EPR. W -1/2 =-1/2 gµ B B
|
|
- Dominik Chmielewski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Hamiltonian spinow
2 Elektronow reonans paramanetcn jest wiąan absorpcją pola wsokiej cęstotliwości, która towars mianie orientacji spin w ewnętrnm polu manetcnm. Niesparowane spinowe moment manetcne µ s ustawiają się odnie kierunkiem pola manetcneo. pin elektronu i wiąan e spinem moment manetcn µ s są kolinearne, lec preciwnie skierowane: µ s =- µ, die jest współcnnikiem eemanowskieo roscepienia, któr informuje jaki jest udiał orbitalneo momentu manetcneo w całkowitm momencie µ daneo centrum paramanetcneo.
3 la spinu =1/ wartości manetcnej licb spinowej wnosą m s =+1/ i m s =-1/. W polu manetcnm pojawiają się dwa poiom enerii elektronu wiąane orientacją spinu: W +1/ =1/ µ W -1/ =-1/ µ Różnica enerii spinowch poiomów ΔW = W 1/ -W -1/ Jeżeli paramanetk poddajem diałaniu promieniowania paramanetcneo o enerii kwantu hf, to miana orientacji spinu w polu manetcnm następuje, d eneria kwantu hf odpowiada różnic enerii pomięd roscepionmi poiomami eemanowskimi: hf = µ
4 Zawcaj współcnnik nie jest skalarem. Zawcaj w kompleksach niesparowan elektron najduje się na orbitalu o określonej smetrii. Wted współcnnik ależ od kąta φ, jaki twor wektor osią smetrii pola lokalneo. Wówcas należ użć hamiltonianu spinoweo H s W którm enerie W, spin i współcnnik astępują operator H, ora macier. W układie współrędnch wiąanm centrum paramanetcnm macier ma tr składowe,, odpowiadające wartościom łównm współcnnika eemanowskieo roscepienia w kierunkach osi łównch,,, które wnacają pole lokalne diałające na niesparowan elektron.
5 Nieerowe element macier w układie osi łównch leżą na jej prekątnej: Jeżeli dla daneo centrum wartości i mają taką samą wartość to możem wprowadić onacenia = =, którą nawam wartością prostopadłą ora wartości uskanej wdłuż osi smetrii, wanej wartością równolełą =. Mówim wted, że macier ma smetrie osiową.
6 W badaniach aniotropii widma krstałów (badania ależności kątowch) trudno jest wbrać układ odniesienia wiąan osiami łównmi macier, dż osie łówne są dowolnie orientowane wlędem osi krstaloraficnch. lateo osiami krstału wiąan jest laboratorjn układ odniesienia, w którm wkonujem badania aniotropii.
7 =1/ iolowan jon paramanetcn Tr lokalne rup smetrii Kubicna Cubal oktaedrcna tetraedrcna Jednoosiowa Rombowa rak aniotropii Aniotropia obserwowalna wjątkiem płascn prostopadłej do pola Aniotropia we wsstkich kierunkach (w literarure cęsto wana ortorombowa)
8 H Kubicna H T s =1/ iolowan jon paramanetcn
9 =1/ iolowan jon paramanetcn Jednoosiowa H
10 =1/ iolowan jon paramanetcn Rombowa H
11 =1/ iolowan jon paramanetcn truktura nadsubtelna Gd koncentracja centrów paramanetcnch jest na tle mała, że ich wajemne oddiałwanie można pominąć, obserwuje się strukturę nadsubtelną widma wiąaną oddiałwaniem niesparowaneo spinu elektronoweo momentami manetcnm jąder atomowch H H Z A Obserwacja struktur nadsubtelnej powala na badanie bepośrednieo otocenia niesparowaneo elektronu ora oddiałwania nadsubtelneo dalsch sfer koordnacjnch wokół centrum (struktura supernadsubtelna) I
12 =1/ iolowan jon paramanetcn
13 1/ < 3/ Centra paramanetcne, w którch paramanetm wiąan jest kilkoma niesparowanmi elektronami tak, że wpadkow spin centrum paramanetcneo > ½ charakterują się widmem e strukturą subtelną H H Z Jest ona wiąana roscepieniem poiomów spinowch w erowm polu manetcnm. Obserwacja struktur subtelnej jest efektwną metodą badania radientu efektwneo pola elektrcneo w krstałach (badania prejść faowch i spinowch jawisk relaksacjnch)
