Funkcje pola we współrzędnych krzywoliniowych cd.
|
|
- Włodzimierz Chrzanowski
- 7 lat temu
- Przeglądów:
Transkrypt
1 Funkcje pola we współrędnych krywoliniowych cd. Marius Adamski 1. spółrędne walcowe. Definicja. Jeżeli M jest rutem punktu P na płascynę xy, a r i ϕ są współrędnymi biegunowymi M, to mienne u = r, v = ϕ, w = naywamy współrędnymi walcowymi P. rdϕ dr P d ^ ϕ^ ϕ r^ r M dϕ y x Międy współrędnymi walcowymi a kartejańskimi istnieje następujący wiąek: x = r cos ϕ y = r sin ϕ. = Ortogonalność. Jeżeli ustalimy współrędną r, to otrymamy powierchnię bocną walca o osi głównej pokrywającej się osią. Jeżeli następnie ustalimy ϕ poostawiając poostałe współrędne mienne, otrymamy półpłascynę awierającą oś. Ocywiście obie te powierchnie są prostopadłe. Jeżeli natomiast ustalimy, to dostaniemy płascynę równoległą do xy, która jest prostopadła do w/w powierchni. Zatem wsystkie powierchnie utworone pre ustalenie jednej e współrędnych są prostopadłe. ynika powyżsego, że współrędne walcowe są ortogonalne. 1
2 spółcynniki Lamego. Pryrosty skalarne wektora wodącego w kierunkach wersorów ˆr, ˆϕ, ẑ są równe odpowiednio ds r = dr, ds ϕ = rdϕ, ds = d. Zatem d r = ˆrds r + ˆϕds ϕ + ẑds = ˆrUdr + ˆϕV dϕ + ẑ d, gdie U, V, to współcynniki Lamego. Z równości tej wynika postać współcynników Lamego układu walcowego: U = 1, V = r, = 1. Element objętości we współrędnych walcowych dτ = ds r ds ϕ ds = rdrdϕd. 2. spółrędne sferycne. Definicja. spółrędnymi sferycnymi punktu P naywamy mienne u = r, v = ϑ, w = ϕ takie, że r - odległość P od pocątku układu współrędnych, ϑ - kąt pomiędy promieniem OP a dodatnią cęścią osi, ϕ - kąt pomiędy płascyną awierającą punkt P i oś a dodatnią cęścią osi x. rsinϑdϕ rsinϑ dr ϑ r dϑ P rdϑ ϑ^ r^ ϕ^ y dϕ x ϕ Międy współrędnymi sferycnymi a kartejańskimi istnieje następujący wiąek: x = r sin ϑ cos ϕ y = r sin ϑ sin ϕ. = r cos ϑ Ortogonalność. Jeżeli ustalimy współrędną r to otrymamy sferę o środku w pocątku układu. Jeżeli natomiast ustalimy ϑ to otrymamy powierchnię bocną stożka o wierchołku w 0, 0, 0, która jest ocywiście prostopadła do powierchni sfery. Jeżeli następnie ustalimy ϕ to dostaniemy półpłascynę awierającą oś. Płascyżna ta jest prostopadła arówno do sfery, jak i do stożka. Z powyżsego wynika, że współrędne sferycne są ortogonalne. 2
3 spółcynniki Lamego. Pryrosty skalarne wektora wodącego w kierunku wersorów ˆr, ˆϑ, ˆϕ są równe odpowiednio ds r = dr, ds ϑ = rdϑ, ds ϕ = r sin ϑdϕ. Zatem współcynniki Lamego U = 1, V = r, = r sin ϑ. Elemnet objętości we współrędnych sferycnych dτ = r 2 sin ϑdrdϑdϕ. 3. Operatory różnickowe we współrędnych krywoliniowych. Gradient we współrędnych krywoliniowych. Jeżeli u, v, w są ortogonalnymi współrędnymi krywoliniowymi, to pryrost funkcji skalarnej Φu, v, w można apisać jako natomiast pryrost wektora wodącego dφ = Φ u Φ Φ du + dv + v w dw, d r = r r r du + dv + u v w dw = ˆt 1 Udu + ˆt 2 V dv + ˆt 3 dw, gdie ˆt 1, ˆt 2, ˆt 3 są wersorami osi odpowiednio u, v, w, a U = r r r u, V = v, = w to współcynniki Lamego. Mając powyżse na wlędie można apisać różnickę upełną Φ w postaci ˆt 1 Φ dφ = U u + ˆt 2 Φ V v + ˆt 3 Φ ˆt 1 Φ ˆt 1 Udu + ˆt 2 V dv + ˆt 3 dw = w U u + ˆt 2 Φ V v + ˆt 3 Φ d r. w Ponieważ dφ d r = Φ, mamy Φ = ˆt 1 Φ U u + ˆt 2 Φ V v + ˆt 3 Φ w. Zatem operator we współrędnych krywoliniowych jest postaci = ˆt 1 u + ˆt 2 V v + ˆt 3 Mnożąc różnickę upełną wektora wodącego d r kolejno pre u, v ora w można otrymać ależności typu d r u = r u udu. Z drugiej jednak strony d r u = du, ponieważ jest to rut pryrostu d r na kierunek wrostu u. Ostatecnie otrymujemy relacje r u u = 1 r v v = 1 r w w = 1 Pry takich onaceniach operator można apisać w. u = ˆt 1U v = ˆt 2 V. w = ˆt 3 = u u + v v + w w. 3
