Funkcje dwóch zmiennych
|
|
- Renata Gajewska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Funkcje dwóch zmiennych 1. Funkcje dwóch zmiennych: pojęcia podstawowe Definicja 1. Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej liczby rzeczywistej. Piszemy f : A R lub z f(x, y). Wartość funkcji f w punkcie (x, y) oznaczamy f(x, y). Przykład. f(x, y) xy 3 + sin(x + y). Z definicji wynika, że zbiór A na którym funkcja f jest określona (dziedzina funkcji, oznaczenie D f ) powinien być podany. Jeżeli podany jest tylko wzór określający funkcję, to zbiór punktów płaszczyzny dla których ten wzór ma sens nazywamy dziedziną naturalną funkcji. Przykłady. Znaleźć i narysować dziedziny naturalne funkcji: 1. z xy; x 2. z arc cos x+y ; 3. z ln(1 x 2 y 2 ). Definicja 2. Wykresem funkcji z f(x, y) nazywamy zbiór: {(x, y, z) R 3 : (x, y) D f, z f(x, y)}. Poziomicą wykresu funkcji f dla poziomu h R nazywamy zbiór: {(x, y) D f : f(x, y) h}. Poziomica jest krzywą zawartą w dziedzinie funkcji. Przykłady. Wyznaczyć poziomice danych funkcji i na ich podstawie naszkicować odpowiednią powierzchnię w przestrzeni będącą wykresem funkcji. 1. z x y ; 2. z x + y ; 3. z x 2 + y 2 ; 4. z x 2 + y 2. Wykresy ważniejszych funkcji dwóch zmiennych 1. Wykresem funkcji z Ax + By + C jest płaszczyzna. Jej wektorem normalnym jest [ A, B, 1] i przechodzi ona przez punkt (0, 0, C). 2. Wykresem funkcji z a(x 2 + y 2 ) jest paraboloida obrotowa, tj. powierzchnia powstała przez obrót paraboli z ax 2 wokół osi Oz. 3. Wykresem funkcji z ± R 2 x 2 y 2 jest górna (+) lub dolna ( ) półsfera o środku w początku układu współrzędnych i promieniu R. 1
2 4. Wykresem funkcji z k x 2 + y 2 jest stożek. 5. Wykresem funkcji z g(x) lub z h(y) jest powierzchnia walcowa utworzona z wszystkich prostych przechodzących przez punkty krzywej z g(x) (odpowiednio z h(y)) na płaszczyźnie Oxz (odpowiednio Oyz) i równoległych do osi Oy (odp. Ox). 2. Pochodne cząstkowe funkcji dwóch zmiennych Definicja 3. Niech funkcja f będzie określona przynajmniej na otoczeniu punktu (x 0, y 0 ). Pochodną cząstkową rzędu pierwszego funkcji f względem x w punkcie (x 0, y 0 ) określamy wzorem: (x 0, y 0 ) def lim x 0 f(x 0 + x, y 0 ) f(x 0, y 0 ). x Inne oznaczenia pochodnej: f x (x 0, y 0 ), D 1 f(x 0, y 0 ). Analogicznie określamy pochodną cząstkową funkcji f względem y w punkcie (x 0, y 0 ): y (x 0, y 0 ) def lim y 0 f(x 0, y 0 + y) f(x 0, y 0 ). y Inne oznaczenia tej pochodnej: f y (x 0, y 0 ), D 2 f(x 0, y 0 ). Z definicji wynika, że pochodne cząstkowe obliczamy według tych samych zasad, co zwykłe (można stosować wzory na pochodną sumy, iloczynu, itd.). Przy obliczaniu pochodnej cząstkowej funkcji f względem x należy y traktować jak stałą, a przy obliczaniu pochodnej cząstkowej funkcji f względem y należy x traktować jak stałą. Przykłady. Obliczyć pochodne cząstkowe rzędu pierwszego: 1. z x 3 y xy 3 ; 2. z x y + y2 x ; 3. z ln(x + x 2 + y 2 ); 4. z x y ; 5. z arc tg x y. Jeżeli pochodne cząstkowe rzędu pierwszego istnieją dla wszystkich punktów pewnego zbioru A, to w tym zbiorze można rozpatrywać funkcje pochodne. Obliczając pochodne