14 H H Jeżeli macier jest beśladowa to można apisać: Wted bepośrednio macier możem otrmać nieależne parametr enerii onacone jako: E 1, 3 1/ < 3/
15 3 1 Z E H H Jeżeli > i E < to spin hamiltonian prjmuje postać: Należ pamiętać wartości tch parametrów ależą, która oś laboratorjna odpowiada osi Z. E 1, 3 1/ < 3/
16 1/ < 3/ Jeżeli < to dla smetrii jednoosiowa = w takim raie E=. Jeżeli E to dla smetrii rombowej nie istnieją stan deenerowane w erowm polu manetcnm. Z macier można otrmać parametr tevensa rędu -o (k=) 1 1
17 H par PARY Gd wstępuje oddiałwanie parowe hamiltonian spinow: H A Z H Z,die J to stała oddiałwania wmienneo. J A A A dd
18 5/ la spinów =5/ dodajem parametr wżsch rędów parametr tevensa rędu 4-o (k=4) la spinów =7/ dodajem parametr tevensa rędu 6-o (k=6) H H... Z k mk m k O m k
19 5/ W ależności od nieerowch wartości paramentów tevensa można określić lokalną smetrię jonu paramanetcneo (tlko dla ośrodków radkich manetcnie o niskiej koncentracji)
20 = 7/ l ml m l O m l ()
21 ( dodatek)
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCESOWEJ, MATERIAŁOWEJ I FIZYKI STOSOWANEJ POLITECHNIKA CZĘSTOCHOWSKA ĆWICZENIE NR MR-2
INTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCEOWEJ, MATERIAŁOWEJ I FIZYKI TOOWANEJ POLITECHNIKA CZĘTOCHOWKA LABORATORIUM Z PRZEDMIOTU METODY REZONANOWE ĆWICZENIE NR MR- EPR JONÓW Ni W FLUOROKRZEMIANIE NIKLU I.
Bardziej szczegółowo1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił
. REDUKCJA DOWOLNYCH UKŁADÓW IŁ Redukcja płaskiego układu sił Zadanie. Znaleźć wartość licbową i równanie linii diałania wpadkowej cterech sił predstawionch na rsunku. Wartości licbowe sił są następujące:
Bardziej szczegółowocz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 8: Brła stwna c. Dr inż. Zbigniew Sklarski Katedra Elektroniki, paw. C-, pok.3 skla@agh.edu.pl http://laer.uci.agh.edu.pl/z.sklarski/ 05.04.08 Wdiał nformatki, Elektroniki i Telekomunikacji - Teleinformatka
Bardziej szczegółowoElementy symetrii makroskopowej w ujęciu macierzowym.
Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Element smetrii makroskopowej w ujęciu macierowm. 2 god. Cel ćwicenia: tworenie macier smetrii elementów smetrii makroskopowej
Bardziej szczegółowoRuch kulisty bryły. Kąty Eulera. Precesja regularna
Ruch kulist brł. Kąt Eulera. Precesja regularna Ruchem kulistm nawam ruch, w casie którego jeden punktów brł jest stale nieruchom. Ruch kulist jest obrotem dookoła chwilowej osi obrotu (oś ta mienia swoje
Bardziej szczegółowoSPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: I. Animacje na slajdach przygotował mgr inż.
SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE CZĘŚĆ: I DR INŻ. TOMASZ LASKOWSKI Animacje na slajdach 13-30 prgotował mgr inż. Marcin Płosiński MOTTO WYKŁADU Nie treba końcć studiów na kierunku elektronika, ab
Bardziej szczegółowoBUDOWA ATOMU cd. MECHANIKA KWANTOWA
BUDOWA ATOMU cd. ajmuje się opisem ruchu cąstek elementarnch, układ można opiswać posługując się współrędnmi określającmi położenie bądź pęd, współrędne określa się pewnm prbliżeniem, np. współrędną dokładnością
Bardziej szczegółowoGeometria analityczna w przestrzeni. Kierunek. Długość. Zwrot
- podstawowe pojęcia Geometria analitcna w prestreni Wektorem acepionm w prestreni R 3 nawam uporądkowaną parę punktów A ora B i onacam go pre AB. Punkt A nawam jego pocątkiem, a punkt B - jego końcem.