4 Dywergencja we współrędnych krywoliniowych. ektor Ā we współrędnych krywoliniowych u, v, w można apisać jako Ā = A uˆt 1 + A vˆt 2 + A wˆt 3, gdie A u, A v, A w to ruty wektora Ā na kierunki wersorów odpowiednio ˆt 1, ˆt 2, ˆt 3. Jeżeli wersory te apisemy w postaci ˆt 1 = ˆt 2 ˆt 3 = V v w ˆt 2 = ˆt 3 ˆt 1 = U w u ˆt 3 = ˆt 1 ˆt 2 = UV u v to wektor Ā = V A u v w + UA v w u + UV A w u v. Taki apis wektora Ā jest prydatny dlatego, że dywergencja cłonów postaci v w jest równa 0, co udowodnimy kożystając notacji sumacyjnej: div v w = ε ijk v j w k = ε ijk v j w k + ε ijk w k v j. x i x i x i Dokonując miany indeksów w pierwsej sumie cyklicnie, a w drugiej amieniając miejscami i i j otrymujemy ε jki v k w i + ε jik w k v i = ε ijk v k w i ε ijk w k v i, x j x j x j x j ale ε ijk x j v k = rot grad v i = 0, a ε ijk x j w k = rot grad w i = 0, atem obie sumy nikają. Kożystając powyżsego można dywergencję Ā apisać jako div V Ā = Ā = A u v w + UA v w u + UV A w u v. Pierwsy składnik po uwględnieniu we współrędnych krywoliniowych: V A u v w = u V A u u + v V A u v + w V A u w v w = = u V A u u v w. Postępując podobnie poostałymi składnikami sumy ora auważając, że u v w = 1 UV jako objętość prostopadłościanu ropiętego na wektorach u, v, w otrymujemy ostatecnie div Ā = 1 UV u V A u + v UA v + w UV A w. Rotacja we współrędnych krywoliniowych. Zapisując wektor Ā w postaci Ā = A uˆt 1 +A vˆt 2 + A wˆt 3 = UA u u + V A v v + A w w i uwględniając rot u = rot v = rot w = 0, mamy rot UA Ā = Ā = u u + V A v v + A w w. Ropismy pierwsy składnik tej sumy; otrymamy: UA u u = u UA u u + v UA u v + w UA u w u. Ocywiście u UA u u u = 0. Zatem v UA u v u + w UA w w u = v UA u 1 V U ˆt 2 ˆt 1 + w UA 1 u U ˆt 3 ˆt 1, 4
5 ale ˆt 2 ˆt 1 = ˆt 3 ora ˆt 3 ˆt 1 = ˆt 2 : UA u u = w UA 1 u U ˆt 2 v UA u 1 UV ˆt 3. Postępując podobnie można otrymać analogicne wiąki dla poostałych cynników: V A v v = A w u V A v 1 UV ˆt 3 w V A 1 v V ˆt 1 w = v A 1 w V ˆt 1 u A 1 w V ˆt 2. Ostatecnie po pogrupowaniu wyraów pry odpowiednich wersorach rotacja wektora Ā prybiera postać rot Ā = ˆt 1 V v A w w V A v + ˆt 2 U + ˆt 3 UV lub w bardiej więłej postaci symbolicnego wynacnika rot Ā = 1 Uˆt 1 V ˆt 2 ˆt 3 UV u v w. UA u V A v A w w UA u u V A v v UA u u A w Laplasjan we współrędnych krywoliniowych. Laplasjan to dywergencja gradientu; astosujemy więc wyprowadone wyżej wory na gradient i dywergencję we współrędnych krywoliniowych: ˆt Φ 2 1 Φ Φ = div grad Φ = div U u + ˆt 2 Φ U v + ˆt 1 Φ = w 1 V Φ = + U Φ + UV Φ. UV u U u v V v w w Literatura [1] Zarys teorii tensorów i wektorów - Edmund Karaśkiewic + 5
WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład IV Twierdzenia całkowe
4. Twierdenie Greena. Wykład IV Twierdenia całkowe Płascyną orientowaną będiemy określać płascynę wyróżnionym na nie obrotem, wanym obrotem dodatnim. Orientację płascyny preciwną wględem danej orientacji
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza
Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona.
