 x FUNKCJE ELEMENTARNE WYMIERNE POTȨGOWE LOGARYTMICZNE.
1 SZKO LA PODSTAWOWA HELIANTUS 0-89 WARSZAWA ul. BAŻANCIA 16 1 0 3 1 x Hyperbola 1 x FUNKCJE ELEMENTARNE WYMIERNE POTȨGOWE LOGARYTMICZNE Prof. dr. Tadeusz STYŠ Warszawa 018 1 1 Projekt dziesi aty Contents
Wprowadzenie do równań ró znicowych i ró zniczkowych.
Wprowadzenie do równań ró znicowych i ró zniczkowych. Adam Kiersztyn Lublin 2013 Adam Kiersztyn () Wprowadzenie do równań ró znicowych i ró zniczkowych. maj 2013 1 / 11 Przyjmijmy nast ¾epuj ¾ace oznaczenia:
Równania różniczkowe cz astkowe rzȩdu pierwszego
Równania różniczkowe cz astkowe rzȩd pierwszego 1 Równania liniowe jednorodne Rozważmy równanie a 1 ( 1,..., n ) 1 +... + a n ( 1,..., n ) n = 0, (1) gdzie a i, i = 1,..., n s a dane, a fnkcja = ( 1,...,
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Marta Zelmańska
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Marta Zelmańska Toruń 009 1 Rozdział 1 Wstęp Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie: F (t, x, x, x,..., x (n) ) = 0 (1.1) Rozwiązaniem równania
1. Podstawowe pojęcia
1. Podstawowe pojęcia Sterowanie optymalne obiektu polega na znajdowaniu najkorzystniejszej decyzji dotyczącej zamierzonego wpływu na obiekt przy zadanych ograniczeniach. Niech dany jest obiekt opisany
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y
Matematyka A, klasówka, 24 maja zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le. rozwia
Matematyka A, klasówka, 4 maja 5 Na prośbe jednej ze studentek podaje zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le dów Podać definicje wektora w lasnego i wartości w lasnej
Dyskretne modele populacji
Dyskretne modele populacji Micha l Machtel Adam Soboczyński 19 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których
Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi
g liczb rzeczywistych (a n ) spe lnia warunek
. Czy jest prawda, że a) R y R z R y + yz + = 0 ; b) R y R z R y + yz + 0 ; c) R y R z R y + yz + = 0 ; d) R y R z R y + yz + 0? 2. Czy jest prawdziwa nierówność a) ctg > ; b) tg < cos ; c) cos < sin ;
Seria zadań z Algebry IIR nr kwietnia 2017 r. i V 2 = B 2, B 4 R, gdzie
Seria zadań z Algebry IIR nr 29 kwietnia 207 r Notacja: We wszystkich poniższych zadaniach K jest ciałem, V wektorow a nad K zaś jest przestrzeni a Zadanie Niechaj V = K 4 [t] Określmy podprzestrzenie
po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)
Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji
Wykład z modelowania matematycznego.
Załóżmy, że równanie różniczkowe x (t) = f (t, x) (1) ma rozwiązanie ogólne x(t) = ϕ(t, c). (2) Załóżmy, że równanie różniczkowe x (t) = f (t, x) (1) ma rozwiązanie ogólne x(t) = ϕ(t, c). (2) Rodzina funkcji
Równania różniczkowe liniowe wyższych rzędów o stałych współcz
Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym
po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)
Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
Aproksymacja kraw. Od wielu lokalnych cech (edge elements) do spójnej, jednowymiarowej. epnej aproksymacji
Aproksymacja kraw edzi Od wielu lokalnych cech (edge elements) do spójnej, jednowymiarowej cechy (edge). Różne podejścia: szukanie w pobliżu wst epnej aproksymacji transformacja Hough a. Wiedza o obiektach:
Sekantooptyki owali i ich własności
Sekantooptyki owali i ich własności Magdalena Skrzypiec Wydział Matematyki, Fizyki i Informatyki Uniwersytet Marii Curie-Skłodowskiej 19 października 2009r. Informacje wstępne Definicja Owalem nazywamy
Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015. Forma studiów: Stacjonarne Kod kierunku: 06.
Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 201/201 Kierunek studiów: Mechatronika Profil: Ogólnoakademicki
Metody Numeryczne Wykład 4 Wykład 5. Interpolacja wielomianowa
Sformułowanie zadania interpolacji Metody Numeryczne Wykład 4 Wykład 5 Interpolacja wielomianowa Niech D R i niech F bȩdzie pewnym zbiorem funkcji f : D R. Niech x 0, x 1,..., x n bȩdzie ustalonym zbiorem
Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu
Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 5 1. Iloczyn ortogonalny funkcji Wróćmy na chwilȩ do dowodu wzorów Eulera-Fouriera. Kluczow a rolȩ odgrywa l wzór:
MATEMATYKA REPREZENTACJA LICZB W KOMPUTERZE
1 SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 B l ad bezwzglȩdny zaokr aglenia liczby ɛ = fl() B l ad wzglȩdny zaokr aglenia liczby 0 δ = fl() B l ad procentowy zaokr aglenia liczby 0
Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1
SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,
y(t) = y 0 + R sin t, t R. z(t) = h 2π t
SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem
Laboratorium Mechaniki Technicznej
Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22
Systemy. Krzysztof Patan
Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej
Wyk lad 11 1 Wektory i wartości w lasne
Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V
Matematyka A kolokwium: godz. 18:05 20:00, 24 maja 2017 r. rozwiązania. ) zachodzi równość: x (t) ( 1 + x(t) 2)
Matematyka A kolokwium: godz. 18:05 0:00, 4 maja 017 r. rozwiązania 1. 7 p. Znaleźć wszystkie takie funkcje t xt, że dla każdego t π, π zachodzi równość: x t 1 + xt 1+4t 0. p. Wśród znalezionych w poprzedniej
Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie
1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z
KOLOKWIUM Z ALGEBRY I R
Instrucje: Każde zadanie jest za 4 puntów. Rozwi azanie ażdego zadania musi znajdować siȩ na osobnej artce oraz być napisane starannie i czytelnie. W nag lówu ażdego rozwi azania musz a znajdować siȩ dane
Stabilność II Metody Lapunowa badania stabilności
Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli
Funkcje wielu zmiennych
Funkcje wielu zmiennych Zbiory na p laszczyźnie Przestrzeni a dwuwymiarow a (p laszczyzn a) nazywamy zbiór wszystkich par uporz adkowanych (x, y), gdzie x, y R. Przestrzeń tȩ oznaczamy symbolem R 2 : R
Równania różniczkowe. Notatki z wykładu.
Równania różniczkowe Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument
Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.
Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej
gęstością prawdopodobieństwa
Funkcja falowa Zgodnie z hipotezą de Broglie'a, cząstki takie jak elektron czy proton, mają własności falowe. Własności falowe cząstki (lub innego obiektu) w mechanice kwantowej opisuje tzw. funkcja falowa(,t)
ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA
ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA DYNAMICZNYCH LOKAT KAPITAŁOWYCH Krzysztof Gąsior Uniwersytet Rzeszowski Streszczenie Celem referatu jest zaprezentowanie praktycznego zastosowania
mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej
mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-28.06.07 współrzędne uogólnione punkt materialny... wektor wodzący: prędkość: przyspieszenie: liczba
Funkcje wielu zmiennych
Funkcje wielu zmiennych 13 Zbiory w przestrzeni Definicja Przestrzeni a trójwymiarow a (przestrzeni a) nazywamy zbiór wszystkich trójek uporz adkowanych (x y z) gdzie x y z R. Przestrzeń tȩ oznaczamy symbolem
Matematyka A, egzamin, 17 czerwca 2005 rozwia zania
Matematyka A, egzamin, 7 czerwca 00 rozwia zania Mam nadzieje, że nie ma tu b le dów poza jakimiś literówkami, od których uwolnić sie trudno. Zache cam do obejrzenia rozwia zań zadań z egzaminu dla matematyki
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE zadania z odpowiedziami
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści I Równania pierwszego rzędu 2 o rozdzielonych zmiennych 2 jednorodne 3 liniowe 3 Bernoulliego
Dynamika manipulatora. Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska. Podstawy robotyki wykład VI
Podstawy robotyki Wykład VI Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska Dynamika opisuje sposób zachowania się manipulatora poddanego wymuszeniu w postaci