Funkcje wielu zmiennych

Podobne dokumenty
Funkcje wielu zmiennych

Funkcje wielu zmiennych

Funkcje wielu zmiennych

Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać:

Funkcje wielu zmiennych

,..., u x n. , 2 u x 2 1

Funkcje wielu zmiennych

Matematyka 2. Elementy analizy wektorowej cz I Pole wektorowe

Przestrzeń liniowa R n.

Postać Jordana macierzy

Geometria analityczna w przestrzeni. Kierunek. Długość. Zwrot

Rachunek różniczkowy funkcji jednej zmiennej

Funkcje wielu zmiennych (c.d.)

1 Funkcje dwóch zmiennych podstawowe pojęcia

Rozdział 9. Baza Jordana

Ekstrema funkcji dwóch zmiennych

Funkcje wielu zmiennych (c.d.)

12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej

POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu

Powierzchnie stopnia drugiego

f x f y f, jest 4, mianowicie f = f xx f xy f yx

II. FUNKCJE WIELU ZMIENNYCH

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

Zestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t

1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił

Elementy algebry i analizy matematycznej II

Rachunek różniczkowy funkcji wielu zmiennych

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE

I. Rachunek wektorowy i jego zastosowanie w fizyce.

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych

Funkcje dwóch zmiennych

Róniczka. f x. V Vx. Zadanie 4. Znale maksymalny błd bezwzgldny i wzgldny powstały przy obliczaniu objtoci stoka, jeli promie podstawy wynosi

Zestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.

Optymalizacja (w matematyce) termin optymalizacja odnosi się do problemu znalezienia ekstremum (minimum lub maksimum) zadanej funkcji celu.

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ).

Przykład 6.3. Uogólnione prawo Hooke a

Pochodna funkcji wykład 5

Zestaw zadań 15: Funkcjonały dwuliniowe i formy kwadratowe (1) Sprawdzić, czy następujące odwzorowania ξ : R 3 R 3 R: x y. x y z. f(x)g(x)dx.

Adam Bodnar: Wytrzymałość Materiałów. Ukośne zginanie 13. UKOŚNE ZGINANIE

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Ruch kulisty bryły. Kąty Eulera. Precesja regularna

J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI

GRUPY SYMETRII Symetria kryształu

napór cieczy - wypadkowy ( hydrostatyczny )

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

EPR. W -1/2 =-1/2 gµ B B

Zadania do samodzielnego rozwiązania zestaw 11

14. Krzywe stożkowe i formy kwadratowe

RACHUNEK CAŁKOWY FUNKCJI DWÓCH ZMIENNYCH

Funkcje zespolone. 2 Elementarne funkcje zespolone zmiennej zespolonej

13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne.

(rachunek różniczkowy dot. funkcji ciągłych)

PRAWIDŁOWE ODPOWIEDZI I PUNKTACJA

Definicja pochodnej cząstkowej

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU

22 Pochodna funkcji definicja

KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA

10 zadań związanych z granicą i pochodną funkcji.

Funkcje pola we współrzędnych krzywoliniowych cd.

lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów

Algebra z geometrią 2012/2013

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona.

23. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA

Adam Bodnar: Wytrzymałość Materiałów. Proste zginanie

Analiza matematyczna 2 zadania z odpowiedziami

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami

Rachunek całkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna

Zadania z AlgebryIIr

Wyznaczanie ruchliwości i koncentracji nośników prądu w półprzewodnikach metodą efektu Halla

2.1. ZGINANIE POPRZECZNE

PRZESTRZEŃ WEKTOROWA (LINIOWA)

1. Krótki zarys teorii grup 1

Belki złożone i zespolone

Elementy symetrii makroskopowej w ujęciu macierzowym.

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE

Równanie Schrödingera dla elektronu w atomie wodoru Równanie niezależne od czasu w trzech wymiarach współrzędne prostokątne

Przykład 3.7. Naprężenia styczne przy zginaniu belki cienkościennej.

Analiza Matematyczna I Wydział Nauk Ekonomicznych. wykład XI

III. LICZBY ZESPOLONE

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY

BUDOWA ATOMU cd. MECHANIKA KWANTOWA

LABORATORIUM MECHANIKI EKSPERYMENTALNEJ. Instrukcja do ćwiczenia

Pręt nr 2 N 3,1416² ,1. Wyniki wymiarowania stali wg PN-EN 1993 (Stal1993_2d v. 1.3 licencja) Zadanie: P_OFFER Przekrój: 8 - Złożony

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.