Wykład - LICZBY ZESPOLONE Algebra licb espolonych, repreentacja algebraicna i geometrycna, geometria licb espolonych. Moduł, argument, postać trygonometrycna, wór de Moivre a.' Zbiór Licb Zespolonych Niech
Analiza wektorowa. Teoria pola.
Analiza wektorowa. Teoria pola. Pole skalarne Pole wektorowe ϕ = ϕ(x, y, z) A = A x (x, y, z) i x + A y (x, y, z) i y + A z (x, y, z) i z Gradient grad ϕ = ϕ x i x + ϕ y i y + ϕ z i z Jeśli przemieścimy
3. WSPÓŁCZYNNIK ŚCINANIA (KOREKCYJNY)
Cęść 1. WSPÓŁCZYNNIK ŚCINANIA (KOEKCYJNY) 1.. WSPÓŁCZYNNIK ŚCINANIA (KOEKCYJNY).1. Wstęp Współcynnik κ naywany współcynnikiem ścinania jest wielkością ewymiarową, ależną od kstałtu prekroju. Występuje
2. ELEMENTY TEORII PRĘTÓW SILNIE ZAKRZYWIONYCH (Opracowano na podstawie [9, 11, 13, 34, 51])
P Litewka Efektywny eement skońcony o dżej krywiźnie ELEENTY TEOII PĘTÓW SILNIE ZKZYWIONYCH (Opracowano na podstawie [9,, 3, 34, 5]) Premiescenia i odkstałcenia osiowe Pre pręty sinie akrywione romie się
Równanie Schrödingera dla elektronu w atomie wodoru Równanie niezależne od czasu w trzech wymiarach współrzędne prostokątne
Równanie Schrödingera dla elektronu w atomie wodoru Równanie nieależne od casu w trech wymiarach współrędne prostokątne ψ ψ ψ h V m + + x y + ( x, y, ) ψ = E ψ funkcja falowa ψ( x, y, ) Energia potencjalna
Zginanie Proste Równomierne Belki
Zginanie Proste Równomierne Belki Prebieg wykładu : 1. Rokład naprężeń w prekroju belki. Warunki równowagi. Warunki geometrycne 4. Zwiąek fiycny 5. Wskaźnik wytrymałości prekroju na ginanie 6. Podsumowanie
z pokryciem (O i ) i I rozkładu jedności (α i ) i I. Zauważmy najpierw, że ( i I α i )ω dω = d(1 ω) = d d(α i ω). Z drugiej jednak strony
Dowód: Niech M będzie jak w założeniach twierdzenia. Weźmy skończony atlas O i, ϕ i ) na M zgodny z orientacją. Zbiór indeksów I może być skończony, gdyż rozmaitość M jest zwarta. Õi, ϕ i ) oznaczać będzie
Animowana grafika 3D. Opracowanie: J. Kęsik.
Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollb.pl Transformacje 3D Podobnie jak w prestreni -wymiarowej, dla prestreni 3-wymiarowej definijemy transformacje RST: presnięcie miana skali obrót
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................
Ekoenergetyka Matematyka 1. Wykład 1.
Ekoenergetyka Matematyka 1. Wykład 1. Literatura do wykładu M. Gewert, Z. Skocylas, Analia matematycna 1; T. Jurlewic, Z. Skocylas, Algebra liniowa 1; Stankiewic, Zadania matematyki wyżsej dla wyżsych
Optymalizacja (w matematyce) termin optymalizacja odnosi się do problemu znalezienia ekstremum (minimum lub maksimum) zadanej funkcji celu.