cząstkowe tych funkcji otrzymamy pochodne cząstkowe drugiego rzędu. Dokładniej, określamy: 2 ( f 2 (x 0, y 0 ) def ( y (x 0, y 0 ) def y (x 0, y 0 ) def y 2 (x 0, y 0 ) def ( ( y ( ( y ( ( y y )) (x 0, y 0 ), )) (x 0, y 0 ), )) (x 0, y 0 ), )) (x 0, y 0 ). Inne oznaczenia tych pochodnych: f xx (x 0, y 0 ), f xy (x 0, y 0 ), f yx (x 0, y 0 ), f yy (x 0, y 0 ) lub D 11 f(x 0, y 0 ), D 12 f(x 0, y 0 ), D 21 f(x 0, y 0 ), D 22 f(x 0, y 0 ). Twierdzenie 1. (Schwarza o pochodnych mieszanych) Jeżeli pochodne cząstkowe / y, / y są ciągłe w punkcie (x 0, y 0 ), to są równe, tj. y (x 0, y 0 ) 2 f y (x 0, y 0 ). 2
3 Przykłady. Obliczyć pochodne rzędu drugiego: 1. z cos 2 (2x + 3y); 2. z x+y x y ; 3. z arc tg x+y 1 xy. 3. Różniczka funkcji dwóch zmiennych Niech dana będzie funkcja z f(x, y) i punkty P 0 (x 0, y 0 ), P 1 (x 1, y 1 ) należące do D f. Przyrosty argumentów funkcji to x x 1 x 0 i y y 1 y 0. Nazywa się je również różniczkami i oznacza dx, dy. Natomiast dla wartości funkcji przyrost i różniczka oznaczają coś innego: f f(x 0 + x, y 0 + y) f(x 0, y 0 ), df (x 0, y 0 ) dx + y (x 0, y 0 ) dy. Różniczka df (oznaczana także dz) jest funkcją czterech zmiennych: x 0, y 0, dx, dy. Przykład. Obliczyć przyrost f i różniczkę df, gdy f(x, y) x 2 y x + 1, w punkcie P 0 (2, 2) dla przyrostów: a) dx dy 1; b) dx 1, dy 1; c) dx dy 0, 1. Przykłady. Napisać wzór na różniczkę dla funkcji 1. z arc tg y x ; 2. z e 3x sin y. Zastosowanie różniczki do obliczeń przybliżonych Twierdzenie 2. Jeżeli funkcja f ma ciągłe pochodne cząstkowe pierwszego rzędu w (x 0, y 0 ), to f(x 0 + x, y 0 + y) f(x 0, y 0 ) + df(x 0, y 0 )( x, y), przy czym błąd δ( x, y) tego przybliżenia dąży do 0 szybciej niż x 2 + y 2. Jeżeli maksymalne błędy pomiarów wielkości x, y oznaczymy x, y, a z maksymalnym błędem obliczeń, to z x + y y. będzie Przykład. Kąt ϕ pod jakim widzimy drzewo zmierzony z dokładnością 0,01 radiana jest równy π/4, a odległość d miejsca pomiaru od pnia drzewa zmierzona z dokładnością d 0, 1 m jest równa 30 m. Z jaką dokładnością możemy obliczyć wysokość tego drzewa? Rozwiązanie. h d tg ϕ 30 m. Dokładność: z h d d + h ϕ ϕ tg ϕ d + d cos 2 ϕ ϕ 1 0, , 01 0, 7. 0, 5 4. Pochodna kierunkowa i gradient funkcji Definicja 4. Niech funkcja f będzie określona przynajmniej na otoczeniu punktu (x 0, y 0 ) i niech v (v x, v y ) będzie wektorem. Pochodną kierunkową funkcji f w punkcie (x 0, y 0 ) w kierunku v określamy wzorem: v (x 0, y 0 ) def f(x 0 + tv x, y 0 + tv y ) f(x 0, y 0 ) lim. t 0 t 3
4 Pochodną kierunkową można traktować jak uogólnienie pochodnej cząstkowej, bo jeśli v (1, 0), to v, a jeśli v (0, 1), to v y. Do obliczania pochodnej kierunkowej stosujemy wzór: v cos α + y sin α gdzie α jest kątem jaki wektor v tworzy z osią Ox. Jeżeli dany jest wektor v (v x, v y ), to cos α vx vy v, sin α v. Definicja 5. Gradientem funkcji f w punkcie (x 0, y 0 ) nazywamy wektor określony wzorem: ( grad f(x 0, y 0 ) def (x 0, y 0 ), ) y (x 0, y 0 ). Gradient oznacza się też używając symbolu, nazywanego nabla. 