Analiza Matematyczna II.1, kolokwium rozwiazania 9 stycznia 2015, godz. 16:15 19:15

Podstawy wytrzymałości materiałów

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji

RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ. Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzysztof KOŁOWROCKI

x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) =

Pochodna funkcji jednej zmiennej

PRÓBNY EGZAMIN MATURALNY

Transkrypt:

Funkcje wielu miennch wkład MATEMATYKI Automatka i robotka studia niestacjonarne sem I, rok ak 2009/2010 Katedra Matematki Wdiał Informatki Politechnika Białostocka Niech R ndef ={( 1, 2,, n ): 1 R 2 R n R} Funkcjąnmiennch określoną na biored R n o wartościach w R nawam prporądkowanie każdemu punktowi e bioruddokładnie jednej licb recwistej Funkcję taką onacam pre f:d R lub w=f( 1, 2,, n ), gdie( 1, 2,, n ) D Wartość funkcjif w punkcie( 1, 2,, n ) onacam pref( 1, 2,, n ) Dlan=2 mam funkcję dwóch miennch =f(,) R 2 (,) =f(,) R D R 2 (,) R =f(,) Dlan=3 mam funkcję trech miennch w=f(,,) R 3 (,,) w=f(,,) R D R 3 R 1 w=f(,,)

Automatka i robotka, sem I rok akademicki 2009/2010 MATEMATYKA - wkład studia niestacjonarne 1 Diedina, wkres i warstwice funkcji wielu miennch Zbiór wsstkich punktów prestreni R n, dla którch funkcjaf jest określona nawam diediną funkcjifi onacam pred f Jeżeli dan jest wór określając funkcję, to biór punktów prestreni R n, dla którch wór ten ma sens, nawam diediną naturalną funkcji Prkład 11 (Prkład funkcji dwóch miennch) Niech f(,)= 2 + 2 Niech f(,)= 4 2 2 WówcasD f = R 2 WówcasD f ={(,): 2 + 2 4} Niech f(,)=arcsin WówcasD f={(,): 1 1 0} Prkład 12 (Prkład funkcji trech miennch) Niech g(,,)= 1 2 2 2 WówcasD g ={(,,): 2 + 2 + 2 1} 2 Opracowała: Małgorata Wrwas

Automatka i robotka, sem I rok akademicki 2009/2010 MATEMATYKA - wkład studia niestacjonarne Prkład 13 (Inne prkład funkcji wielu miennch) NatężenieI prądu w oporniku o oporerjest według prawa Ohma funkcją napięciau, prłożonego do acisków tego opornika, ora oporur, tn I= U R TemperaturaT w punkciep(,,) ogrewanego ciała w chwilitjest funkcją cterech miennch, mianowicie tego punktu ora casut, tn T=T(,,,t) Wkresem funkcjin-miennch nawam biór {( 1,, n,w): ( 1,, n ) D f w=f( 1,, n )} R n R Dlan=2 {(,,): (,) D f =f(,)} R 3 =f(,) D f Poiomicą wkresu funkcji dwóch miennch = f(, ) odpowiadającą poiomowi h R nawam biór {(,): (,) D f f(,)=h} R 2 =f(,) f(,)=h poiomica wkresu funkcjif Warstwicą wkresu funkcjif:d f R,n 3 odpowiadającą warstwieh R nawam biór {( 1,, n ) D f : ( 1,, n ) D f f( 1,, n )=h} R n 3 Opracowała: Małgorata Wrwas

Automatka i robotka, sem I rok akademicki 2009/2010 MATEMATYKA - wkład studia niestacjonarne 11 Wkres ważniejsch funkcji dwóch miennchf: R 2 R Wkresem funkcji =A+B+C jest płascna o wektore normalnm n=[ A, B,1], prechodąca pre punkt(0, 0, C) Wkresem funkcji =a( 2 + 2 ) jest paraboloida obrotowa, tj powierchnia obrotowa powstała obrotu paraboli=a 2 (lub=a 2 ) wokół osio a>0 Wkresem funkcji =± R 2 2 2 jest górna lub dolna półsfera o środku w pocątku układu współrędnch i promieniu R = R 2 2 2 = R 2 2 2 Wkresem funkcji =k 2 + 2 jest stożek, tj powierchnia powstała obrotu półprostej= k,=0, dla 0 wokół osio k>0 4 Opracowała: Małgorata Wrwas

Automatka i robotka, sem I rok akademicki 2009/2010 MATEMATYKA - wkład studia niestacjonarne ( ) Wkresem funkcji =h 2 + 2 jest powierchnia obrotowa powstała obrotu wkresu funkcji =h(), =0, dla 0 wokół osio Wkresem funkcji =g() lub =k() jest powierchnia walcowa powstała presunięcia wkresu funkcji=g(), dla=0równolegle do osioy lub wkresu funkcji=k(), dla=0równolegle do osiox Wkres funkcji=f( a, b)+c powstaje wkresu funkcji=f(,) pre presunięcie o wektor v=[a,b,c] v=[a,b,c] Wkres funkcji= f(,) powstaje wkresu funkcji=f(,) pre smetrcne odbicie wględem płascn OXY 5 Opracowała: Małgorata Wrwas