TEMATYKA: Optymaliacja nakładania wyników pomiarów Ćwicenia nr 6 DEFINICJE: Optymaliacja: metoda wynacania najlepsego (sukamy wartości ekstremalnej) rowiąania punktu widenia określonego kryterium (musimy
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................
Podstawy elektromagnetyzmu. Wykład 1. Rachunek wektorowy
Podstawy elektromagnetyzmu Wykład 1 Rachunek wektorowy Co to jest,,pole? Matematyka: odwzorowanie Rn Rm które przypisuje każdemu punktowi wartość (skalarną lub wektorową). Fizyka: Własność przestrzeni
1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
, +, - przestrzeń afiniczna, gdzie w wprowadzono iloczyn
EUKLIDESOWA PRZESTRZEŃ AFINICZNA (WEKTOROWA) RZECZYWISTA Deiicja 1,, +, u = ( x x x ) v = ( y y y ),,..., 1 2,,..., 1 2 1 1 2 2 u/ v : = x y + x y +... + xy - aywamy ilocyem skalarym Możemy go rówież oacać
Wektor. Uporz dkowany ukªad liczb (najcz ±ciej: dwóch - na pªaszczy¹nie, trzech - w przestrzeni 3D).
Wektor Uporz dkowany ukªad liczb (najcz ±ciej: dwóch - na pªaszczy¹nie, trzech - w przestrzeni 3D). Adam Szmagli«ski (IF PK) Wykªad z Fizyki dla I roku WIL Kraków, 10.10.2015 1 / 13 Wektor Uporz dkowany
Pole magnetyczne magnesu w kształcie kuli
napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość
>> ω z, (4.122) Przybliżona teoria żyroskopu
Prybliżona teoria żyroskopu Żyroskopem naywamy ciało materialne o postaci bryły obrotowej (wirnika), osadone na osi pokrywającej się osią geometrycną tego ciała wanej osią żyroskopową. ζ K θ ω η ω ζ y
Matematyka 2. Elementy analizy wektorowej cz I Pole wektorowe
Matematka Element anali wektorowej c I Pole wektorowe Literatura M.Gewert Z.Skoclas; Element anali wektorowej; Oficna Wdawnica GiS Wrocław 000 W.Żakowski W.Kołodiej; Matematka c II; WNT Warsawa 1984 W.Leksiński
Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa
Elektrostatyka Potencjał pola elektrycznego Prawo Gaussa 1 Potencjał pola elektrycznego Energia potencjalna zależy od (ładunek próbny) i Q (ładunek który wytwarza pole), ale wielkość definiowana jako:
Teoria pola elektromagnetycznego
Teoria pola elektromagnetycznego Odpowiedzialny za przedmiot (wykłady): prof. dr hab. inż. Stanisław Gratkowski Ćwiczenia i laboratoria: dr inż. Krzysztof Stawicki ks@zut.edu.pl e-mail: w temacie wiadomości
Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 11 Promieniowanie 3 11.1 Promieniowanie dipolowe............... 3 11
Funkcje zespolone. 2 Elementarne funkcje zespolone zmiennej zespolonej
Wyiał Matematyki Stosowanej Zestaw adań nr 8 Akademia Górnico-Hutnica w Krakowie WFiIS, informatyka stosowana, II rok Elżbieta Adamus grudnia 206r. Funkcje espolone Ciągi i seregi licb espolonych Zadanie.
WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16
WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM Rok skolny 2015/16 POZIOMY WYMAGAŃ EDUKACYJNYCH: (2) - ocena dopscająca (2); (3) - ocena dostatecna (3); (4) - ocena dobra (4);
Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 5 Magnetostatyka 3 5.1 Siła Lorentza........................ 3 5.2 Prawo
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie Teoria sprężystości jest działem mechaniki, zajmującym się bryłami sztywnymi i ciałami plastycznymi. Sprężystość zajmuje się odkształceniami
PRZESTRZEŃ WEKTOROWA (LINIOWA)
PRZESTRZEŃ WEKTOROWA (LINIOWA) Def. 1 (X, K,, ) X, K - ciało : X X X ( to diałanie wewnętrne w biore X) : K X X ( to diałanie ewnętrne w biore X) Strukturę (X, K,, ) naywamy prestrenią wektorową : 1) Struktura
PODSTAWY RACHUNKU WEKTOROWEGO
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)
Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni
Rozdział 5 Twierdzenia całkowe 5.1 Twierdzenie o potencjale Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej w przestrzeni trójwymiarowej, I) = A d r, 5.1) gdzie A = A r) jest funkcją polem)
Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 3 Specjalne metody elektrostatyki 3 3.1 Równanie Laplace
[ A i ' ]=[ D ][ A i ] (2.3)
. WSTĘP DO TEORII SPRĘŻYSTOŚCI 1.. WSTĘP DO TEORII SPRĘŻYSTOŚCI.1. Tensory macierzy Niech macierz [D] będzie macierzą cosinusów kierunkowych [ D ]=[ i ' j ] (.1) Macierz transformowana jest równa macierzy
Notatki do wykładu Geometria Różniczkowa I
Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 30 grudnia 2013 1 Całkowanie form różniczkowych 11 Klasyczne wersje Twierdzenia Stokes a W tej części zajmiemy się interpretacją poniższych
Rozdział 3. Tensory. 3.1 Krzywoliniowe układy współrzędnych
Rozdział 3 Tensory 3.1 Krzywoliniowe układy współrzędnych W kartezjańskim układzie współrzędnych punkty P są scharakteryzowane przez współrzędne kartezjańskie wektora wodzącego r = x 1 i 1 + x 2 i 2 +
3. Zapas stabilności układów regulacji 3.1. Wprowadzenie
3. Zapas stabilności układów regulacji 3.. Wprowadenie Dla scharakteryowania apasu stabilności roważymy stabilny układ regulacji o nanym schemacie blokowym: Ws () Gs () Ys () Hs () Rys. 3.. Schemat blokowy
MIESZANY PROBLEM POCZĄTKOWO-BRZEGOWY W TEORII TERMOKONSOLIDACJI. ZAGADNIENIE POCZĄTKOWE
Górnictwo i Geoinżynieria ok 33 Zesyt 1 9 Jan Gasyński* MIESZANY POBLEM POCZĄKOWO-BZEGOWY W EOII EMOKONSOLIDACJI. ZAGADNIENIE POCZĄKOWE 1. Wstęp Analia stanów naprężenia i odkstałcenia w gruncie poostaje
Ruch kulisty bryły. Kąty Eulera. Precesja regularna
Ruch kulist brł. Kąt Eulera. Precesja regularna Ruchem kulistm nawam ruch, w casie którego jeden punktów brł jest stale nieruchom. Ruch kulist jest obrotem dookoła chwilowej osi obrotu (oś ta mienia swoje
Może tak? Definicja robocza. Z. Postawa, Fizyka powierzchni i nanostruktury, Kraków Literatura FIZYKA POWIERZCHNI I NANOSTRUKTURY
FIZYKA POWIERZCNI I NANOSTRUKTURY Literatura dr hab. Zbigniew Postawa Zakład Fiyki Doświadcalnej pok. 16 (nie 016!!) Tel. 5626 e-mail: p@castor.if.uj.edu.pl Sala 328, poniediałek 12 15 Be egaminu Zalicenie
PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach.
CZOŁOWE OWE PRZEKŁADNIE STOŻKOWE PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe) HIPERBOIDALNE ŚLIMAKOWE o ebach prostych o ębach prostych walcowe walcowe o ębach śrubowych o
DWUCZĘŚCIOWE ŁOŻYSKO POROWATE
PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź, 1 14 maja 1999 r. Karol Kremiński Politechnika Warsawska DWUCZĘŚCIOWE ŁOŻYSKO POROWATE SŁOWA KLUCZOWE: łożysko śligowe, tuleja porowata, prepuscalność
Różniczkowe prawo Gaussa i co z niego wynika...
Różniczkowe prawo Gaussa i co z niego wynika... Niech ładunek będzie rozłożony w objętości V z ciągłą gęstością ρ(x,y,z). Wytworzone przez ten ładunek pole elektryczne będzie również zmieniać się w przestrzeni
ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE
KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 6 nr Archiwum Technologii Masn i Automatacji 6 ROMAN STANIEK * ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE W artkule predstawiono ależności matematcne
Układy współrzędnych
Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych
Bardziej formalnie, wektor to wielkość, której współrzędne zmieniają się w określony sposób przy obrót prostokątnego układu współrzędnych.