1 grad f f Przy użyciu pojęcia gradientu wzór na pochodną kierunkową przyjmie postać: v grad f v v. Zatem pochodna kierunkowa jest iloczynem skalarnym gradientu i wersora o kierunku wektora v. Przykład. Znaleźć pochodną kierunkową funkcji z 2x 2 3y 2 w punkcie P (1, 0) w kierunku, który z osią Ox tworzy kąt 2 3 π. Rozwiązanie. Mamy ( ) 4x, 4, więc y 6y, ( y P ) P 0, cos α cos 2 3 π 1 2, sin α sin 2 3 π 3 2, 3 v 4 ( 1 2 ) Przykład. Znaleźć gradient funkcji z x 3 + y 3 3xy w punkcie P (2, 1). Rozwiązanie. Mamy ( ) 3x2 3y, 9, (2,1) ( ) y 3y2 3x, 3, y więc grad f (9, 3). Znajdziemy teraz wektor v wyznaczający kierunek, w którym pochodna ma największą wartość. Mamy: 1 Nazwa pochodzi od greckiego wyrazu określającego hebrajską harfę o podobnym kształcie. (2,1) 4
5 v v f f cos( f, v), v a więc maksymalna wartość wynosi f i jest osiągana wtedy, gdy cos( f, v) 1, czyli gdy wektor v ma kierunek gradientu. Mamy więc wniosek. Wniosek 1. Gradient wskazuje kierunek najszybszego wzrostu wartości funkcji. Szybkość wzrostu funkcji f w punkcie (x, y) jest długością wektora (grad f)(x, y). 5. Ekstremum funkcji dwóch zmiennych Tak samo jak w przypadku funkcji jednej zmiennej, maksimum i minimum funkcji są pojęciami lokalnymi, tzn. odnoszącymi się do zachowania funkcji w pewnym małym otoczeniu punktu. Definicja 6. (minimum lokalnego) Funkcja f ma w punkcie (x 0, y 0 ) minimum, jeżeli istnieje otoczenie tego punktu takie, że dla dowolnego (x, y) z tego otoczenia zachodzi nierówność f(x, y) f(x 0, y 0 ). Jeżeli powyższa nierówność jest ostra, to minimum nazywamy właściwym. Definicja 7. (maksimum lokalnego) Funkcja f ma w punkcie (x 0, y 0 ) maksimum, jeżeli istnieje otoczenie tego punktu takie, że dla dowolnego (x, y) z tego otoczenia zachodzi nierówność f(x, y) f(x 0, y 0 ). Jeżeli powyższa nierówność jest ostra, to maksimum nazywamy właściwym. Przykłady. 1. Funkcja f(x, y) 5 x 4 y 2 ma maksimum równe 5 w punkcie (0, 0). 2. Funkcja f(x, y) 2x 2 y 2 nie ma ekstremum w punkcie (0, 0), bo f(0, 0) 0, ale w dowolnym otoczeniu punktu (0, 0) są punkty, w których wartość funkcji jest dodatnia (są to punkty osi Ox), i są punkty, w których wartość funkcji jest ujemna (punkty osi Oy). Twierdzenie 3. (warunek konieczny istnienia ekstremum) Jeżeli funkcja f(x, y) ma pochodne cząstkowe w punkcie (x 0, y 0 ) i ma w tym punkcie ekstremum, to (x 0, y 0 ) 0, y (x 0, y 0 ) 0. (1) Zatem punkty, w których może być ekstremum znajdziemy rozwiązując układ równań (x, y) 0, (x, y) 0. (2) y Rozwiązania układu (2) nazywamy punktami stacjonarnymi lub krytycznymi funkcji. Twierdzenie 4. (warunek dostateczny istnienia ekstremum) Jeżeli funkcja f(x, y) ma w pewnym otoczeniu punktu P (x 0, y 0 ) ciągłe pochodne cząstkowe drugiego rzędu, przy czym oraz H(x 0, y 0 ) (x 0, y 0 ) 0, (x 2 0, y 0 ) y (x 0, y 0 ) y (x 0, y 0 ) 0, y (x 0, y 0 ) y (x 2 0, y 0 ) > 0, to funkcja f(x, y) ma w punkcie P 0 (x 0, y 0 ) maksimum właściwe, gdy 2 f 2 (x 0, y 0 ) < 0, a minimum właściwe, gdy 2 f 2 (x 0, y 0 ) > 0 5