Automatka i robotka, sem I rok akademicki 2009/2010 MATEMATYKA - wkład studia niestacjonarne 2 Powierchnie obrotowe ( ) Krwa obracająca się dookoła prostej ataca powierchnię obrotową Obróćm krwą o równaniu =(t), =(t), =(t), t a,b dookoła osioz Wówcas punktp((t 0 ),(t 0 ),(t 0 )) krwej atoc okrąg o równaniu ( ) 2 + 2 =[(t 0 )] 2 +[(t 0 )] 2 leżąc na płascźnie =(t 0 ) Po eliminacjit 0 ( ) otrmujem równanie powierchni obrotowej atacane j pre krwą Prkład 21 (Prkład powierchni obrotowch) Niech linia prosta =t, =t, =2t, t R obraca się dookoła osioz Wówcas punktp(t 0,t 0,2t 0 ) prostej atoc okrąg o równaniu ( ) 2 + 2 =2(t 0 ) 2 leżąc na płascźnie =2t 0 Po eliminacjit 0 ( ) otrmujem równanie powierchni obrotowej atacanej pre daną prostą 2 + 2 = 2 2 < równanie stożka Niech okrąg =a+rcost, =0, =rsint, t R obraca się dookoła osioz Wówcas punktp(a+rcost 0,0,rsint 0 ) prostej atoc okrąg o równaniu ( ) 2 + 2 =(a+rcost 0 ) 2 Po eliminacjit 0 ( ) otrmujem równanie ( 2 + 2 a) 2 + 2 =r 2 < równanie torusa; powierchni obrotowej atacanej pre okrąg =a+rcost, =0, =rsint, t R 6 Opracowała: Małgorata Wrwas

Automatka i robotka, sem I rok akademicki 2009/2010 MATEMATYKA - wkład studia niestacjonarne 3 Granice funkcji wielu miennch Niech(P k ( k1,, kn )) ki N będie ciągiem punktów w Rn Definicja 31 Mówim, że ciąg(p k ) dąż do punktup 0 ( 01,, 0n ) R n, jeżeli lim k i = 0i, dla każdegoi=1,2,,n, k i + onaca to bieżność dla każdej współrędnej ( ) 1 Prkład 32 NiechP n ( n, n )= n,( 1)n ciąg punktów w prestreni R 2 n Wówcas lim ( n, n )=(0,0) n + Niechf: R n R będie funkcjąn-miennch NiechP 0 ( 01,, 0n ) R n ora niech funkcjaf będie określona prnajmniej na S(P 0 ) def = gdier>0 jest pewną licbą { ( 1,, n ) R n : (1 01 ) 2 + +( n 0n ) 2 <r} \{P 0 }, ( k1,, kn ) ki 0i i=1,2,,n lim f( 1,, n )=g P P 0 [ def ] lim k i = 0i,i=1,,n lim k 1,, kn )=g k i k i 31 Własności granic funkcji wielu miennch Twierdenie 33 Jeżeli funkcjef ig mają granice właściwe w punkciep 0 R n, to lim[f(p)±g(p)]= lim f(p)± lim g(p) P P 0 P P 0 P P 0 lim c f(p)=c lim f(p) P P 0 P P 0 lim[f(p) g(p)]= lim f(p) lim g(p) P P 0 P P 0 P P 0 lim f(p) f(p) lim P P 0 g(p) = P P 0 lim g(p), o ile P P 0 lim g(p) 0 P P 0 Twierdenie 34 Jeżeli funkcjeϕ i,i=1,,n if spełniają warunki: limϕ i (T)= 0i, T R m T T 0 T S(T 0 ) (ϕ 1 (T),,ϕ n (T)) ( 01,, 0n ) lim f(p)=g, P P 0 to limf(ϕ 1 (T),,ϕ n (T))=g T T 0 7 Opracowała: Małgorata Wrwas

Automatka i robotka, sem I rok akademicki 2009/2010 MATEMATYKA - wkład studia niestacjonarne 4 Ciągłość funkcji wielu miennch Niechf: R n R będie funkcjąn-miennch Twierdenie 41 Funkcja jest ciągła w punkciep 0 ( 01,, 0n ) def lim P P 0 f( 1,, n )=f( 01,, 0n ) Jeżeli funkcjef ig są ciągłe w punkciep 0 ( 01,, 0n ), to w tm punkcie ciągłe są także funkcje f+g, f g, c f,c R, f g, f g, o ileg(p 0) 0 Jeżeli funkcjeϕ i,i=1,,n są ciągłe w punkcie T 0 R m oraf jest ciągła w punkcie P 0 =(ϕ 1 (T 0 ),,ϕ n (T 0 )), to funkcja jest ciągła w T 0 f(ϕ 1 (t 1,,t m ),,ϕ n (t 1,,t m )) 8 Opracowała: Małgorata Wrwas