Rachunek wektorowy (fragmenty z Wikipedii) Zastosowanie wektorów w matematycznym opisie pola elektromagnetycznego umożliwia przedstawienie równań w postaci bardzo zwięzłej i niezależnej od przyjętego układu
Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.Długość l łuku zwykłego gładkiego Γ
Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.ługość l łuku zwykłego gładkiego l = 1dl = b a (x (t)) 2 + (y (t) 2 ) + (z (t)) 2 dt 2.Pole powierzchni walcowej = {(x, y, z) : (x, y), 0 z
Przykład 6.3. Uogólnione prawo Hooke a
Prkład 6 Uogónione prawo Hooke a Zwiąki międ odkstałceniami i naprężeniami w prpadku ciała iotropowego opisuje uogónione prawo Hooke a: ] ] ] a Rowiąując równania a wgędem naprężeń otrmujem wiąki: b W
Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X
Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X ILOCZYN SKALARNY Iloczyn skalarny operator na przestrzeni liniowej przypisujący
Fale elektromagnetyczne
Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................
WYKŠAD 3. di dt. Ġ = d (r v) = r P. (1.53) dt. (1.55) Przyrównuj c stronami (1.54) i (1.55) otrzymujemy wektorowe równanie
WYKŠAD 3 Równania Gaussa dla e, I, Ω, ω, M. Ω, di 1.3.3 Od caªki ól do ė, W odró»nieniu od skalarnej caªki siª»ywych, wektorowa caªka ól mo»e nam osªu»y do otrzymania a» trzech kolejnych równa«gaussa.
Przestrzeń liniowa R n.
MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c
Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe
Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe Definicja 1 (Iloczyn skalarny). Niech V będzie rzeczywistą przestrzenią liniową. Iloczynem skalarnym w przestrzeni V nazywamy funkcję
Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać:
ochodna kierunkowa i gradient Równania parametrcne prostej prechodącej pre punkt i skierowanej wdłuż jednostkowego wektora mają postać: Oblicam pochodną kierunkową u ( u, u ) 1 + su + su 1 (, ) d d d ˆ
Spis tre±ci. 1 Gradient. 1.1 Pochodna pola skalarnego. Plan
Plan Spis tre±ci 1 Gradient 1 1.1 Pochodna pola skalarnego...................... 1 1.2 Gradient................................ 3 1.3 Operator Hamiltona......................... 4 2 Ró»niczkowanie pola
Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych
Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydiał Mechanicny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 3 1. CEL ĆWICZENIA Wybrane
ZASTOSOWANIE GRANICZNYCH ZAGADNIEŃ ODWROTNYCH DO OKREŚLANIA DOPUSZCZALNYCH STĘŻEŃ SUBSTANCJI CHEMICZNYCH NA POWIERZCHNI TERENU
Zastosowanie granicnych agadnień INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH INFRASTRUCTURE AND ECOLOGY OF RURAL AREAS Nr 9/2008, POLSKA AKADEMIA NAUK, Oddiał w Krakowie, s. 217 226 Komisja Technicnej
Analiza transformatora
ĆWICZENIE 4 Analia transformatora. CEL ĆWICZENIA Celem ćwicenia jest ponanie bodowy, schematu astępcego ora ocena pracy transformatora.. PODSTAWY TEORETYCZNE. Budowa Podstawowym adaniem transformatora
P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ).
Materiał ddaktcne Geodeja geometrcna Marcin Ligas, Katedra Geomatki, Wdiał Geodeji Górnicej i Inżnierii Środowiska UKŁADY WSPÓŁZĘDNYCH NA KULI Pierwsm prbliżeniem kstałtu Ziemi (ocwiście po latach płaskich
Katedra Geotechniki i Budownictwa Drogowego. WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Mazurski
Katedra Geotechniki i Budownictwa Drogowego WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Maurski Mechanika Gruntów dr inż. Ireneus Dyka http://pracownicy.uwm.edu.pl/i.dyka e-mail: i.dyka@uwm.edu.pl
Analiza stanu naprężenia - pojęcia podstawowe
10. ANALIZA STANU NAPRĘŻENIA - POJĘCIA PODSTAWOWE 1 10. 10. Analiza stanu naprężenia - pojęcia podstawowe 10.1 Podstawowy zapisu wskaźnikowego Elementy konstrukcji znajdują się w przestrzeni fizycznej.