6 Wyznacznik H(x, y) nazywamy hesjanem. Przykłady. Znaleźć ekstrema funkcji: 1. z e x y (x 2 2y 2 ). Wyniki: Punkty stacjonarne: P 1 (0, 0), P 2 ( 4, 2). W P 1 nie ma ekstremum, w P 2 jest maksimum. 2. z x 3 + 3xy 2 30x 18y. Wyniki: Punkty stacjonarne: P 1 (3, 1), P 2 (1, 3), P 3 ( 1, 3), P 4 ( 3, 1), hesjan H(x, y) 36(x 2 y 2 ). W P 1 jest minimum (równe -72), w P 2 i P 3 nie ma ekstremum, w P 4 jest maksimum (równe 72). 3. z x 2 + xy + y 2 2x y (minimum równe -1 w (1, 0)). 4. Na płaszczyźnie Oxy znaleźć punkt dla którego suma kwadratów odległości od trzech prostych x 0, y 0 i x y jest najmniejsza. (Odp.: P ( 1 4, 1 4 )) 5. Znaleźć wymiary a, b, c prostopadłościanu o ustalonej objętości V, który ma najmniejsze pole powierzchni całkowitej. 6. Metoda najmniejszych kwadratów W naukach doświadczalnych istotne jest wyznaczanie zależności między różnymi wielkościami na podstawie wyników pomiarów. Można to robić rozmaicie. Naturalnym odruchem jest poszukiwanie w miarę prostych zależności między wielkościami. Na przykład w pewnym eksperymencie mierzymy jednocześnie dwie wielkości fizyczne x i y. Wynik n pomiarów, to zbiór par {(x 1, y 1 ), (x 2, y 2 ),..., (x n, y n )}. Zmienną x traktujemy jako niezależną i przypuszczamy, że wartość drugiej zmiennej y jest funkcją liniową x, tj. y ax + b. Gdyby punkty były tylko dwa, to prosta byłaby określona jednoznacznie, bo współczynniki a, b obliczylibyśmy z układu ax 1 + b y 1 ax 2 + b y 2. Przy większej liczbie, np. n punktów, układ ax 1 + b y 1 ax 2 + b y ax n + b y n będzie na ogół sprzeczny. Nie będziemy więc szukać rozwiązania, ale liczb a, b dla których powyższy układ jest jak najmniej sprzeczny. Szukamy a i b takich, że wyrażenie S(a, b) (y k ax k b) 2 ma najmniejszą wartość. Aby znaleźć minimum funkcji obliczamy pochodne cząstkowe S a S b 2 (y k ax k b) x k 2 (y k ax k b). 6
7 Przyrównując je do zera otrzymujemy układ a n x 2 k + b n x k n x k y k a n x k + bn n (3) y k z którego możemy obliczyć a i b, a więc wyznaczymy punkt krytyczny funkcji S(a, b). Bardziej zwięzły zapis uzyskamy wprowadzając oznaczenia x 1 n ȳ 1 n x k y k, a więc x, ȳ są średnimi arytmetycznymi wyników pomiarów. Układ (3) zapisujemy teraz jako a n x 2 k + bn x n x k y k an x + bn nȳ (4) Rozwiązania tego układu (otrzymane np. przy pomocy wzorów Cramera) zapisuje się zwykle w postaci a x k y k n xȳ x 2 k n x2 b ȳ a x. Para (a, b) określa punkt stacjonarny funkcji S. Można standardowo (obliczając hesjan) sprawdzić, że w tym punkcie funkcja ma rzeczywiście minimum. Zatem y ax + b jest szukaną zależnością. Ze względu na wzór na S taki sposób wyznaczania zależności nazywamy metodą najmniejszych kwadratów. Przykład. Metodą najmniejszych kwadratów znaleźć równanie prostej, która najlepiej przybliża dane: Rozwiązanie. Obliczamy x 5 2, ȳ 9 2, x i y i x 2 i 30, i1 4 x i y i 53, więc i1 a , 4 b Równanie prostej to y 8 5 x Metoda najmniejszych kwadratów została wprowadzona na początku XIX wieku. Opiera się na postulacie Legendre a. Można go sformułować następująco. Wartością najbardziej prawdopodobną, otrzymaną z szeregu wyników tak samo dokładnych pomiarów, jest taka, od której obliczone odchylenia tych wyników, po podniesieniu do drugiej potęgi i zsumowaniu dają wielkość najmniejszą z możliwych. 7