Automatka i robotka, sem I rok akademicki 2009/2010 MATEMATYKA - wkład studia niestacjonarne 5 Pochodne cąstkowe Niechf onaca funkcjęn-miennch określoną w otoceniu O punktup 0 ( 01,, 0n ) Smbolem i onacam prrost miennej nieależnej i,1 nn, różn od era i taki, żeb punkt P( 01,, 0i 1, 0i + i, 0i+1,, 0n ) należał do otocenia O Granicę właściwą f(p) f(p 0 ) lim i 0 i nawam pochodną cąstkową rędu pierwsego funkcjif wględem miennej i w punkciep 0 i onacam smbolem i (P 0 ) 51 Pochodne cąstkowe funkcji dwóch miennch Dla funkcji dwóch miennch f(, ) definicje pochodnch cąstkowch rędu pierwsego wględem miennchi w punkciep 0 ( 0, 0 ) są następujące (P 0) def f( 0 +, 0 ) f( 0, 0 ) = lim 0 ora (P 0) def f( 0, 0 + ) f( 0, 0 ) = lim 0 52 Interpretacja geometrcna pochodnch cąstkowch dla funkcji dwóch miennch Niechf: R 2 R, =f(,) Załóżm, żef ma pochodne cąstkowe rędu pierwsego w punkcie P 0 ( 0, 0 ) ( 0, 0 )=tgα ( 0, 0 )=tgβ α β ( 0, 0 ) jest miarą lokalnej sbkości wrostu wartości funkcjif wględem miennejpr ustalonej wartości miennej ( 0, 0 ) jest miarą lokalnej sbkości wrostu wartości funkcjif wględem miennejpr ustalonej wartości miennej Uwaga 1 Nie ma wiąku międ ciągłością funkcji wielu miennch a istnieniem pochodnch cąstkowch 9 Opracowała: Małgorata Wrwas

Automatka i robotka, sem I rok akademicki 2009/2010 MATEMATYKA - wkład studia niestacjonarne Prkład 51 (Prkład funkcji nieciągłej i mającej pochodne cąstkowe) Funkcja wielu miennch może mieć w punkcie obie pochodne cąstkowe pierwsego rędu i może nie bć ciągła w tm punkcie, 1, dla=0 np funkcjaf(,)= nie jest ciągła w punkcie(0,0), alef ma pochodne cąstkowe w 0, dla 0 punkcie(0,0): f(,0) f(0,0) 1 1 (0,0)= lim = lim 0 0 =0 i f(0, ) f(0,0) 1 1 (0,0)= lim = lim 0 0 =0 Prkład 52 (Prkład funkcji ciągłej nie mającej pochodnch cąstkowch) Niechf(,)= 2 + 2 Funkcjaf jest ciągła w punkcie(0,0), gdż 2 + 2 =0=f(0,0), ale lim (,) (0,0) i (0,0)= lim 2 +0 2 0 = lim 0 0 0 (0,0)= lim 2 + 2 0 = lim 0 0 nie istnieje nie istnieje Jeżeli funkcja ma pochodne cąstkowe pierwsego rędu w każdm punkcie bioru otwartego D R n, to funkcje ( 1,, n ), ( 1,, n ),, ( 1,, n ), 1 2 n gdie( 1,, n ) D, nawam pochodnmi cąstkowmi pierwsego rędu funkcjif na biore D i on,,, lub f 1 2 1,f 2,,f n n Prkład 53 Niech f(,)= e ln(+) Niech g(,,)= 3 arctg(+e ) 6 Pochodna kierunkowa funkcjif: D R n R Niechf onaca funkcjęn-miennch określoną w otoceniu O punktup 0 ( 01,, 0n ) D Pochodną kierunkową funkcjif w punkciep 0 w kierunku wersora v=[v 1,v 2,,v n ] określam worem df d v (P 0) def f( 01 +tv 1,, 0n +tv n ) f( 01,, 0n ) =lim t 0 t Pochodna kierunkowa df d v funkcjif w kierunku v jest też onacana następująco v lub f v 10 Opracowała: Małgorata Wrwas