3. Zapas stabilności układów regulacji 3.1. Wprowadzenie
3. Zapas stabilności układów regulacji 3.. Wprowadenie Dla scharakteryowania apasu stabilności roważymy stabilny układ regulacji o nanym schemacie blokowym: Ws () Gs () Ys () Hs () Rys. 3.. Schemat blokowy
Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych
Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało sprężyste Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało
Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego.
Transformator Φ r Φ M Φ r i i u u Φ i strumień magnetycny prenikający pre i-ty wój pierwsego uwojenia; siła elektromotorycna indukowana w i-tym woju: dφ ei, licba wojów uwojenia pierwotnego i wtórnego.
Całki powierzchniowe w R n
Całki powierzchniowe w R n Na początek małe uzupełnienie z algebry liniowej. Niech R n k oznacza przestrzeń liniową macierzy o n wierszach i k kolumnach. Dla dowolnej macierzy A R n k, gdzie k n, połóżmy
Powierzchnie stopnia drugiego
Algebra WYKŁAD 3 Powierchnie sopnia drugiego Deinicja Powierchnią sopnia drugiego kwadrką nawam biór punków presreni rójwmiarowej, spełniającch równanie A B C D E F G H I K gdie A, B,, K są sałmi i prnajmniej
cz. 2. dr inż. Zbigniew Szklarski
Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez
i = [ 0] j = [ 1] k = [ 0]
Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym
Funkcje dwóch zmiennych
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Funkcje dwóch zmiennych 1. Funkcje dwóch zmiennych: pojęcia podstawowe Definicja 1. Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 14 Rachunekwektorowy W celu zdefiniowania wektora a należy podać: kierunek(prostą na której leży wektor)
J. Szantyr - Wykład 3 Równowaga płynu
J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania
MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH
MES W ANALIZIE SPRĘŻYS UKŁADÓW PRĘOWYCH Prykłady obliceń Belki Lidia FEDOROWICZ Jan FEDOROWICZ Magdalena MROZEK Dawid MROZEK Gliwice 7r. 6-4 Lidia Fedorowic, Jan Fedorowic, Magdalena Mroek, Dawid Mroek
Elektrostatyka, cz. 1
Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin
Obliczanie indukcyjności cewek
napisał Michał Wierzbicki Obliczanie indukcyjności cewek Indukcyjność dla cewek z prądem powierzchniowym Energia zgromadzona w polu magnetycznym dwóch cewek, przez uzwojenia których płyną prądy I 1 i I
Fale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14
dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2013/14 1 dr inż. Ireneusz Owczarek Gradient pola Gradient funkcji pola skalarnego ϕ przypisuje każdemu punktowi
Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska
Podstawy robotyki Wykład II Ruch ciała sztywnego w przestrzeni euklidesowej Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Preliminaria matematyczne
Modelowanie i obliczenia techniczne. Modelowanie matematyczne Metody modelowania
Modelowanie i oblicenia technicne Modelowanie matematycne Metody modelowania Modelowanie matematycne procesów w systemach technicnych Model może ostać tworony dla całego system lb dla poscególnych elementów
Wielokryteriowa optymalizacja liniowa (WPL)
arek isyński BO UŁ 007 - Wielokryteriowa optymaliaja liniowa (WPL) -. Wielokryteriowa optymaliaja liniowa (WPL) Zadaniem WPL naywamy następująe adanie optymaliaji liniowej: a a m L O L L O L L a a n n
Zastosowanie funkcji inżynierskich w arkuszach kalkulacyjnych zadania z rozwiązaniami
Tadeus Wojnakowski Zastosowanie funkcji inżynierskich w arkusach kalkulacyjnych adania rowiąaniami Funkcje inżynierskie występują we wsystkich arkusach kalkulacyjnych jak Excel w MS Office Windows cy Gnumeric
J. Szantyr - Wykład 7 Ruch ogólny elementu płynu
J. Santr - Wkład 7 Rch ogóln element płn Rch ogóln ciała stwnego można predstawić jako smę premiescenia liniowego i obrot. Ponieważ płn nie mają stwności postaciowej, w rch płn dochodi dodatkowo do odkstałcenia
5.6 Klasyczne wersje Twierdzenia Stokes a
Ostatecznie f = 1 r 2 f ) r 2 r r + ctg ϑ f r 2 ϑ + 1 2 f r 2 ϑ + 1 2 2 f r 2 sin 2 ϑ ϕ 2 56 Klasyczne wersje Twierdzenia Stokes a Odpowiedniość między polami wektorowymi i jednoformami lub n 1)-formami
Geometria analityczna
Geometria analityczna Wektory Zad Dane są wektory #» a, #» b, #» c Znaleźć długość wektora #» x (a #» a = [, 0, ], #» b = [0,, 3], #» c = [,, ], #» x = #» #» a b + 3 #» c ; (b #» a = [,, ], #» b = [,,
Arkusz 6. Elementy geometrii analitycznej w przestrzeni
Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos
Promieniowanie dipolowe
Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A
POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y
POTENCJALNE POLE SIŁ POLE SKALARNE Polem skalarnm V(r) nawam funkcję prpisującą każdemu punktowi w prestreni licbę recwistą (skalar): V (r): r=(,, ) V (r) POLE WEKTOROWE SIŁ Polem wektorowm sił F(r) nawam
2. Określenie składowych tensora naprężenia i odkształcenia
Górnicto i Geoinżynieria ok Zesyt /1 9 Marek Cała*, Marian Paluch*, Antoni Tajduś* NIELINIWA DEFMACJA IZTPWEJ SFEY GUBŚCIENNEJ 1. Wproadenie Palia ciekłe i gaoe lub inne płyny mogą być magaynoane naiemnych
Ćwiczenie 63. INDUKCJA ELEKROMAGNETYCZNA Charakterystyka żarówki
I. Wstęp Ćwicenie 63 INDUKCJA ELEKROMAGNETYCZNA Charakterystyka żarówki Niech w jednorodnym polu magnetycnym o indukcji B, patr rys. 1, porusa się prędkością v prewodnik. Pod wpływem siły Lorenta F = ev
Fizyka 1 (mechanika) AF14. Wykład 9
Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m
Ćwiczenie 71. INDUKCJA ELEKROMAGNETYCZNA Wyznaczanie indukcyjności solenoidu
I. Wstęp Ćwicenie 71 INDUKCJA ELEKROMAGNETYCZNA Wynacanie indukcyjności solenoidu Niech w jednorodnym polu magnetycnym o indukcji B, patr rys. 1, porusa się prędkością v prewodnik. Pod wpływem siły Lorenta
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 14, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fiyki IV Optyka elementami fiyki współcesnej wykład 4, 30.03.0 wykład: pokay: ćwicenia: Cesław Radewic Radosław Chrapkiewic, Filip Oimek Ernest Grodner Wykład 3 - prypomnienie płasko-równoległy
Wybrane algorytmy automatycznego
Wyrane algorytmy automatycnego Wyrane algorytmy automatycnego naprowadania preciwpancernego pocisku naprowadania rakietowego preciwpancernego atakującego cel pocisku górnego pułapu rakietowego atakującego
Wybrane elementy analizy wektorowej, teorii pola, teorii potencjału i ich zastosowania w elektrodynamice
Antonina Orlicz-wiłło Wybrane elementy analizy wektorowej, teorii pola, teorii potencjału i ich zastosowania w elektrodynamice b D R r a r a r a L L r Wydawnictwo Politechniki Gdańskiej PRZEWODNICZĄCY
Geometria analityczna w przestrzeni. Kierunek. Długość. Zwrot
- podstawowe pojęcia Geometria analitcna w prestreni Wektorem acepionm w prestreni R 3 nawam uporądkowaną parę punktów A ora B i onacam go pre AB. Punkt A nawam jego pocątkiem, a punkt B - jego końcem.
W. Np. pole prędkości cieczy lub gazu, pole grawitacyjne, pole elektrostatyczne, magnetyczne.
Elementy teorii pola - Wydział Chemiczny - 1 Wielkości fizyczne można klasyfikować na podstawie różnych kryteriów. Istnieją wielkości, które przy wyznaczonej jednostce miary są w zupełności określone przez
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
Matematyka plusem dla gimnajum PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
SIMR 2012/2013, Analiza 2, wykład 14,
IMR 2012/2013, Analiza 2, wykład 14, 2012-06-03 Całka powierzchniowa efinicja gładkiego płata powierzchni Gładkim płatem powierzchni nazywamy zbiór : = {(x, y, z) : z = g(x, y), (x, y) }, gdzie R 2 jest