8 Z postulatu Legendre a wynika, że najbardziej prawdopodobną wielkością z szeregu jednakowo dokładnych pomiarów jednej wielkości jest ich średnia zwykła. W przypadku pomiarów niejednakowo dokładnych postulat ten brzmi podobnie, stosuje się jednak do odchyleń równoważonych wagami, tj wartość ma tym większą wagę im bardziej dokładny jest pomiar. W tym przypadku najbardziej prawdopodobną okazuje się wielkość zwana średnią ważoną. Omówiliśmy tu najprostszy przypadek: wyznaczanie najbardziej pasującej do danych funkcji liniowej. Można w analogiczny sposób wyznaczać najlepiej pasującą funkcję kwadratową, lub wielomian wyższego stopnia. Historycznie, jednym z pierwszych zastosowań tej metody było wyznaczenie przez Gaussa w 1801 roku orbity planetoidy Ceres. 7. Funkcje uwikłane Jeżeli równość f(x, y) 0, gdzie f(x, y) jest różniczkowalną funkcją zmiennych x, y określa y jako funkcję x, to pochodną tej funkcji uwikłanej można obliczyć ze wzoru dy dx f x(x, y) f y(x, y), (5) pod warunkiem, że f y(x, y) 0. Pochodne wyższych rzędów znajdujemy różniczkując kolejny raz wzór (5) Przykład. Obliczyć dy dx i d2 y dx gdy 2 (x 2 + y 2 ) 3 3(x 2 + y 2 ) Rozwiązanie. Oznaczając lewą stronę przez f(x, y) obliczamy pochodne cząstkowe: Stosując wzór (5) otrzymujemy f x(x, y) 6x ( (x 2 + y 2 ) 2 1 ), f y(x, y) 6y ( (x 2 + y 2 ) 2 1 ). dy dx f x(x, y) f y(x, y) x y. Aby obliczyć drugą pochodną różniczkujemy tę pochodną względem x, uwzględniając, że y jest funkcją x: ( d x ) 1 y x dy dx dx y y 2 y x( x y ) y 2 y2 + x 2 y 3. Ogólny wzór na drugą pochodną ma postać: d 2 y xx(f y) 2 2f xyf xf y + f yy(f x) 2 f dx2 (f y) 3. (6) Ekstremum funkcji uwikłanej Ekstremum może wystąpić w punktach dla których dy dx otrzymujemy warunki: 0. Uwzględniając wzór (5) f(x, y) 0, f x(x, y) 0, f y(x, y) 0. (7) Z powyższych równości obliczamy x, y. Maksimum wystąpi, gdy d2 y dx < 0, a minimum 2 gdy d2 y > 0. Posłużymy się wzorem (6), który przy warunkach (7) przyjmie postać dx 2 uproszczoną d 2 y f dx2 8 xx f y.
9 Zatem gdy f xx f y < 0, to mamy minimum, a gdy f xx f > 0, to mamy maksimum. y Przykład. Znaleźć ekstrema funkcji uwikłanej xy 2 x 2 y 2. Rozwiązanie. Obliczamy: f x y 2 2xy, f y 2xy x 2, f xx 2y. Najpierw rozwiązujemy układ f(x, y) 0, f x(x, y) 0, tj. { xy 2 x 2 y 2 y 2 2xy 0 Otrzymujemy x 1, y 2. Sprawdzamy teraz, czy f y jest różna od 0: Następnie badamy znak ułamka f xx : f y(1, 2) f y f xx f y (1, 2) 4 3 < 0. Zatem dla x 1 funkcja y ma minimum równe 2. 9
1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
Funkcje wielu zmiennych
Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy
Funkcje dwóch zmiennych
Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.
II. FUNKCJE WIELU ZMIENNYCH
II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową
Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.
Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą
Rachunek różniczkowy funkcji dwóch zmiennych
Rachunek różniczkowy funkcji dwóch zmiennych Definicja Spis treści: Wykres Ciągłość, granica iterowana i podwójna Pochodne cząstkowe Różniczka zupełna Gradient Pochodna kierunkowa Twierdzenie Schwarza
13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne.