Automatka i robotka, sem I rok akademicki 2009/2010 MATEMATYKA - wkład studia niestacjonarne Dlaf: D R 2 R Dlaf: D R 3 R df d i =, df d j = Prkład 61 Niechf(,,)= 2 2,P 0 (1,0, 1) i v= df d v (P 0) def = lim t 0 df d i =, df d j =, df d k = [ ] 1 3 5 3, 3, Wówcas 3 ( 1+ 1 ) ( 2 )( ) 3 5 3 t 2 0 3 t 1+ 3 t 1 1+ 2 lim 3 t+1 9 t2 2 3 t 0 t 2 3t+ 15t 2 1 9 = 2 t 3 Prkład 62 Niechf(,,)=e ++,P 0 (0,0,0) i v=[1,1,1] Wówcas df d v (P 0) def e 3t 1[ 0 0 =lim =lim ] 3e 3t t 0 t t 0 1 = 3 = ( 1 ) 3 61 Interpretacja geometrcna pochodnej kierunkowej funkcji dwóch miennch Niech funkcjaf będie określona na otoceniu punktu( 0, 0 ) Ponadto niechγonaca kąt nachlenia do płascn XOY półstcnej do krwej otrmanej w wniku prekroju wkresu funkcji f półpłascną prechodącą pre prostą ora równoległą do wersora v Wted = 0, = 0 df d v ( 0, 0 )=tgγ γ ( 0, 0,0) v Pochodna kierunkowa określa sbkość mian wartości funkcjif w kierunku v 7 Gradient funkcji Niechf: D R n R Gradientem funkcjif w punkciep 0 ( 01, 02,, 0n ) nawam wektor określon worem f(p 0 ) def = [ (P 0 ), (P 0 ),, ] (P 0 ) 1 2 n Gradient w punkciep 0 jest również onacan pre gradf(p 0 ) lub f (P 0 ), tak jak pochodna jednej miennej Prkład 71 Niechf(,)= 3 2 +3 ip 0 ( 2,1) Wówcas [ ] f=, =[3 2 2 +3,2 3 1], więc f( 2,1)=[15, 17] 11 Opracowała: Małgorata Wrwas

Automatka i robotka, sem I rok akademicki 2009/2010 MATEMATYKA - wkład studia niestacjonarne 71 Pochodna kierunkowa a gradient funkcji Twierdenie 72 (wór do oblicania pochodnej kierunkowej) Niech pochodne cąstkowe i,i= 1,,n będą ciągłe w punkciep 0 ( 01,, 0n ) ora niech v będie dowolnm wersorem Wted df d v (P 0)= f(p 0 ) v Prkład 73 Niechf(,)= 3 2 +3,P 0 ( 2,1) i v= [ 1 2, 1 2 ] Wówcas [ df 1 d v ( 2,1)= f( 2,1) v=[15, 17] 2, 1 ] = 32 2 2 Pochodna kierunkowa funkcji w punkcie licona w kierunku gradientu ma wartość najwięksą spośród wsstkich pochodnch kierunkowch liconch w różnch kierunkach i df d f(p 0 ) (P 0)= f(p 0 ) 72 Interpretacja geometrcna gradientu funkcji dwóch miennch Gradient funkcji w punkcie wskauje kierunek najsbsego wrostu funkcji w tm punkcie ( 0, 0 ) f( 0, 0 ) Gradient funkcji w punkcie jest prostopadł do poiomic funkcji prechodącej pre ten punkt 0 0 ( 0, 0 ) f( 0, 0 ) 8 Pochodne cąstkowe drugiego rędu Niech funkcjaf ma pochodne cąstkowe i,i=1,2,,n, na obsare D R n ora niechp 0 ( 01, 02,, 0n ) D Pochodne cąstkowe drugiego rędu funkcjif w punkciep 0 określam worami: 2 ( ( )) f 2 (P 0 )= (P 0 ), i i i ( ( )) (P 0 )= (P 0 ), i j i j 12 Opracowała: Małgorata Wrwas

Automatka i robotka, sem I rok akademicki 2009/2010 MATEMATYKA - wkład studia niestacjonarne dlai,j=1,2,,n Powżse pochodne onacam także odpowiednio pre f i i (P 0 ), f j i (P 0 ) lub f i i (P 0 ), f j i (P 0 ) Jeżeli funkcjaf ma pochodne cąstkowe drugiego rędu w każdm punkcie obsaru D R n, to funkcje 2 ( 1,, n ), i i j ( 1,, n ),i,j=1,2,,n gdie( 1,, n ) D, nawam pochodnmi cąstkowmi drugiego rędu funkcji f na obsare D i onacam odpowiednio pre 2 f 2 i, i j lub f i i, f j i 9 Pochodne cąstkowe wżsch rędów Jeżeli funkcjaf ma pochodne cąstkowe ręduk 2 prnajmniej na otoceniu punktup 0 ( 01, 02,, 0n ) D R n, to ( ( )) k+1 f k f i s (P 0 )= j p l i s (P 0 ), j p l gdies+p=k Twierdenie 91 (Twierdenie Schwara) Niech funkcjaf będie określona na otoceniu punktu P 0 ( 01, 02,, 0n ) Ponadto niech pochodne cąstkowe i j, j i istnieją na otoceniu punktup 0 pochodne cąstkowe i j, j i, będą ciągłe w punkciep 0 Wted (P 0 )= 2 f (P 0 ),i j ii,j=1,2,,n i j j i Uwaga 2 Prawdiwe są analogicne równości dla pochodnch miesanch wżsch rędów 10 Różnickowalność funkcjin-miennch Niech funkcjaf będie określona na otoceniu punktup 0 ( 01, 02,, 0n ) ora niech istnieją pochodne cąstkowe i (P 0 ),i=1,,,n Funkcja f jest różnickowalna w punkciep 0 wted i tlko wted, gd spełnion jest warunek: lim ( 1,, n) (0,,0) gdiep=( 01 + 1,, 0n + n ) f(p) f(p 0 ) 1 (P 0 ) 1 n (P 0 ) n =0, ( 1 ) 2 + +( n ) 2 Twierdenie 101 (Warunek koniecn różnickowalności funkcji) Jeżeli funkcja jest różnickowalna w punkcie, to jest ciągła w tm punkcie Uwaga 3 Twierdenie odwrotne nie jest prawdiwe Świadc o tm prkład funkcjif(,)= 2 + 2, która jest ciągła w punkcie(0, 0), ale nie jest w tm punkcie różnickowalna, gdż nie istnieją pochodne cąstkowe tej funkcji, patr Prkład 52 13 Opracowała: Małgorata Wrwas

Automatka i robotka, sem I rok akademicki 2009/2010 MATEMATYKA - wkład studia niestacjonarne Twierdenie 102 (Warunek wstarcając różnickowalności funkcji) Niech funkcja f będie określona na otoceniu punktup 0 ( 01, 02,, 0n ) Ponadto niech pochodne cąstkowe i,i=1,,n istnieją na otoceniu punktup 0 pochodne cąstkowe i,i=1,,n będą ciągłe w punkciep 0 Wted funkcjaf jest różnickowalna w punkciep 0 ( 01, 02,, 0n ) Różnickowalność funkcjif w punkcie( 0, 0 ) onaca, że istnieje płascna stcna (niepionowa) do wkresu tej funkcji w punkcie( 0, 0,f( 0, 0 )) =f(,) płascna stcna ( 0, 0, 0 ) Równanie płascn stcnej do wkresu funkcji Niech funkcjaf będie różnickowalna w punkciep 0 ( 0, 0 ) Równanie płascn stcnej do wkresu funkcjif w punkcie( 0, 0, 0 ), gdie 0 =f( 0, 0 ), ma postać: 11 Różnicka funkcjin-miennch 0 = ( 0, 0 )( 0 )+ ( 0, 0 )( 0 ) Niech funkcjaf będie określona na otoceniu punktup 0 ( 01, 02,, 0n ) Ponadto niech funkcjaf ma pochodne cąstkowe pierwsego rędu w punkciep 0 ( 01, 02,, 0n ) Różnicką funkcjif w punkciep 0 ( 01, 02,, 0n ) nawam funkcję miennch 1, 2,, n określoną worem: df(p 0 )( 1, 2,, n ) def = n i=1 i (P 0 ) i, Różnickę funkcjif onaca się także predf( 01, 02,, 0n ) lub krótkodf 111 Zastosowanie różnicki funkcjin-miennch Niech funkcjaf będie różnickowalna w punkciep 0 ( 01, 02,, 0n ) Wted f( 01 + 1,, 0n + n ) f(p 0 )+df(p 0 )( 1,, n ), pr cm błądδ( 1, 2,, n ) powżsego prbliżenia dąż sbciej do 0 niż ( 1 ) 2 +( 2 ) 2 + +( n ) 2, tn lim ( 1,, n) (0,,0) δ( 1, 2,, n ) ( 1 ) 2 +( 2 ) 2 + +( n ) 2=0 14 Opracowała: Małgorata Wrwas