Bardziej szczegółowoPostać Jordana macierzy
Rodiał 8 Postać Jordana macier 8.1. Macier Jordana Niech F = R lub F = C. Macier J r () F r r postaci 1. 1... J r () =..........,.... 1 gdie F, nawam klatką Jordana stopnia r. Ocwiście J 1 () = [. Definicja
Bardziej szczegółowoMechanika Robotów. Wojciech Lisowski. 2 Opis położenia i orientacji efektora Model geometryczny zadanie proste
Katedra Robotki i Mechatroniki Akademia Górnico-Hutnica w Krakowie Mechanika Robotów Wojciech Lisowski Opis położenia i orientacji efektora Model geometrcn adanie proste Mechanika Robotów KRIM, AGH w Krakowie
Bardziej szczegółowoWyznaczanie ruchliwości i koncentracji nośników prądu w półprzewodnikach metodą efektu Halla
Ćwicenie 13 Wnacanie ruchliwości i koncentracji nośników prądu w półprewodnikach metodą efektu alla Cel ćwicenia Celem ćwicenia jest aponanie się e jawiskiem alla, stałoprądową metodą badania efektu alla,
Bardziej szczegółowoPRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:
PRW ZCHOWNI Pawa achowania nabadie fundamentalne pawa: o ewnętne : pawo achowania pędu, pawo achowania momentu pędu, pawo achowania enegii; o wewnętne : pawa achowania np. całkowite licb nukleonów w eakci
Bardziej szczegółowoGRUPY SYMETRII Symetria kryształu
GRUPY SYMETRII Smetria krstału Zamknięte (punktowe) operacje smetrii (minimum jeden punkt prestreni nie porusa się wskutek astosowania amkniętej operacji smetrii): Obrot i obrot inwersjne; Inwersja (smetria
Bardziej szczegółowoI. Rachunek wektorowy i jego zastosowanie w fizyce.
Blok 1: Rachunek wektorow i jego astosowanie w fice Podstawowe wielkości ficne w kinematce Opis ruchu w różnch układach odniesienia Ruch wględn I Rachunek wektorow i jego astosowanie w fice Wsstkie wielkości
Bardziej szczegółowoI. POLARYZATORY Dichroizm Polaryzator w postaci rastra z drutu
I. POLARYZATORY Polarator nie służą tlko do polaracji światła naturalnego, ale również do mian stanu polaracji światła spolarowanego. Polarator: liniow, kołow, eliptcn. Zasad diałania różnch polaratorów
Bardziej szczegółowoMechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz
Bardziej szczegółowoBUDOWA ATOMU cd. MECHANIKA KWANTOWA
BUDOWA ATOMU cd. ajmuje się opisem ruchu cąstek elementarnch, układ można opiswać posługując się współrędnmi określającmi położenie bądź pęd, współrędne określa się pewnm prbliżeniem, np. współrędną dokładnością
Bardziej szczegółowoPochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać:
ochodna kierunkowa i gradient Równania parametrcne prostej prechodącej pre punkt i skierowanej wdłuż jednostkowego wektora mają postać: Oblicam pochodną kierunkową u ( u, u ) 1 + su + su 1 (, ) d d d ˆ
Bardziej szczegółowoPrzestrzeń liniowa R n.
MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c
Bardziej szczegółowoJ. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie
J. antr - Wkład Napór hdrostatcn Napór hdrostatcn na ścian płaskie Napór elementarn: d n( p pa ) d nρgd Napór całkowit: ρg nd ρgn d gdie: C Napór hdrostatcn na ścianę płaską predstawia układ elementarnch
Bardziej szczegółowoRuch kulisty bryły. Kinematyka
Ruch kulist bł. Kinematka Ruchem kulistm nawam uch, w casie któego jeden punktów bł jest stale nieuchom. Ruch kulist jest obotem dookoła chwilowej osi obotu (oś ta mienia swoje położenie w casie). a) b)
Bardziej szczegółowoANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY
Cw3_biornik.doc ANALIZA KONTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY 1. W P R O W A D Z E N I E Ciało utworone pre dwie akrwione powierchnie nawane jest powłoką, jeśli preciętna odlełość pomięd
Bardziej szczegółowoAtomy mają moment pędu
Atomy mają moment pędu Model na rysunku jest modelem tylko klasycznym i jak wiemy z mechaniki kwantowej, nie odpowiada dokładnie rzeczywistości Jednakże w mechanice kwantowej elektron nadal ma orbitalny
Bardziej szczegółowoSpin jądra atomowego. Podstawy fizyki jądrowej - B.Kamys 1
Spin jądra atomowego Nukleony mają spin ½: Całkowity kręt nukleonu to: Spin jądra to suma krętów nukleonów: Dla jąder parzysto parzystych, tj. Z i N parzyste ( ee = even-even ) I=0 Dla jąder nieparzystych,
Bardziej szczegółowoStrukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.
Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. god. Cel ćwicenia: aponanie się diałaniem elementów smetrii
Bardziej szczegółowoTEORIA SPRĘŻYSTOŚCI 10
W YKŁ ADY Z T EOII S ĘŻYSTOŚCI ZADANIE BOUSSINESQA I FLAMANTA olitechnika onańska Kopac, Kawck, Łodgowski, łotkowiak, Świtek, Tmpe Olga Kopac, Kstof Kawck, Adam Łodgowski, Michał łotkowiak, Agnieska Świtek,
Bardziej szczegółowoWykład Budowa atomu 3
Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n
Bardziej szczegółowoSPEKTROSKOPIA NMR. No. 0
No. 0 Spektroskopia magnetycznego rezonansu jądrowego, spektroskopia MRJ, spektroskopia NMR jedna z najczęściej stosowanych obecnie technik spektroskopowych w chemii i medycynie. Spektroskopia ta polega
Bardziej szczegółowoPOTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y
POTENCJALNE POLE SIŁ POLE SKALARNE Polem skalarnm V(r) nawam funkcję prpisującą każdemu punktowi w prestreni licbę recwistą (skalar): V (r): r=(,, ) V (r) POLE WEKTOROWE SIŁ Polem wektorowm sił F(r) nawam
Bardziej szczegółowoMatematyka 2. Elementy analizy wektorowej cz I Pole wektorowe
Matematka Element anali wektorowej c I Pole wektorowe Literatura M.Gewert Z.Skoclas; Element anali wektorowej; Oficna Wdawnica GiS Wrocław 000 W.Żakowski W.Kołodiej; Matematka c II; WNT Warsawa 1984 W.Leksiński
Bardziej szczegółowoBADANIE CYFROWYCH UKŁADÓW ELEKTRONICZNYCH TTL strona 1/7
BADANIE CYFROWYCH UKŁADÓW ELEKTRONICZNYCH TTL strona 1/7 BADANIE CYFROWYCH UKŁADÓW ELEKTRONICZNYCH TTL 1. Wiadomości wstępne Monolitcne układ scalone TTL ( ang. Trasistor Transistor Logic) stanowią obecnie
Bardziej szczegółowoZginanie ukośne LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki
Katedra Wtrmałości Materiałów i Metod Komputerowch Mechaniki Wdiał Mechanicn Technologicn Politechnika Śląska LABORATORUM WYTRZYMAŁOŚC MATERAŁÓW Zginanie ukośne ZGNANE UKOŚNE 2 1. CEL ĆWCZENA Ćwicenie
Bardziej szczegółowoKONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA
ĆWICZENIE 5 KONWENCA ZNAKOWANIA OENTÓW I WZÓR NA NAPRĘŻENIA Wektor momentu pr ginaniu ukośnm można rutować na osie,, będące głównmi centralnmi osiami bewładności prekroju. Prjmujem konwencję nakowania
Bardziej szczegółowoRozdział 9. Baza Jordana
Rodiał 9 Baa Jordana Niech X będie n wmiarową prestrenią wektorową nad ciałem F = R lub F = C Roważm dowoln endomorfim f : X X Wiem, że postać macier endomorfimu ależ od wboru ba w prestreni X Wiem również,
Bardziej szczegółowoP K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ).
Materiał ddaktcne Geodeja geometrcna Marcin Ligas, Katedra Geomatki, Wdiał Geodeji Górnicej i Inżnierii Środowiska UKŁADY WSPÓŁZĘDNYCH NA KULI Pierwsm prbliżeniem kstałtu Ziemi (ocwiście po latach płaskich
Bardziej szczegółowoII.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym
II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym Jan Królikowski Fizyka IVBC 1 II.4.1 Ogólne własności wektora kwantowego momentu pędu Podane poniżej własności kwantowych wektorów
Bardziej szczegółowoStrukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.
Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. 2 god. Cel ćwicenia: aponanie się diałaniem elementów smetrii
Bardziej szczegółowo24 Spin i efekty relatywistyczne
4 Spin i efekty relatywistyczne 4. Doświadczenie Sterna Gerlacha Zauważmy, że klasycznie na moment magnetyczny µ w stałym polu magnetycznym B działa moment siły N = µ B. (4.) Efektem tego oddziaływania
Bardziej szczegółowonapór cieczy - wypadkowy ( hydrostatyczny )
5. apór hdrostatcn i równowaga ciał płwającch Płn najdując się w stanie równowagi oddiałwuje na ścian ogranicające ropatrwaną jego objętość i sił te nawane są naporami hdrostatcnmi. Omawiana problematka
Bardziej szczegółowoJ. Szantyr - Wykład 7 Ruch ogólny elementu płynu
J. Santr - Wkład 7 Rch ogóln element płn Rch ogóln ciała stwnego można predstawić jako smę premiescenia liniowego i obrot. Ponieważ płn nie mają stwności postaciowej, w rch płn dochodi dodatkowo do odkstałcenia
Bardziej szczegółowoINSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCESOWEJ, MATERIAŁOWEJ I FIZYKI STOSOWANEJ POLITECHNIKA CZĘSTOCHOWSKA ĆWICZENIE NR MR-3
INTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCEOWEJ, ATERIAŁOWEJ I FIZYKI TOOWANEJ POLITECHNIKA CZĘTOCHOWKA LABORATORIU Z PRZEDIOTU ETODY REZONANOWE ĆWICZENIE NR R-3 ELEKTRONOWY REZONAN PARAAGNETYCZNY JONÓW n
Bardziej szczegółowoZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE
KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 6 nr Archiwum Technologii Masn i Automatacji 6 ROMAN STANIEK * ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE W artkule predstawiono ależności matematcne
Bardziej szczegółowo4.2.1. Środek ciężkości bryły jednorodnej
4..1. Środek ciężkości rł jednorodnej Brłą jednorodną nawam ciało materialne, w którm masa jest romiescona równomiernie w całej jego ojętości. Dla takic ciał arówno gęstość, jak i ciężar właściw są wielkościami
Bardziej szczegółowoII.6 Atomy w zewnętrznym polu magnetycznym
II.6 Atomy w zewnętrznym polu magnetycznym 1. Kwantowanie przestrzenne w zewnętrznym polu magnetycznym. Model wektorowy raz jeszcze 2. Zjawisko Zeemana Normalne zjawisko Zeemana i jego wyjaśnienie w modelu
Bardziej szczegółowoWłaściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej
Bardziej szczegółowoWykład Atom o wielu elektronach Laser Rezonans magnetyczny
Wykład 21. 12.2016 Atom o wielu elektronach Laser Rezonans magnetyczny Jeszcze o atomach Przypomnienie: liczby kwantowe elektronu w atomie wodoru, zakaz Pauliego, powłoki, podpowłoki, orbitale, Atomy wieloelektronowe
Bardziej szczegółowoZestaw zadań 15: Funkcjonały dwuliniowe i formy kwadratowe (1) Sprawdzić, czy następujące odwzorowania ξ : R 3 R 3 R: x y. x y z. f(x)g(x)dx.
Zestaw adań 5: Funkcjonał dwuliniowe i form kwadratowe () Sprawdić, c następujące odworowania ξ : R 3 R 3 R: x x a) ξ( x, c) ξ( x, x ) = xx + + ; b) ξ(, x ) = xx + 2 + ; d) ξ( x, x x ) = x + x + 2; ) =
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era
Bardziej szczegółowoMechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
Bardziej szczegółowoLiczby kwantowe elektronu w atomie wodoru
Liczby kwantowe elektronu w atomie wodoru Efekt Zeemana Atom wodoru wg mechaniki kwantowej ms = magnetyczna liczba spinowa ms = -1/2, do pełnego opisu stanu elektronu potrzebna jest ta liczba własność
Bardziej szczegółowocz. 1. dr inż. Zbigniew Szklarski
Wykład 14: Pole magnetyczne cz. 1. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza v F L Jeżeli na dodatni ładunek
Bardziej szczegółowoAtom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:
ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości
Bardziej szczegółowoRównoważne układy sił
Równoważne układ sił Równoważnmi układami sił nawam takie układ, którch skutki diałania na ten sam obiekt są jednakowe. Jeżeli układ sił da się astąpić jedną siłą, to siłę tą nawam siłą wpadkową. Wpadkowa
Bardziej szczegółowoZadania z AlgebryIIr
Zadania AlgebrIIr Seria () Rowia ι ać uk lad równań: + + t = + = 7 + + t = ; + + = ; + 7 6t = + = 7 + + = 8 = 8 + + t = + 9 = 9 ; + 7t = + = 7 + + t = + 8 7 = () Podać bae ι prestreni rowia ι ań uk ladu:
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera
Bardziej szczegółowoTEORIA WIĄZAŃ WALENCYJNYCH (VB) dr Henryk Myszka - Uniwersytet Gdański - Wydział Chemii