13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne. 1. Wprowadzenie. Dotąd rozważaliśmy funkcje działające z podzbioru liczb rzeczywistych w zbiór liczb rzeczywistych, zatem funkcje
Wykład 5. Zagadnienia omawiane na wykładzie w dniu r
Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji
Zadania do samodzielnego rozwiązania zestaw 11
Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4
Definicja pochodnej cząstkowej
1 z 8 gdzie punkt wewnętrzny Definicja pochodnej cząstkowej JeŜeli iloraz ma granicę dla to granicę tę nazywamy pochodną cząstkową funkcji względem w punkcie. Oznaczenia: Pochodną cząstkową funkcji względem
Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)
Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),
Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji
Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Adam Kiersztyn Lublin 2014 Adam Kiersztyn () Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji maj 2014 1 / 24 Zanim przejdziemy
Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/
Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na
Lista zadań nr 2 z Matematyki II
Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2
FUNKCJE WIELU ZMIENNYCH
FUNKCJE WIELU ZMIENNYCH 1. Wyznaczyć i narysować dziedziny naturalne podanych funkcji: 4 x 2 y 2 ; (b) g(x, y) = e y x 2 1 ; (c) u(x, y) = arc sin xy; (d) v(x, y) = sin(x 2 + y 2 ); (e) w(x, y) = x sin
Pochodne funkcji wraz z zastosowaniami - teoria
Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie
Rachunek różniczkowy i całkowy w przestrzeniach R n
Rachunek różniczkowy i całkowy w przestrzeniach R n Na dzisiejszym wykładzie rozważać będziemy funkcje f : R m R n Każda taka funkcję f można przedstawić jako wektor funkcji (f 1, f 2,, f n ), gdzie każda
22 Pochodna funkcji definicja
22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica
2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.
2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange
1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.
10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych
Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9
Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Przykład z fizyki Rozpatrzmy szeregowe połączenie dwu elementów elektronicznych: opornika i diody półprzewodnikowej.
Analiza Matematyczna MAEW101
Analiza Matematyczna MAEW Wydział Elektroniki Listy zadań nr 8-4 (część II) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 5 M.Gewert, Z Skoczylas,
Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.
Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE WÓCH ZMIENNYCH RZECZYWISTYCH efinicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą d
Metoda mnożników Lagrange a i jej zastosowania w ekonomii
Maciej Grzesiak Metoda mnożników Lagrange a i jej zastosowania w ekonomii 1 Metoda mnożników Lagrange a znajdowania ekstremum warunkowego Pochodna kierunkowa i gradient Dla prostoty ograniczymy się do
Metoda mnożników Lagrange a i jej zastosowania w ekonomii
Maciej Grzesiak Metoda mnożników Lagrange a i jej zastosowania w ekonomii 1. Metoda mnożników Lagrange a znajdowania ekstremum warunkowego Pochodna kierunkowa i gradient. Dla prostoty ograniczymy się do
Funkcje wielu zmiennych
dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )
Analiza Matematyczna MAEW101 MAP1067
Analiza Matematyczna MAEW MAP67 Wydział Elektroniki Przykłady do Listy Zadań nr 4 Funkcje wielu zmiennych. Pochodne cząstkowe Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania 4.: Wyznaczyć
Analiza matematyczna 2 zadania z odpowiedziami
Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe
f(x + x) f(x) . x Pochodne ważniejszych funkcji elementarnych (c) = 0 (x α ) = αx α 1, gdzie α R \ Z (sin x) = cos x (cos x) = sin x
Iloraz różnicowy Niech x 0 R i niech funkcja y = fx) będzie określona w pewnym otoczeniu punktu x 0. Niech x oznacza przyrost argumentu x może być ujemny!). Wtedy przyrost wartości funkcji wynosi: y =
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3
Rachunek różniczkowy funkcji wielu zmiennych
Wydział Matematyki Stosowanej Zestaw zadań nr 7 Akademia Górniczo-Hutnicza w Krakowie WFiIS, informatyka stosowana, I rok Elżbieta Adamus 13 grudnia 2018r. Rachunek różniczkowy funkcji wielu zmiennych
Opracowanie: mgr Jerzy Pietraszko
Analiza Matematyczna Opracowanie: mgr Jerzy Pietraszko Zadanie 1. Oblicz pochodną funkcji: (a) f(x) = x xx (b) f(x) = log sin 4 x cos 4 x (c) f(x) = sin sin x log x 2(2x) (d) f(x) = ( tg ( x + π 2 (e)
Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami
ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5
Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji
Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )
1 Pochodne wyższych rzędów
Pochodne wyższych rzędów Pochodną rzędu drugiego lub drugą pochodną funkcji y = f(x) nazywamy pochodną pierwszej pochodnej tej funkcji. Analogicznie definiujemy pochodne wyższych rzędów, jako pochodne
Indukcja matematyczna
Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.
Funkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU
Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a
1 Funkcja wykładnicza i logarytm
1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA, lista zadań. Dla podanych ciągów napisać wzory określające wskazane wyrazy tych ciągów: a) a n = n 3n +, a n+, b) b n = 3
Funkcje wielu zmiennych
Funkcje wielu zmiennych 8 Pochodna kierunkowa funkcji Definicja Niech funkcja f określona bȩdzie w otoczeniu punktu P 0 = (x 0, y 0 ) oraz niech v = [v x, v y ] bȩdzie wektorem. Pochodn a kierunkow a funkcji
10 zadań związanych z granicą i pochodną funkcji.
0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()
Matematyka licea ogólnokształcące, technika
Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem
1 Funkcja wykładnicza i logarytm
1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI
SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................
Pochodna funkcji jednej zmiennej
Pochodna funkcji jednej zmiennej Def:(pochodnej funkcji w punkcie) Jeśli funkcja f : D R, D R określona jest w pewnym otoczeniu punktu 0 D i istnieje skończona granica ilorazu różniczkowego: f f( ( 0 )
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność
Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją
(5) f(x) = ln x + x 3, (6) f(x) = 1 x. (19) f(x) = x3 +2x
. Zadania do samodzielnego rozwiązania Zadanie. Na podstawie definicji pochodnej funkcji w punkcie obliczyć pochodną funkcji f zdefiniowanej równością () cos (2) (3) ln (4) sin 2 (5) ln + 3 (6) cos(3 )
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
3. Funkcje wielu zmiennych
3 Funkcje wielu zmiennych 31 Ciagłość Zanim podamy definicję ciagłości dla funkcji wielu zmiennych wprowadzimy bardzo ogólne i abstrakcyjne pojęcie przestrzeni metrycznej Przestrzeń metryczna Metryka w
Rachunek całkowy - całka oznaczona
SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie
9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI
BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego
Rachunek całkowy funkcji wielu zmiennych
Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1
x y = 2z. + 2y, z 2y df
. Funkcje wielu zmiennych i funkcje uwikłane Zadanie.. Obliczyć przybliżoną wartość wyrażenia (, ) (,). Korzystamy z przybliżenia f, y) f, y ) + x x, y ) + y y, y ), gdzie x = x x a y = y y. Przybliżenie
ANALIZA MATEMATYCZNA
ANALIZA MATEMATYCZNA TABLICE Spis treści: 1.) Pochodne wzory 2 2.) Całki wzory 3 3.) Kryteria zbieżności szeregów 4 4.) Przybliżona wartość wyrażenia 5 5.) Równanie płaszczyzny stycznej i prostej normalnej
3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
Spis treści. Przedmowa do wydania piątego
Zadania z matematyki wyższej. Cz. 1, [Logika, równania liniowe, wektory, proste i płaszczyzny, ciągi, szeregi, rachunek różniczkowy, funkcje uwikłane, krzywe i powierzchnie] / Roman Leitner, Wojciech Matuszewski,
? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x
FUNKCE FUNKCJA LINIOWA Sporządź tabelkę i narysuj wykres funkcji ( ) Dla jakich argumentów wartości funkcji są większe od 5 Podaj warunek równoległości prostych Wyznacz równanie prostej równoległej do
Pochodna funkcji. Zastosowania
Pochodna funkcji Zastosowania Informatyka (sem.1 2015/16) Analiza Matematyczna Temat 3 1 / 33 Niektóre zastosowania pochodnych 1 Pochodna jako narzędzie do przybliżania wartości 2 Pochodna jako narzędzie
RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych
RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era
III. Funkcje rzeczywiste
. Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja
Funkcje dwóch zmiennych, pochodne cząstkowe
Wykłady z matematyki inżynierskiej Funkcje dwóch zmiennych, pochodne cząstkowe JJ, IMiF UTP 17 f (x, y) DEFINICJA. Funkcja dwóch zmiennych określona w zbiorze D R 2, to przyporządkowanie każdemu punktowi
Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1
Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą
5 Równania różniczkowe zwyczajne rzędu drugiego
5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =
6. FUNKCJE. f: X Y, y = f(x).
6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
(8) Oblicz wyznacznik dowolnie wybranej macierzy stopnia czwartego. (9) Rozwi aż podany układ równań stosuj ac wzory Cramera:
Zadania przygotowuj ace do kolokwium (budownictwo, studia niestacjonarne, drugi semestr, 209) [7III] () Podaj przykład dowolnej macierzy A drugiego stopnia Oblicz A A T + A T A (2) Podaj przykład dowolnej