Automatka i robotka, sem I rok akademicki 2009/2010 MATEMATYKA - wkład studia niestacjonarne Prkład 111 Wkorstując różnickę oblicm wartość prbliżoną wrażenia 2,1 8,05 Definiujem funkcję f(,)= Prjmujem 0 =2 0 =8 =0,1 i =0,05 Ponieważ =1 2 i =1 2,więc 2,1 8,05 2 8+1 0,1+ 1 4 0,05=4,1125 112 Zastosowanie różnicki funkcji do sacowania błędów pomiarów Niech wielkości ficne 1, 2,, n,będą wiąane ależnością=f( 1, 2,, n ) Ponadto niech i,i=1,2,,n onacają odpowiednio błęd bewględne pomiaru wielkości 1, 2,, n Wted błąd bewględn obliceń wielkościwraża się worem prbliżonm n i i=1 i Prkład 112 Pr pomoc menurki można mierć objętość ciała dokładnością V =0,1 cm 3, a pr pomoc wagi sprężnowej można ustalić jego masę dokładnością 1 g Objętość ciała mierona tm sposobem wnosiv =25 cm 3, a masam=200 g Z jaką w prbliżeniu dokładnością można oblicć gęstośćρtego ciała? Ponieważ ρ(m,v)= M V, więc ρ M =1 V i ρ V = M V 2, więc 113 Różnicka upełna ρ ρ M M+ ρ V V= 25 1+ 1 200 25 2 0,1=0,072 Niech funkcjaf będie określona na otoceniu punktup 0 ( 01, 02,, 0n ) Ponadto niech funkcjaf ma pochodne cąstkowe pierwsego rędu w punkciep 0 ( 01, 02,, 0n ) Prrost 1, 2,, n nawam różnickami miennch nieależnch 1, 2,, n, odpowiednio i onacam smbolami d 1, d 2,, d n Różnicką upełną funkcjif w punkciep 0 ( 01, 02,, 0n ) nawam wrażenie: df(p 0 ) def = n i=1 i (P 0 )d i 15 Opracowała: Małgorata Wrwas

Automatka i robotka, sem I rok akademicki 2009/2010 MATEMATYKA - wkład studia niestacjonarne 12 Ekstrema funkcji wielu miennch ( ) 121 Ekstrema lokalne Niechf:D f R,D f R n będie funkcjąn-miennch Niech U D f będie biorem otwartm i P 0 ( 01,, 0n ) U Definicja 121 Funkcjaf ma w punkciep 0 ( 01,, 0n ) minimum lokalne, jeżeli istnieje otocenie U D f punktup 0 ( 01,, 0n ), takie że dla każdego punktup U ip P 0 spełniona jest nierówność f(p) f(p 0 ) Funkcjaf ma w punkciep 0 minimum lokalne właściwe, jeżeli istnieje otocenie U D f punktup 0, takie że dla każdego punktup U ip P 0 spełniona jest nierówność f(p)>f(p 0 ) Definicja 122 Funkcjaf ma w punkciep 0 ( 01,, 0n ) maksimum lokalne, jeżeli istnieje otocenie U D f punktup 0 ( 01,, 0n ), takie że dla każdego punktup U ip P 0 spełniona jest nierówność f(p) f(p 0 ) Funkcjaf ma w punkciep 0 ( 01,, 0n ) maksimum lokalne właściwe, jeżeli istnieje otocenie U D f punktup 0 ( 01,, 0n ), takie że dla każdego punktup U ip P 0 spełniona jest nierówność f(p)<f(p 0 ) Minima i maksima lokalne nawam EKSTREMAMI LOKALNYMI 122 Ekstrema globalne Definicja 123 Licbamjest najmniejsą wartością funkcjif na biorea D f, jeżeli istnieje punktp 0 ( 01,, 0n ) A, taki że f(p 0 )=m i dla każdego punktup A f(p) f(p 0 )=m Licbęmnawam minimum globalnm funkcjif na biorea Definicja 124 LicbaM jest najwięksą wartością funkcjif na biorea D f, jeżeli istnieje punktp 0 ( 01,, 0n ) A, taki że f(p 0 )=M i dla każdego punktup A f(p) f(p 0 )=M LicbęM nawam maksimum globalnm funkcjif na biorea Minimum i maksimum globalne nawam EKSTREMAMI GLOBALNYMI 16 Opracowała: Małgorata Wrwas

Automatka i robotka, sem I rok akademicki 2009/2010 MATEMATYKA - wkład studia niestacjonarne 123 Warunki na istnienie ekstremów funkcji wielu miennch Twierdenie 125 (Warunek koniecn istnienia ekstremum) Jeżeli to fma ekstremum w punkciep 0, istnieją pochodne i,i=1,,n cąstkowe w punkciep 0, 1 (P 0 )=0, 2 (P 0 )=0,, f(p 0 )=[0,0,,0]= 0 n (P 0 )=0 Uwaga 4 Z twierdenia tego wnika, że funkcja może mieć ekstrema tlko w punktach, w którch wsstkie jej pochodne cąstkowe są równe 0 albo w punktach, w którch prnajmniej jedna pochodna cąstkowa nie istnieje Zerowanie się pochodnch cąstkowch nie gwarantuje istnienia ekstremum lokalnego Na prkład funkcje f(,)= 3, f(,)= 2 2 spełniają warunki (0,0)=0, (0,0)=0 i nie mają ekstremów w punkcie(0,0) Definicja 126 PunktP 0 R n, w którm prnajmniej jedna pochodna cąstkowa nie istnieje lub w którm wsstkie pochodne cąstkowe są równe ero nawam punktem krtcnm funkcjif Punkt krtcnp 0, w którm jest spełnion warunek nawam punktem stacjonarnm funkcjif f(p 0 )= 0 Definicja 127 Macier Hf:= 2 1 2 1 1 2 2 2 n 1 n 2 1 n 2 n 2 n nawam HESJANEM funkcji f Hesjan jest macierą ależną od tch samch miennch, od którch ależ funkcja Roważm funkcjęf: R n R ora definiujm funkcje i := 2 1 2 1 2 2 i 1 1 2 i 2 1 i 2 i 2 i, i=1,,n Zauważm, że 1 := 2 f 2 1 i n =dethf 17 Opracowała: Małgorata Wrwas

Automatka i robotka, sem I rok akademicki 2009/2010 MATEMATYKA - wkład studia niestacjonarne Twierdenie 128 (Warunek wstarcając istnienia ekstremum) Załóżm, że (P 0 )=0, (P 0 )=0,, (P 0 )=0 (punktp 0 jest punktem stacjonarnm funkcjif) 1 2 n Jeżeli i (P 0 )>0, dlai=1,2,,n, to w punkciep 0 funkcjaf ma minimum lokalne właściwe 1 (P 0 )<0, 2 (P 0 )>0, 3 (P 0 )<0,, ( 1) i i (P 0 )>0,i=1,,n, to w punkciep 0 funkcjaf ma maksimum lokalne właściwe Uwaga 5 NiechP 0 będie punktem krtcnm funkcjif: R 2 R Jeżeli 2 (P 0 )<0, to w punkciep 0 funkcjaf nie ma ekstremum Np dlaf(,)= 2 2 mam (0,0)=0, (0,0)=0 i 2 0 2 =dethf= 0 2 = 4<0, więc funkcjaf nie ma ekstremum w punkcie krtcnm(0,0) Prkład 129 Niechf: R 3 R i f(,,)= 2 + 2 + 2 ++2 Wted =2 +1, =2, =2+2Ponieważ 2 +1=0 2 =0 2+2=0 więcp 0 ( 2 3, 1 3, 1 ) jest punktem krtcnm funkcjif Ponadto = 2 3 = 1 3 = 1 2 1 0 Hf= 1 2 0 0 0 2, i 1 (P 0 )=2>0, 2 (P 0 )=3>0, 3 (P 0 )=6>0, więc funkcjaf ma w punkciep 0 ( 2 3, 1 3, 1 ) minimum lokalne, które wnosif min =f(p 0 )= 4 3 Prkład 1210 Niechf: R n R,n 2 i f( 1, 2,, n )= 2 1 2 2 2 n 18 Opracowała: Małgorata Wrwas

Automatka i robotka, sem I rok akademicki 2009/2010 MATEMATYKA - wkład studia niestacjonarne Wted i = 2 i,i=1,,n Ponieważ 2 1 =0 2 n =0 1 =0 n =0, więcp 0 (0,,0) jest punktem krtcnm Ponadto 2 0 0 0 2 0 Hf= 0 0 2 i 1 (P 0 )= 2<0, 2 (P 0 )=4>0,, n (P 0 )=( 2) n, ( 1) i i (P 0 )=( 1) i ( 2) i =2 i >0, dlai=1,2,,n Zatem funkcjaf ma w punkciep 0 (0,,0) maksimum lokalne, które wnosif ma =f(p 0 )=0 NiechA R n if:a R JeżeliAjest domknięt i ogranicon, af jest funkcją ciągłą, to funkcjaf osiąga w biore A wartość najmniejsą i najwięksą 1231 Algortm najdowania ekstremów globalnch funkcji na obsare domkniętm Znajdujem wsstkie punkt krtcne wewnątr bioruaioblicm wartości funkcji w tch punktach Znajdujem punkt krtcne na bregu obsaruaioblicm wartości funkcji w tch punktach Porównujem otrmane wartości funkcji najdując wartość najmniejsą i najwięksą 19 Opracowała: Małgorata Wrwas

Automatka i robotka, sem I rok akademicki 2009/2010 MATEMATYKA - wkład studia niestacjonarne Prkład 1211 Niechf:A R 2 R i f(,)= 2 +2 4+8, gdieajest trójkątem ograniconm prostmi=0,=0 i+=4 20 Opracowała: Małgorata Wrwas