TEORIA WIĄZAŃ WALENCYJNYC (VB) Metoda (teoria) wiąań walencjnch (VB) Dogodną i użtecną metodę prewidwania kstałtu cąstecki stanowi koncepcja hbrdacji. YBRYDYZACJA - wmiesanie funkcji falowch, tworenie
Bardziej szczegółowoFunkcje wielu zmiennych
Funkcje wielu miennch wkład MATEMATYKI Automatka i Robotka sem I, rok ak 2008/2009 Katedra Matematki Wdiał Informatki Politechnika Białostocka Niech R n def = {( 1, 2,, n ): 1 R 2 R n R } Funkcją n miennch
Bardziej szczegółowoPowierzchnie stopnia drugiego
Algebra WYKŁAD 3 Powierchnie sopnia drugiego Deinicja Powierchnią sopnia drugiego kwadrką nawam biór punków presreni rójwmiarowej, spełniającch równanie A B C D E F G H I K gdie A, B,, K są sałmi i prnajmniej
Bardziej szczegółowoFunkcje wielu zmiennych
Funkcje wielu miennch wkład MATEMATYKI Automatka i robotka studia niestacjonarne sem II, rok ak 2009/2010 Katedra Matematki Wdiał Informatki Politechnika Białostocka Niech R ndef ={( 1, 2,, n ): 1 R 2
Bardziej szczegółowoWykład FIZYKA II. 5. Magnetyzm. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 5. Magnetyzm Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html MAGNESY Pierwszymi poznanym magnesem był magnetyt
Bardziej szczegółowoMagnetyczny Rezonans Jądrowy (NMR)
Magnetyczny Rezonans Jądrowy (NMR) obserwacja zachowania (precesji) jąder atomowych obdarzonych spinem w polu magnetycznym Magnetic Resonance Imaging (MRI) ( obrazowanie rezonansem magnetycznym potocznie
Bardziej szczegółowoĆwiczenie 13. Wyznaczanie ruchliwości i koncentracji nośników prądu w półprzewodnikach metodą efektu Halla. Cel ćwiczenia
Ćwicenie 13 Wynacanie ruchliwości i koncentracji nośników prądu w półprewodnikach metodą efektu alla Cel ćwicenia Celem ćwicenia jest aponanie się e jawiskiem alla, stałoprądowa metoda badania efektu alla,
Bardziej szczegółowoRozwiazania zadań. Zadanie 1A. Zadanie 1B. Zadanie 2A
Rowiaania adań Zadanie A = ( i) = 4 8i 4 = 8i Badam licbȩ espolon a 8i Jej moduł 8i jest równ 8 Jej postać espolona jest równa 8(cosα + isinα) α = /π St ad cosα = i sinα = Mam pierwiastki które oblicam
Bardziej szczegółowoAdam Bodnar: Wytrzymałość Materiałów. Ukośne zginanie 13. UKOŚNE ZGINANIE
. UKOŚNE GINNIE.. Naprężenia i odkstałcenia Ukośne ginanie pręta prmatcnego wstępuje wówcas gd układ sił ewnętrnch po jednej stronie jego prekroju poprecnego pręta redukuje się do momentu ginającego, którego
Bardziej szczegółowoMetody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy
Metody rezonansowe Magnetyczny rezonans jądrowy Magnetometr protonowy Co należy wiedzieć Efekt Zeemana, precesja Larmora Wektor magnetyzacji w podstawowym eksperymencie NMR Transformacja Fouriera Procesy
Bardziej szczegółowoPręt nr 2 N 3,1416² ,1. Wyniki wymiarowania stali wg PN-EN 1993 (Stal1993_2d v. 1.3 licencja) Zadanie: P_OFFER Przekrój: 8 - Złożony
Pręt nr Wniki wmiarowania stali wg P-E 993 (Stal993_d v..3 licencja) Zadanie: P_OER Prekrój: 8 - Złożon Z Y 39 83 Wmiar prekroju: h6,0 s438,7 Charakterstka geometrcna prekroju: Ig4490, Ig34953,6 83,00
Bardziej szczegółowo1. Podstawy rachunku wektorowego
1 Postaw rachunku wektorowego Wektor Wektor est wielkością efiniowaną pre ługość (mouł) kierunek iałania ora wrot Dwa wektor o tm samm moule kierunku i wrocie są sobie równe Wektor presunięt równolegle
Bardziej szczegółowoMacierze normalne. D : Dowolną macierz kwadratową można zapisać w postaci A = B + ic gdzie ( ) B = A + A B = A + A = ( A + A)
Macierze normalne Twierdzenie: Macierz można zdiagonalizować za pomocą unitarnej transformacji podobieństwa wted i tlko wted gd jest normalna (AA A A). ( ) D : Dowolną macierz kwadratową można zapisać
Bardziej szczegółowoInformatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe
Wykład 4 29 kwietnia 2015 Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Dobra lektura: Michel Le Bellac
Bardziej szczegółowoAtomowa budowa materii
Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól
Bardziej szczegółowoSpektroskopia magnetyczna
Spektroskopia magnetyczna Literatura Zbigniew Kęcki, Podstawy spektroskopii molekularnej, PWN W- wa 1992 lub nowsze wydanie Przypomnienie 1) Mechanika ruchu obrotowego - moment bezwładności, moment pędu,
Bardziej szczegółowoWłasności magnetyczne materii
Własności magnetyczne materii Dipole magnetyczne Najprostszą strukturą magnetyczną są magnetyczne dipole. Fe 3 O 4 Kompas, Chiny 220 p.n.e Kołowy obwód z prądem dipol magnetyczny! Wartość B w środku kołowego
Bardziej szczegółowoPRAWIDŁOWE ODPOWIEDZI I PUNKTACJA
MAŁOPOLSKI KONKURS MATEMATYCZNY Rok skoln 08/09 ETAP REJONOWY 0 grudnia 08 roku PRAWIDŁOWE ODPOWIEDZI I PUNKTACJA adanie odpowiedź punkt B 3 C 3 3 A 3 4 B 3 5 E 3 6 B 3 7 E 3 8 C 3 9 D 3 0 A 3 7 adania
Bardziej szczegółowoSpektroskopia magnetycznego rezonansu jądrowego - wprowadzenie
Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,
Bardziej szczegółowoPOLITECHNIKA ŚLĄSKA. WYDZIAŁ ORGANIZACJI I ZARZĄDZANIA. Katedra Podstaw Systemów Technicznych - Mechanika Stosowana. y P 1. Śr 1 (x 1,y 1 ) P 2
POLITECHNIKA ŚLĄSKA. WYDZIAŁ ORGANIZACI I ZARZĄDZANIA. Katedra Podstaw Sstemów Technicznch Płaska geometria mas c c 3c Dla zadanego pola przekroju wznaczć: - połoŝenie środka cięŝkości S( s, s ) - moment
Bardziej szczegółowoPola siłowe i ich charakterystyka
W-6 (Jaosewic) 10 slajdów Pola siłowe i ich chaaktestka Pola siłowe: pojęcie i odaje pól siłowch, wielkości chaakteujące pola siłowe Pola achowawce Pole gawitacjne: uch w polu gawitacjnm 3/10 L.R. Jaosewic
Bardziej szczegółowoPręty silnie zakrzywione 1
Pęt silnie akwione. DEFIICJ Pętem silnie akwionm nawam pęt, któego oś jest płaską kwą, a stosunek wmiau pekoju popecnego (leżącego w płascźnie kwin) do pomienia kwin osi ciężkości () pęta spełnia waunek.
Bardziej szczegółowoCZĄSTECZKA (VB) Metoda (teoria) wiązań walencyjnych (VB)
CZĄSTECZKA (VB) Metoda (teoria) wiąań walencjnch (VB) teoria VSEPR (ang. Valence Shell Electron Pair Repulsion), tj. odpchanie się par elektronów powłoki walencjnej teoria Sidgwicka i Powella (1940 r.)
Bardziej szczegółowoPodstawy informatyki kwantowej
Wykład 6 27 kwietnia 2016 Podstawy informatyki kwantowej dr hab. Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Wykłady: 6, 13, 20, 27 kwietnia oraz 4 maja (na ostatnim wykładzie będzie
Bardziej szczegółowoRysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych.
VII. SPIN 1 Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych. 1 Wstęp Spin jest wielkością fizyczną charakteryzującą cząstki
Bardziej szczegółowoWykład 1 Podstawy projektowania układów logicznych i komputerów Synteza i optymalizacja układów cyfrowych Układy logiczne
Element cfrowe i układ logicne Wkład Literatura M. Morris Mano, Charles R. Kime Podstaw projektowania układów logicnch i komputerów, Wdawnictwa Naukowo- Technicne Giovanni De Micheli - Sntea i optmaliacja
Bardziej szczegółowoCzęść V: Spektroskopia EPR. Biofizyka II przedmiot obieralny Materiały pomocnicze do wykładów prof. dr hab. inż. Jan Mazerski
iofizyka II przedmiot obieralny Materiały pomocnicze do wykładów prof dr hab inż Jan Mazerski 5 SPEKTSKPIA EP Spektroskopia elektronowego rezonansu paramagnetycznego (EP, ang Electronic Paramagnetic esonance)
Bardziej szczegółowo>> ω z, (4.122) Przybliżona teoria żyroskopu
Prybliżona teoria żyroskopu Żyroskopem naywamy ciało materialne o postaci bryły obrotowej (wirnika), osadone na osi pokrywającej się osią geometrycną tego ciała wanej osią żyroskopową. ζ K θ ω η ω ζ y
Bardziej szczegółowoWstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 4 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14
Bardziej szczegółowoKINEMATYKA. Pojęcia podstawowe
KINEMTYK Pojęcia podstawowe Kinematka jest diałem mechaniki ajmującm się badaniem uchu ciał be uwględniania pcn wwołującch ten uch. Jej celem jest opis tego uchu. Ruchem nawam mianę położenia ciała w odniesieniu
Bardziej szczegółowo1. Krótki zarys teorii grup 1
1. Krótki ars teorii grup 1 1.1. Grup Co prawda w dalsej cęści wkładu będiem ajmować się tlko grupami operacji smetrii, ale najpierw wprowadim ścisłe, matematcne pojęcie grup niealeŝne od wobraŝeń geometrcnch,
Bardziej szczegółowoODKSZTAŁCENIE PLASTYCZNE MATERIAŁÓW IZOTROPOWYCH. Opis dla ośrodka ciągłego
ODKSZTAŁCENIE LASTYCZNE MATERIAŁÓW IZOTROOWYCH. Opis dla ośrodka ciągłego (opracowano na podstawie: C.N. Reid, deformation geometr for Materials Scientists, ergamon ress, Oford, 97) Wstęp Omówim tera sposób
Bardziej szczegółowoWykład FIZYKA II. 5. Magnetyzm
Wykład FIZYKA II 5. Magnetyzm Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html ELEKTRYCZNOŚĆ I MAGNETYZM q q magnetyczny???
Bardziej szczegółowoOrientacja zewnętrzna pojedynczego zdjęcia
Orientacja zewnętrzna pojedynczego zdjęcia Proces opracowania fotogrametrycznego zdjęcia obejmuje: 1. Rekonstrukcję kształtu wiązki promieni rzutujących (orientacja wewnętrzna ck, x, y punktu głównego)
Bardziej szczegółowoMagnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera
Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 2500 lat
Bardziej szczegółowox od położenia równowagi
RUCH HARMONICZNY Ruch powtarając się w regularnch odstępach casu nawa ruche okresow. Jeżeli w taki ruchu seroko rouiane odchlenie od stanu równowagi ( np. odchlenie as podcepionej do sprężn, wartość wektora
Bardziej szczegółowoGrupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli
Grupa obrotów - grupa smetr kul R - wsstke możlwe obrot o dowolne kąt wokół os prechodącch pre środek kul nacej O 3 grupa obrotów właścwch - grupa cągła - każd obrót określa sę pre podane os l kąta obrotu
Bardziej szczegółowoWartości i wektory własne
Rozdział 7 Wartości i wektor własne Niech X będzie skończenie wmiarową przestrzenią liniową nad ciałem F = R lub F = C. Niech f : X X będzie endomorfizmem, tj. odwzorowaniem liniowm przekształającm przestrzeń
Bardziej szczegółowoWyznaczanie temperatury gazu z wykorzystaniem widm emisyjnych molekuł dwuatomowych
Wyznaczanie temperatury gazu z wykorzystaniem widm emisyjnych molekuł dwuatomowych Opracował: Hubert Lange Aby przygotować się do ćwiczenia należy przeczytać i zrozumieć materiał w książce:. adlej, pektroskopia
Bardziej szczegółowoZestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t
Zesaw adań : Preksałcenia liniowe () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + +, b) n = m = 3, ϕ( +, 3 + + + +, d) n = m = 3, ϕ( +, c) n = m = 3, ϕ( e) n
Bardziej szczegółowoZłożone działanie sił wewnętrznych w prętach prostych
Złożone diałanie sił wewnętrnch w rętach rostch Jeżeli sił wewnętrne nie redukują się włącnie do sił odłużnej N, orecnej T i momentu gnącego Mg c momentu skręcającego Ms, to radki takie nawa się łożonmi
Bardziej szczegółowoTechnika pomiarowa NMR: impulsy złożone i selektywne Czas relaksacji T 1 Czas relaksacji T 2 Technika gradientowa i jej zastosowania Usuwanie sygnału
Technika pomiarowa NMR: impuls łożone i selektwne Cas relaksacji T 1 Cas relaksacji T 2 Technika gradientowa i jej astosowania Usuwanie sgnału ropuscalnika Proces dfuji, DOSY NMR w faie stałej i ciekłokrstalicnej
Bardziej szczegółowoCoba, Mexico, August 2015
Coba, Meico, August 015 W-6 (Jaosewic) 10 sladów Pola siłowe i ich chaaktestka Pola siłowe: poęcie i odae pól siłowch, wielkości chaakteuące pola siłowe Pola achowawce Pole gawitacne: uch w polu gawitacnm
Bardziej szczegółowoTeoria Orbitali Molekularnych. tworzenie wiązań chemicznych
Teoria Orbitali Molekularnych tworzenie wiązań chemicznych Zbliżanie się atomów aż do momentu nałożenia się ich orbitali H a +H b H a H b Wykres obrazujący zależność energii od odległości atomów długość
Bardziej szczegółowo