1. Definicja granicy właściwej i niewłaściwej funkcji.
V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,
( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x
Arkusz I Zadanie. Wartość bezwzględna Rozwiąż równanie x + 3 x 4 x 7. Naszkicujmy wykresy funkcji f ( x) x + 3 oraz g ( x) x 4 uwzględniając tylko ich miejsca zerowe i monotoniczność w ten sposób znajdziemy
1. Równania i nierówności liniowe
Równania i nierówności liniowe Wykonać działanie: Rozwiązać równanie: ( +x + ) x a) 5x 5x+ 5 = 50 x 0 b) 6(x + x + ) = (x + ) (x ) c) x 0x (0 x) 56 = 6x 5 5 ( x) Rozwiązać równanie: a) x + x = 4 b) x x
ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),
ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j
Uniwersytet Mikołaja Kopernika w Toruniu. Egzamin wstępny z matematyki
Uniwersytet Mikołaja Kopernika w Toruniu Egzamin wstępny z matematyki lipca 2006 roku Zestaw I wariant A Czas trwania egzaminu: 240 minut 1. Dane są zbiory liczbowe A = {x; x R x < 2}, B = {x; x R x +
Pochodne. Zbigniew Koza. Wydział Fizyki i Astronomii
Pochodne Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 MOTYWACJA Rozpatrzmy gładką funkcję np. y x = x 2 w okolicach punktu (1,1) x 0 = 1, y 0 = f x 0 = 1 powiększmy wykres wokół (x 0, f(x 0
x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) =
Zadanie.. Obliczyć granice 2 + 2 (a) lim (d) lim 0 2 + 2 + 25 5 = 5,. Granica i ciągłość funkcji odpowiedzi = 4, (b) lim 2 5 + 6 2 6 =, 4 (e) lim 0sin 2 = 2, cos (g) lim 0 2 =, (h) lim 2 8 Zadanie.2. Obliczyć
Funkcje dwóch zmiennych
Funkcje dwóch zmiennych Je zeli ka zdemu punktowi P o wspó rzednych x; y) z pewnego obszaru D na p aszczyźnie R 2 przyporzadkujemy w sposób jednoznaczny liczb e rzeczywista z, to przyporzadkowanie to nazywamy
Rachunek Różniczkowy
Rachunek Różniczkowy Sąsiedztwo punktu Liczby rzeczywiste będziemy teraz nazywać również punktami. Dla ustalonego punktu x 0 i promienia r > 0 zbiór S(x 0, r) = (x 0 r, x 0 ) (x 0, x 0 + r) nazywamy sąsiedztwem
Wykład z analizy. Tydzień 10 i 11. Różniczkowanie funkcji wielu zmiennych
Wykład z analizy Tydzień 1 i 11. Różniczkowanie funkcji wielu zmiennych 1.1 Niech f(x, y) będzie funkcją dwóch zmiennych, i niech druga współrzędna będzie ustalona y = y. Rozważana funkcja zależy tylko
FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.
FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga
1 Pochodne wyższych rzędów
1 Pochodne wyższych rzędów Definicja 1.1 (Pochodne cząstkowe drugiego rzędu) Niech f będzie odwzorowaniem o wartościach w R m, określonym na zbiorze G R k. Załóżmy, że zbiór tych x G, dla których istnieje
Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa.
Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Monotoniczność i różnowartościowość. Definicja 1 Niech f : X R, X R. Funkcję f nazywamy rosnącą w
Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym
Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel
Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska
Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w
Przygotowanie do poprawki klasa 1li
Zadanie Rozwiąż równanie x 6 5 x 4 Przygotowanie do poprawki klasa li Zadanie Rozwiąż nierówność x 4 x 5 Zadanie Oblicz: a) 9 b) 6 5 c) 64 4 d) 6 0 e) 8 f) 7 5 6 Zadanie 4 Zapisz podane liczby bez znaku
Zestaw zadań przygotowujących do egzaminu z Matematyki 1
Uniwersytet Ekonomiczny w Katowicach Wydział Finansów i Ubezpieczeń, Kierunek: Finanse i Zarządzanie w Ochronie Zdrowia Zestaw zadań przygotowujących do egzaminu z Matematyki 1 Powtórka materiału przed
Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania
Chemia Budowlana - Wydział Chemiczny - 1 Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania rozwiązywane na wykładzie, rozwiązywane na ćwiczeniach, oraz samodzielnie
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania
Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi. Podanie dziedziny funkcji f: