Adam Bodnar: Wytrzymałość Materiałów. Ukośne zginanie 13. UKOŚNE ZGINANIE

Wielkość: px
Rozpocząć pokaz od strony:

Download "Adam Bodnar: Wytrzymałość Materiałów. Ukośne zginanie 13. UKOŚNE ZGINANIE"

Transkrypt

1 . UKOŚNE GINNIE.. Naprężenia i odkstałcenia Ukośne ginanie pręta prmatcnego wstępuje wówcas gd układ sił ewnętrnch po jednej stronie jego prekroju poprecnego pręta redukuje się do momentu ginającego, którego wektor nie jest równoległ do żadnej głównch, centralnch osi bewładności prekroju poprecnego. Będiem się starali wnacć element macier naprężeń i odkstałceń ora współrędne wektora premiescenia w dowolnm punkcie pręta. Roważm więc, pokaan na rs.. pręt prmatcn określon w układie osi (,,), w którm oś jest osią pręta, a osie (, ) są głównmi centralnmi osiami bewładności jego prekroju poprecnego. ateriał pręta jest iotropow, liniowo sprężst o stałch materiałowch E ora ν. W roważanm prpadku moment ginając diała w płascźnie anaconej sarm kolorem na rsunku, a jego wektor jest nachlon pod kątem α do osi. v (,0,0 ) α α I II płascna obciążenia ślad płascn obciążenia Rs.. Pr rowiąwaniu postawionego adania wkorstam wniki uskane dla prpadku ginania prostego. Otóż godnie asadą de Saint-Venanta statcnie równoważne obciążenia wwołują jednakowe stan naprężenia i odkstałcenia, a jeśli tak to moment możem astąpić dwoma równoważnmi mu momentami cosα i sinα, którch kierunki są równoległe do odpowiednich osi układu odniesienia (rs..). W ten nieskomplikowan sposób otrmaliśm dwa proste ginania wględem osi i, dla którch maciere naprężeń są już nam nane. W obu prpadkach jednm nieerowm elementem macier naprężeń jest naprężenie normalne σ. Proste sumowanie, godnie asadą superpocji, daje wór określając te naprężenia, dla roważanego pręta, w postaci: σ (.) lub, po wkorstaniu ależności międ, i w formie: cosα sinα σ. (.) 9

2 Wor określające krwinę osi pręta po deformacji w wniku diałania momentów, mają postać: i ρ E ora ρ E. (.), w, v Ugięcia punktów osi pręta w kierunku osi i oblicam od każdego momentu ginającego osobno, korstając równań różnickowch, które pr wrotach momentów i układu odniesienia pokaanch na rs.. są następujące: Rs.. d w d E ora d v d E (.) Całkowite ugięcie osi belki jest geometrcna sumą ugięć od składowch momentów ginającch. acier odkstałceń odpowiadając temu stanowi naprężenia łatwo wnacm równań Hooke a, i będie ona awierała jednie tr odkstałcenia liniowe, którch dwa są sobie równe... nalia stanu naprężenia i odkstałcenia W tm prpadku wtrmałości w pręcie wstępuje jednoosiow niejednorodn stan naprężenia, pr cm wartości naprężeń normalnch σ, są liniową funkcją miennch ora i nie ależą od miennej. Ponieważ jednm nieerowm elementem macier naprężeń jest σ, to wnioski anali stanu naprężenia i odkstałcenia dla tego prpadku, dotcące naprężeń i odkstałceń głównch ich kierunków, jak i ekstremalnch naprężeń stcnch będą analogicne do tch, jakie bł w prpadku osiowego rociągania i ginania prostego. Wor (.) c (.) pokaują, że końce wektorów naprężenia σ leżą na płascźnie - płascźnie naprężeń. Krawędź precięcia się płascn naprężeń płascną prekroju poprecnego, tj. oś obojętna, stanowi miejsce geometrcne punktów, w którch wartości naprężeń normalnch spełniają równanie: σ 0 Podstawiając do niego wrażenie (.) dostajem równanie osi obojętnej dla roważanego prpadku: tgα (.5) atrmajm się chwilę pr równaniu tej prostej. ego prosta analia pokauje, że pr ukośnm ginaniu: oś obojętna prechodi pre pocątek układu współrędnch ale jej położenie (nachlenie) nie ależ od wartości momentu ginającego, 0

3 położenie osi obojętnej ależ od wartości, ora α, tn. od geometrii prekroju poprecnego i płascn diałania obciążeń, oś obojętna nie pokrwa się kierunkiem wektora momentu ginającego (tak bło w prpadku prostego ginania), odchla się ona od niego w kierunku minimalnej głównej centralnej osi bewładności prekroju poprecnego. Wjątek mogłb stanowić prekroje dla którch, ale wobec erowania się momentu dewiacji, każda oś centralna jest osią główną centralną i w takim prpadku awse wstępować będie proste ginanie. Powżse spostreżenia są bardo istotne punktu widenia wmiarowania, bo powalają łatwo wnacć punkt prekroju poprecnego, w którch naprężenia normalne σ osiągają wartości ekstremalne. Punkt te położone są najdalej od osi obojętnej co wnika to liniowości woru określającego wartości naprężeń normalnch. Rokład naprężeń normalnch σ w prekroju poprecnm pręta pokauje rs... oś obojętna Rs.. Rokład ten jest wnikiem dodania do siebie rokładów dwóch prostch ginań, tj. ginania w płascźnie (, ) i w płascźnie (, ) (rs..). Rs.. ak już ostało powiediane, najwiękse co do bewględnej wartości naprężenia wstąpią w punktach najodleglejsch od osi obojętnej. Wnacenie położenia tch punktów pr najomości położenia osi obojętnej nie powinno sprawiać trudności. Kolejn ra należ podkreślić, że wprowadone wor obowiąują pr prjętch wrotach osi układu odniesienia i wektora momentu ginającego. W prpadku innch wrotów należ we worach uwględnić korektę naków.

4 .. Wmiarowanie prętów ukośnie ginanch Tak jak w prpadku prostego ginania ogranicm się tera tlko do wmiarowania e wględu na stan granicn nośności, prjmując, że będie on osiągnięt, jeśli prnajmniej w jednm punkcie prekroju poprecnego wielkość naprężenia normalnego będie równa wtrmałości obliceniowej. eśli pręt wkonan jest materiału którego wtrmałości obliceniowe pr rociąganiu R r i ściskaniu R c, są różne to warunek stanu granicnego nośności stanowią nierówności: ma σ R i ma σ c Rc gdie: r r ma σ r i ma σ c - najwiękse naprężenia rociągające i ściskające w prekroju poprecnm. W prpadku materiału o tej samej wtrmałości obliceniowej na rociąganie i ściskanie (materiał ionomicn) warunek wmiarowania będie jeden: ma σ R. Gd prekrój poprecn pręta ma dwie osie smetrii i obrs ewnętrn jego kstałtu jest prostokątn np. dwuteownik, prostokąt wciętmi otworami itp. to maksmalne naprężenia normalne wstąpią w narożach i mają wartość: ma σ r ma σ c +. W W.. Prkład Prkład... Drewniana belka wspornikowa o długości l.0 m i prostokątnm prekroju poprecnm b cm, h cm obciążona jest na końcu siłą P.0 kn nachloną pod kątem α 0 do osi pionowej (rsunek obok). Wnacć rokład naprężeń normalnch w prekroju utwierdenia i położenie osi obojętnej. Rowiąanie płascna obciążenia h P b l α P.0 kn P α knm l.0 m.0 ślad płascn obciążenia

5 Rsunek wżej pokauje wkres momentów ginając w płascźnie obciążenia. W utwierdeniu moment ma wartość.0 knm a jego wektor będąc prostopadł do płascn obciążenia nie jest równoległ do żadnej głównch centralnch osi bewładności prekroju poprecnego. am do cnienia e ginaniem ukośnm (dokładniej mówiąc wra e ścinaniem, ale naprężenie stcne, w tm prkładie, nie są predmiotem nasego ainteresowania). Składowe tego wektora (pokaane na rsunku) w osiach głównch centralnch mają wartości: cos α.0 * knm, sin α.0* knm. Główne centralne moment bewładności wnosą: * 8 cm, * 5 cm. W prjętm układie odniesienia i wrotach momentów rokład naprężeń normalnch określa wór: σ. 59* 0 8* * 0 5* 0 8. * 0 Wartości naprężeń normalnch w narożach prekroju wnosą:. 0 σ. * 0 ( 0. ). 0 ( 0. 0 ). * 0. 8* Pa σ. * 0 ( 0. ). 0 ( 0. 0 ). * 0. 8* 0 5. Pa σ. * 0 ( 0. ). 0 ( 0. 0 ). * * Pa σ. * 0 ( 0. ). 0 ( 0. 0 ). * * 0 5. Pa Równanie osi obojętnej: σ 0. * Oś obojętna twor osią kąt 55, widać jak wraźnie odchla się ona od wektora momentu gnącego, któr twor osią kąt 0, w stronę głównej centralnej osi o mniejsm momencie bewładności. Rsunki poniżej pokaują rokład naprężeń normalnch w prekroju utwierdenia. Rsunek po lewej, cęsto nawan jest brłą naprężeń, rsunek po prawej pokauje rokład naprężeń na krawędiach prekroju, ale daje pełn obra tego co się dieje wewnątr oś obojętna σ Pa oś obojętna

6 Prkład... Wnacć rokład naprężeń normalnch w prekroju utwierdenia belki wspornikowej o obciążeniu i prekroju poprecnm jak na rsunku. q P.0 kn q0.5 kn/ m l.0 m α P α 0 cm Rowiąanie Obciążenie ciągłe q diała w płascźnie która odchla się od płascn (, ) o kąt 0, siła skupiona P diała w płascźnie (, ). adanie w którm obciążenia diałają w dowolnch płascnach najprościej jest rowiąwać wkorstując asadę superpocji sumując moment od poscególnch obciążeń. Ponieważ moment wstępują w różnch płascnach sumowanie należ wkonać uwględnieniem ich własności wektorowch pamiętając, że wektor momentów są prostopadłe do płascn diałania obciążeń które je wwołują. Otrmaną sumę należ potem rołożć na składowe równoległe do głównch centralnch osi bewładności prekroju poprecnego. tego wględu wdaje się, że najgrabniej jest rokładać obciążenie na składowe równoległe do tch osi bo otrmane od nich moment będą od rau tmi które należ wstawiać do woru na naprężenia normalne. I tak też będiem postępować w tm prkładie. α α 0 Składowe obciążenia ciągłego q wnosą: qsin α 0.5* kn/m q q q cos α 0.5*0.8 0.kN/m Wkres momentów w płascnach układu odniesienia q 0. q 0.50 q cm obciążenie w płascźnie (, ) obciążenie w płascźnie (, ) q 0. kn/ m P.0 kn l.0 m q 0.50 kn/ m l.0 m.99 knm.5 knm

7 Składowe momentu ginającego w prekroju utwierdenia pokaane są na rsunku obok, a rokład naprężeń normalnch określa ależność: σ Wartości naprężeń policm w narożach prekroju. W tm prpadku będą to punkt, którch współrędne są maksmalne, stąd możem naprężenia policć korstając e wskaźników wtrmałości: b h * W 5 cm hb *, W 5 cm. ma ma *0.5*0 σ.* 0 W W 5*0 5 *0.99 *0.5*0 σ.9 * 0 W W 5 *0 5 *0.99*0.5*0 σ + +.* 0 W W 5*0 5*0.99 *0.5*0 σ * 0 W W 5 *0 5 *0 Pa. Pa, Pa -.9 Pa, Pa -. Pa, Pa.9 Pa oś obojętna.9 σ Pa Prkład... Dobrać potrebne wmiar kątownika równoramiennego e wględu na naprężenia normalne dla belki obciążonej jak na rsunku jeśli R 5 Pa. 0 0 q kn/ m l.0 m q 0 0 5

8 Rowiąanie q kn/m l.0 m ma q l / oś obojętna ma 0 Obciążenie diała w płascźnie (, 0 ) atem wektor momentu ginającego jest równoległ do osi 0. Ponieważ jest ona tlko osią centralną a nie główną centralną wstępuje prpadek ukośnego ginania. Osie główne centralne (, ) w tm prekroju poprecnm (oś jest osią smetrii) nachlone są pod kątem 5 do osi centralnch ( 0, 0 ). aksmaln moment ginając wstępując w środku ropiętości belki wnosi: q l * ma. 5 knm, 8 8 a jego współrędne w osiach głównch centralnch mają wartości: 0 wmiar w cm ma knm. Prjęto kątownik równoramienn 0*0*5, którego główne centralne moment bewładności mają wartości 98 cm, 50 cm. Należ tera sprawdić c spełnion jest warunek stanu granicnego nośności e wględu na naprężenia normalne, któr wmaga ab: ma σ R. aksmalne naprężenia normalne wstąpią w punkcie najodleglejsm od osi obojętnej. ej położenie jest łatwo naskicować. Odchla się ona od wektora momentu ginającego w stronę osi, bo wględem tej osi moment bewładności jest najmniejs. Nietrudno tera stwierdić, że punkt jest najodleglejs od osi obojętnej i w osiach głównch centralnch ma współrędne (8.8, 5.0) cm. Rokład napreżeń normalnch w tm prpadku określa ależność: σ, stąd σ * * * 0 98* * 0 50* 0. Pa, a ponieważ : σ ma σ. < R 5, więc prekrój ostał prjęt prawidłowo.

9 Prkład... Wnacć maksmalne naprężenia normalne w prekroju poprecnm adanej belki ora maksmalne ugięcie jej osi jeśli E 05 GPa. knm Rowiąanie Rokład napreżeń normalnch pr tch ustalonch wrotach momentów i osi układu współrędnch wnaca ależność: σ R kn ( ) + Łatwo dowieść równań równowagi, że diałające w płascźnie (, ) obciążenie q wwoduje reakcje R RB 0.0kN a diałając w płascźnie (, ) moment powoduje reakcje R RB. 0 kn. Równania momentów ginającch ( ) i ( ) napisem prjmując a dodatnie moment pokaane na wkresach obok. I tak ( ) 0 0 ( ) rokładu momentów na belce można wnioskować, że maksmalne naprężenia wstąpią w punkcie K ( jeśli mam wątpliwości to można sprawdić we wsstkich punktach narożnch). atem: K 0 σ ( ) ( 8* 0 ) + ( 8. 5* 0 ) ( +. ) * 0 * 0 89 R 0 kn q 0 kn/m l.0 m q 0 kn/m l.0 m R B kn () ( ) cm knm () B R B 0 kn 0 89 Warunek koniecn ekstremum funkcji jednej miennej daje równanie, którego wnacm położenie prekroju w którm naprężenie normalne jest maksmalne: cm cm Profil spawan IPES 0 Hut Pokój 08 cm, cm K cm

10 K dσ d ( ) m. oment ginające w tm prekroju mają wartości: (. ) 0*. 0*.. 0 knm, (. ) *.. 9 knm. Stąd maksmalne naprężenia normalne w prekroju poprecnm belki wnosą: K σ. 0* 0 (. ) ( 8* 0 ) + ( 8. 5* 0 ) * 0 * * 0 N/m 09. Pa. ( ) ajmiem się tera obliceniem maksmalnego ugięcia osi belki. Prekrój poprecn w którm oś belki premieści się najwięcej nie musi się pokrwać tm w którm wstępują najwiękse naprężenia normalne. w v Ugięcia punktów osi pręta w kierunku osi i oblicm od każdego momentu osobno korstając równań różnickowch, które pr wrotach momentów i układu odniesienia pokaanch na rsunku obok są następujące: d w d E ora d v d E. Oblicenie ugięcia w płascźnie (, ). d w d ( ) ( ) '' E ( ) 0 E w 0 ' ( ) 0 0 C E w + ( ) C D E w + Kinematcne warunki bregowe: / w / w ( 0) 0 D 0 D 0 ( ) 0 5* 0* + C 0 C 80 knm. atem funkcja ugięcia w płascźnie (, ) ma postać: w 5. ( ) E Oblicenie ugięcia w płascźnie (, ). 8

11 d v d ( ) ( ) '' E ( ) E v ' ( ) C E v + ( ) + C D E v + Kinematcne warunki bregowe: / v / v ( 0) 0 D 0 D 0 ( ) 0 * + C 0 C knm. Stąd funkcje ugięcia w płascźnie (, ) określa ależność: v. ( ) + E Całkowite ugięcie jest geometrcną sumą premiesceń w tch dwóch prostopadłch płascnach określoną worem: f ( ) v ( ) + w ( ). Podstawiając a v ( ) ora w ( ) f ( ) E 0. 8* wżej otrmane ależności dostajem: E 80 ( ) + ( ) iejsce wstąpienia maksmalnego ugięcia otrmujem równania erowania się pochodnej jego funkcji: ( ) df d 0 * 9. 5 ( )( ) + * ( )( ) 9. 5 ( ) + ( ) którego rowiąaniem jest. 8 m. aksmalne ugięcie wnosi: (. 8) 0. 8* 0 * ma f f Składowe tego premiescenia są równe: v (. 8). 55 cm i (. 8). 00 w cm. m.5 cm. 0 9

Adam Bodnar: Wytrzymałość Materiałów. Proste zginanie

Adam Bodnar: Wytrzymałość Materiałów. Proste zginanie dam Bodnar: trmałość ateriałów. Proste ginanie. PROSTE GINNIE.. Naprężenia i odkstałcenia Proste ginanie pręta prmatcnego wstępuje wówcas gd układ sił ewnętrnch po jednej stronie jego prekroju poprecnego

Bardziej szczegółowo

KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA

KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA ĆWICZENIE 5 KONWENCA ZNAKOWANIA OENTÓW I WZÓR NA NAPRĘŻENIA Wektor momentu pr ginaniu ukośnm można rutować na osie,, będące głównmi centralnmi osiami bewładności prekroju. Prjmujem konwencję nakowania

Bardziej szczegółowo

Zginanie ukośne LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki

Zginanie ukośne LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki Katedra Wtrmałości Materiałów i Metod Komputerowch Mechaniki Wdiał Mechanicn Technologicn Politechnika Śląska LABORATORUM WYTRZYMAŁOŚC MATERAŁÓW Zginanie ukośne ZGNANE UKOŚNE 2 1. CEL ĆWCZENA Ćwicenie

Bardziej szczegółowo

1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił

1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił . REDUKCJA DOWOLNYCH UKŁADÓW IŁ Redukcja płaskiego układu sił Zadanie. Znaleźć wartość licbową i równanie linii diałania wpadkowej cterech sił predstawionch na rsunku. Wartości licbowe sił są następujące:

Bardziej szczegółowo

Belki zespolone 1. z E 1, A 1

Belki zespolone 1. z E 1, A 1 Belki espolone. DEFINIC Belki espolone to belki, którch prekrój poprecn składa się co najmniej dwóch materiałów o różnch własnościach ficnch (różne moduł Younga i współcnniki Poissona), pr cm apewnione

Bardziej szczegółowo

Złożone działanie sił wewnętrznych w prętach prostych

Złożone działanie sił wewnętrznych w prętach prostych Złożone diałanie sił wewnętrnch w rętach rostch Jeżeli sił wewnętrne nie redukują się włącnie do sił odłużnej N, orecnej T i momentu gnącego Mg c momentu skręcającego Ms, to radki takie nawa się łożonmi

Bardziej szczegółowo

J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie

J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie J. antr - Wkład Napór hdrostatcn Napór hdrostatcn na ścian płaskie Napór elementarn: d n( p pa ) d nρgd Napór całkowit: ρg nd ρgn d gdie: C Napór hdrostatcn na ścianę płaską predstawia układ elementarnch

Bardziej szczegółowo

Część 1 2. PRACA SIŁ WEWNĘTRZNYCH 1 2. PRACA SIŁ WEWNĘTRZNYCH Wstęp

Część 1 2. PRACA SIŁ WEWNĘTRZNYCH 1 2. PRACA SIŁ WEWNĘTRZNYCH Wstęp Cęść 1. PRC SIŁ WEWNĘTRZNYCH 1.. PRC SIŁ WEWNĘTRZNYCH.1. Wstęp Na wstępie prpomnijm, że gd premiescenie danego eementu jest funkcją diałającej nań sił Δ = f(p), to praca sił na tm premiesceniu jest równa:

Bardziej szczegółowo

2.1. ZGINANIE POPRZECZNE

2.1. ZGINANIE POPRZECZNE .1. ZGINNIE POPRZECZNE.1.1. Wprowadenie Zginanie poprecne (ginanie e ścinaniem) wstępuje wted, gd ociążenie ewnętrne pręta redukuje się do momentu ginającego M i sił poprecnej. W prekroju takim wstępują

Bardziej szczegółowo

Rozdział 9. Baza Jordana

Rozdział 9. Baza Jordana Rodiał 9 Baa Jordana Niech X będie n wmiarową prestrenią wektorową nad ciałem F = R lub F = C Roważm dowoln endomorfim f : X X Wiem, że postać macier endomorfimu ależ od wboru ba w prestreni X Wiem również,

Bardziej szczegółowo

Zginanie Proste Równomierne Belki

Zginanie Proste Równomierne Belki Zginanie Proste Równomierne Belki Prebieg wykładu : 1. Rokład naprężeń w prekroju belki. Warunki równowagi. Warunki geometrycne 4. Zwiąek fiycny 5. Wskaźnik wytrymałości prekroju na ginanie 6. Podsumowanie

Bardziej szczegółowo

Przykład 3.1. Projektowanie przekroju zginanego

Przykład 3.1. Projektowanie przekroju zginanego Prkład.1. Projektowane prekroju gnanego Na belkę wkonaną materału o wtrmałośc różnej na ścskane rocągane dałają dwe sł P 1 P. Znając wartośc tch sł, schemat statcn belk, wartośc dopuscalnego naprężena

Bardziej szczegółowo

Przestrzeń liniowa R n.

Przestrzeń liniowa R n. MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c

Bardziej szczegółowo

Przykład 6.3. Uogólnione prawo Hooke a

Przykład 6.3. Uogólnione prawo Hooke a Prkład 6 Uogónione prawo Hooke a Zwiąki międ odkstałceniami i naprężeniami w prpadku ciała iotropowego opisuje uogónione prawo Hooke a: ] ] ] a Rowiąując równania a wgędem naprężeń otrmujem wiąki: b W

Bardziej szczegółowo

Postać Jordana macierzy

Postać Jordana macierzy Rodiał 8 Postać Jordana macier 8.1. Macier Jordana Niech F = R lub F = C. Macier J r () F r r postaci 1. 1... J r () =..........,.... 1 gdie F, nawam klatką Jordana stopnia r. Ocwiście J 1 () = [. Definicja

Bardziej szczegółowo

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ).

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ). Materiał ddaktcne Geodeja geometrcna Marcin Ligas, Katedra Geomatki, Wdiał Geodeji Górnicej i Inżnierii Środowiska UKŁADY WSPÓŁZĘDNYCH NA KULI Pierwsm prbliżeniem kstałtu Ziemi (ocwiście po latach płaskich

Bardziej szczegółowo

Adam Bodnar: Wytrzymałość Materiałów. Hipotezy wytężeniowe.

Adam Bodnar: Wytrzymałość Materiałów. Hipotezy wytężeniowe. HIPOTEZY WYTĘŻENIOWE Wtężenie i jego miara Wkres rociągania stali miękkiej pokauje że punkt materialn najdując się w jednoosiowm stanie naprężenia prechodi w trakcie więksania naprężenia pre kolejne stan

Bardziej szczegółowo

Przykład 3.7. Naprężenia styczne przy zginaniu belki cienkościennej.

Przykład 3.7. Naprężenia styczne przy zginaniu belki cienkościennej. Prkład.7. Naprężenia tcne pr ginaniu belki cienkościennej. Wnac rokład naprężenia tcnego w prekroju podporowm belki wpornikowej o prekroju cienkościennm obciążonej na wobodnm końcu pionową iłą P. Siła

Bardziej szczegółowo

napór cieczy - wypadkowy ( hydrostatyczny )

napór cieczy - wypadkowy ( hydrostatyczny ) 5. apór hdrostatcn i równowaga ciał płwającch Płn najdując się w stanie równowagi oddiałwuje na ścian ogranicające ropatrwaną jego objętość i sił te nawane są naporami hdrostatcnmi. Omawiana problematka

Bardziej szczegółowo

σ x σ y σ z σ z, Adam Bodnar: Wytrzymałość Materiałów. Równania fizyczne.

σ x σ y σ z σ z, Adam Bodnar: Wytrzymałość Materiałów. Równania fizyczne. Ada Bodnar: Wtrałość Materiałów. Równania ficne. 7. RÓWNANIA FIZCZN 7.. Zwiąki ięd stane odkstałcenia i naprężenia. I i II postać równań Hooke a Zależność deforacji brł od obciążeń ewnętrnch naruca istnienie

Bardziej szczegółowo

1. Zestawienie obciążeń

1. Zestawienie obciążeń 1. Zestawienie obciążeń Lp Opis obciążenia Obc. char. kn/m γ f k d Obc. obl. kn/m 1. Pokrcie ser.1,75 m [0,400kN/m2 1,75m] 0,70 1,35 -- 0,95 2. Obciążenie wiatrem połaci nawietrnej dachu - -0,86 1,50 0,00-1,29

Bardziej szczegółowo

Pręt nr 2 N 3,1416² ,1. Wyniki wymiarowania stali wg PN-EN 1993 (Stal1993_2d v. 1.3 licencja) Zadanie: P_OFFER Przekrój: 8 - Złożony

Pręt nr 2 N 3,1416² ,1. Wyniki wymiarowania stali wg PN-EN 1993 (Stal1993_2d v. 1.3 licencja) Zadanie: P_OFFER Przekrój: 8 - Złożony Pręt nr Wniki wmiarowania stali wg P-E 993 (Stal993_d v..3 licencja) Zadanie: P_OER Prekrój: 8 - Złożon Z Y 39 83 Wmiar prekroju: h6,0 s438,7 Charakterstka geometrcna prekroju: Ig4490, Ig34953,6 83,00

Bardziej szczegółowo

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 6 nr Archiwum Technologii Masn i Automatacji 6 ROMAN STANIEK * ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE W artkule predstawiono ależności matematcne

Bardziej szczegółowo

Geometria analityczna w przestrzeni. Kierunek. Długość. Zwrot

Geometria analityczna w przestrzeni. Kierunek. Długość. Zwrot - podstawowe pojęcia Geometria analitcna w prestreni Wektorem acepionm w prestreni R 3 nawam uporądkowaną parę punktów A ora B i onacam go pre AB. Punkt A nawam jego pocątkiem, a punkt B - jego końcem.

Bardziej szczegółowo

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. god. Cel ćwicenia: aponanie się diałaniem elementów smetrii

Bardziej szczegółowo

POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y

POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y POTENCJALNE POLE SIŁ POLE SKALARNE Polem skalarnm V(r) nawam funkcję prpisującą każdemu punktowi w prestreni licbę recwistą (skalar): V (r): r=(,, ) V (r) POLE WEKTOROWE SIŁ Polem wektorowm sił F(r) nawam

Bardziej szczegółowo

Podstawy wytrzymałości materiałów

Podstawy wytrzymałości materiałów Podstaw wtrmałości materiałów IMiR IMT - Wkład Nr 0 Złożon stan naprężeń - wtężenie materiału stan krtcn materiału pojęcie wtężenia cel stosowania hipote wtężeniowch naprężenie redukowane pregląd hipote

Bardziej szczegółowo

Wyznaczanie środka ścinania w prętach o przekrojach niesymetrycznych

Wyznaczanie środka ścinania w prętach o przekrojach niesymetrycznych Insttut Mechaniki i Inżnierii Obliceniowej Wdiał Mechanicn echnologicn Politechnika Śląska www.imio.polsl.pl LBORORIUM WYRZYMŁOŚCI MERIŁÓW Wnacanie środka ścinania w prętach o prekrojach niesmetrcnch WYZNCZNIE

Bardziej szczegółowo

Podstawy wytrzymałości materiałów

Podstawy wytrzymałości materiałów Podstaw wtrmałości materiałów IMiR - MiBM - Wkład Nr 5 Analia stanu odkstałcenia Składowe stanu odkstałcenia, uogólnione prawo Hooke a, prawo Hooke a dla cstego ścinania, wględna miana objętości, klasfikacja

Bardziej szczegółowo

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY Cw3_biornik.doc ANALIZA KONTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY 1. W P R O W A D Z E N I E Ciało utworone pre dwie akrwione powierchnie nawane jest powłoką, jeśli preciętna odlełość pomięd

Bardziej szczegółowo

,..., u x n. , 2 u x 2 1

,..., u x n. , 2 u x 2 1 . Równania różnickowe cąstkowe Definicja. Równaniem różnickowm cąstkowm (rrc) nawam równanie różnickowe, w którm wstępuje funkcja niewiadoma dwóch lub więcej miennch i jej pochodne cąstkowe. Ogólna postać

Bardziej szczegółowo

2. CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH

2. CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH dam Bodnar: Wtrzmałość Materiałów. Charakterstki geometrczne figur płaskich.. CHRKTERSTKI GEOMETRCZNE FIGUR PŁSKICH.. Definicje podstawowch charakterstk geometrcznch Podczas zajęć z wtrzmałości materiałów

Bardziej szczegółowo

Projekt: Data: Pozycja: A ch = 0,5 20, ,40 = 5091,1 cm 4

Projekt: Data: Pozycja: A ch = 0,5 20, ,40 = 5091,1 cm 4 Pręt nr 4 Wniki wmiarowania stali wg P-E 993 (Stal993_3d v..4) Zadanie: Hala stalowa suwnicą - P-E.rm3 Prekrój:,9 Z Y 50 Wmiar prekroju: h00,0 s76,0 g5, t9, r9,5 e0,7 Charakterstka geometrcna prekroju:

Bardziej szczegółowo

cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321

cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 Wkład 8: Brła stwna c. Dr inż. Zbigniew Sklarski Katedra Elektroniki, paw. C-, pok.3 skla@agh.edu.pl http://laer.uci.agh.edu.pl/z.sklarski/ 05.04.08 Wdiał nformatki, Elektroniki i Telekomunikacji - Teleinformatka

Bardziej szczegółowo

WYTRZYMAŁOŚĆ ZŁOŻONA

WYTRZYMAŁOŚĆ ZŁOŻONA TRAŁOŚĆ ŁOŻONA rpadki wtrmałości łożonej praktce inżnierskiej najcęściej spotka się łożone prpadki ociążeń konstrukcji. Do prawidłowego rowiąwania tc agadnień koniecna jest najomość wceśniej omówionc prostc

Bardziej szczegółowo

MECHANIKA BUDOWLI 2 PRACA SIŁ WEWNĘTRZNYCH W PRĘTACH

MECHANIKA BUDOWLI 2 PRACA SIŁ WEWNĘTRZNYCH W PRĘTACH Oga Kopac, am Łogowski, Wojciech Pawłowski, ichał Płotkowiak, Krstof mber Konsutacje naukowe: prof. r hab. JERZY RKOWSKI Ponań /3 ECHIK BUDOWI Praca sił normanch Siła normana prpomnienie (): Jest to siła

Bardziej szczegółowo

PRAWIDŁOWE ODPOWIEDZI I PUNKTACJA

PRAWIDŁOWE ODPOWIEDZI I PUNKTACJA MAŁOPOLSKI KONKURS MATEMATYCZNY Rok skoln 08/09 ETAP REJONOWY 0 grudnia 08 roku PRAWIDŁOWE ODPOWIEDZI I PUNKTACJA adanie odpowiedź punkt B 3 C 3 3 A 3 4 B 3 5 E 3 6 B 3 7 E 3 8 C 3 9 D 3 0 A 3 7 adania

Bardziej szczegółowo

Belki złożone i zespolone

Belki złożone i zespolone Belki łożone i espolone efinicja belki łożonej siła rowarswiająca projekowanie połąceń prkła obliceń efinicja belki espolonej ałożenia echnicnej eorii ginania rokła naprężeń normalnch prkła obliceń Belki

Bardziej szczegółowo

Ruch kulisty bryły. Kąty Eulera. Precesja regularna

Ruch kulisty bryły. Kąty Eulera. Precesja regularna Ruch kulist brł. Kąt Eulera. Precesja regularna Ruchem kulistm nawam ruch, w casie którego jeden punktów brł jest stale nieruchom. Ruch kulist jest obrotem dookoła chwilowej osi obrotu (oś ta mienia swoje

Bardziej szczegółowo

pionowe od kół suwnic, zgodnie z warunków równowagi statecznej (rys. 6.4) dla

pionowe od kół suwnic, zgodnie z warunków równowagi statecznej (rys. 6.4) dla 6.7. Prkład oblicania słupa pełnościennego esakad podsuwnicowej Pełnościenne słup esakad podsuwnicowej podpierają or podsuwnicowe na kórch pracują suwnice pomosowe naorowe o udźwigach i paramerach echnicnch

Bardziej szczegółowo

P R O J E K T N R 1 WYTRZYMAŁOŚCI MATERIAŁÓW. Zawiera: Wyznaczenie wymiarów przekroju poprzecznego belki zginanej poprzecznie

P R O J E K T N R 1 WYTRZYMAŁOŚCI MATERIAŁÓW. Zawiera: Wyznaczenie wymiarów przekroju poprzecznego belki zginanej poprzecznie atedra Wtrzmałości Materiałów Rok akad. 005/06 Wdział Inżnierii Lądowej emestr zimow Politechniki rakowskiej P R O J E T N R 1 Z WYTRZYMAŁOŚCI MATERIAŁÓW Zawiera: Wznaczenie wmiarów przekroju poprzecznego

Bardziej szczegółowo

4.2.1. Środek ciężkości bryły jednorodnej

4.2.1. Środek ciężkości bryły jednorodnej 4..1. Środek ciężkości rł jednorodnej Brłą jednorodną nawam ciało materialne, w którm masa jest romiescona równomiernie w całej jego ojętości. Dla takic ciał arówno gęstość, jak i ciężar właściw są wielkościami

Bardziej szczegółowo

Podstawy wytrzymałości materiałów

Podstawy wytrzymałości materiałów Podstaw wtrmałości materiałów IMiR -IA- Wkład Nr 9 Analia stanu odkstałcenia Składowe stanu odkstałcenia, uogólnione prawo Hooke a, prawo Hooke a dla cstego ścinania, wględna miana objętości, klasfikacja

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

LABORATORIUM MECHANIKI EKSPERYMENTALNEJ. Instrukcja do ćwiczenia

LABORATORIUM MECHANIKI EKSPERYMENTALNEJ. Instrukcja do ćwiczenia LABORATORIUM MECHANIKI EKSPERYMENTALNEJ Instrukcja do ćwicenia 3 Ruch precesjn giroskopu Cel ćwicenia Obserwacja jawiska precesji regularnej. Badanie ależności prędkości kątowej precesji od momentu sił

Bardziej szczegółowo

GRUPY SYMETRII Symetria kryształu

GRUPY SYMETRII Symetria kryształu GRUPY SYMETRII Smetria krstału Zamknięte (punktowe) operacje smetrii (minimum jeden punkt prestreni nie porusa się wskutek astosowania amkniętej operacji smetrii): Obrot i obrot inwersjne; Inwersja (smetria

Bardziej szczegółowo

Elementy symetrii makroskopowej w ujęciu macierzowym.

Elementy symetrii makroskopowej w ujęciu macierzowym. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Element smetrii makroskopowej w ujęciu macierowm. 2 god. Cel ćwicenia: tworenie macier smetrii elementów smetrii makroskopowej

Bardziej szczegółowo

1. Podstawy rachunku wektorowego

1. Podstawy rachunku wektorowego 1 Postaw rachunku wektorowego Wektor Wektor est wielkością efiniowaną pre ługość (mouł) kierunek iałania ora wrot Dwa wektor o tm samm moule kierunku i wrocie są sobie równe Wektor presunięt równolegle

Bardziej szczegółowo

Mechanika Robotów. Wojciech Lisowski. 2 Opis położenia i orientacji efektora Model geometryczny zadanie proste

Mechanika Robotów. Wojciech Lisowski. 2 Opis położenia i orientacji efektora Model geometryczny zadanie proste Katedra Robotki i Mechatroniki Akademia Górnico-Hutnica w Krakowie Mechanika Robotów Wojciech Lisowski Opis położenia i orientacji efektora Model geometrcn adanie proste Mechanika Robotów KRIM, AGH w Krakowie

Bardziej szczegółowo

[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia.

[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia. rzkład 10.3. Łuk paraboliczn. Rsunek przedstawia łuk wolnopodpart, którego oś ma kształt paraboli drugiego stopnia (łuk paraboliczn ). Łuk obciążon jest ciśnieniem wewnętrznm (wektor elementarnej wpadkowej

Bardziej szczegółowo

Przykład 4.2. Sprawdzenie naprężeń normalnych

Przykład 4.2. Sprawdzenie naprężeń normalnych Przykład 4.. Sprawdzenie naprężeń normalnych Sprawdzić warunki nośności przekroju ze względu na naprężenia normalne jeśli naprężenia dopuszczalne są równe: k c = 0 MPa k r = 80 MPa 0, kn 0 kn m 0,5 kn/m

Bardziej szczegółowo

I. Rachunek wektorowy i jego zastosowanie w fizyce.

I. Rachunek wektorowy i jego zastosowanie w fizyce. Blok 1: Rachunek wektorow i jego astosowanie w fice Podstawowe wielkości ficne w kinematce Opis ruchu w różnch układach odniesienia Ruch wględn I Rachunek wektorow i jego astosowanie w fice Wsstkie wielkości

Bardziej szczegółowo

EPR. W -1/2 =-1/2 gµ B B

EPR. W -1/2 =-1/2 gµ B B Hamiltonian spinow Elektronow reonans paramanetcn jest wiąan absorpcją pola wsokiej cęstotliwości, która towars mianie orientacji spin w ewnętrnm polu manetcnm. Niesparowane spinowe moment manetcne µ s

Bardziej szczegółowo

Ruch kulisty bryły. Kinematyka

Ruch kulisty bryły. Kinematyka Ruch kulist bł. Kinematka Ruchem kulistm nawam uch, w casie któego jeden punktów bł jest stale nieuchom. Ruch kulist jest obotem dookoła chwilowej osi obotu (oś ta mienia swoje położenie w casie). a) b)

Bardziej szczegółowo

Podstawy Konstrukcji Maszyn

Podstawy Konstrukcji Maszyn Podsta Konstrukcji Masn kład Podsta oliceń elementó masn Dr inŝ. acek Carnigoski OciąŜenia elementu OciąŜeniem elementu (cęści lu całej masn) są oddiałania innc elementó, środoiska ora ociąŝeń enętrnc

Bardziej szczegółowo

ĆWICZENIE 8 i 9. Zginanie poprzeczne z wykładową częścią

ĆWICZENIE 8 i 9. Zginanie poprzeczne z wykładową częścią ĆWICZENIE 8 i 9 Zginanie poprzeczne z wkładową częścią z z QzS J b z Dskusja wzoru na naprężenia stczne. Uśrednione naprężenie stczne, J bz Qz x S z jest funkcją dwóch zmiennch: x- położenia przekroju

Bardziej szczegółowo

DryLin T System prowadnic liniowych

DryLin T System prowadnic liniowych DrLin T Sstem prowadnic liniowch Prowadnice liniowe DrLin T ostał opracowane do astosowań wiąanch automatką i transportem materiałów. Chodiło o stworenie wdajnej, beobsługowej prowadnic liniowej do astosowania

Bardziej szczegółowo

Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać:

Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać: ochodna kierunkowa i gradient Równania parametrcne prostej prechodącej pre punkt i skierowanej wdłuż jednostkowego wektora mają postać: Oblicam pochodną kierunkową u ( u, u ) 1 + su + su 1 (, ) d d d ˆ

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

Przykład: Belka swobodnie podparta bez stęŝeń bocznych

Przykład: Belka swobodnie podparta bez stęŝeń bocznych Dokument Ref: SX001a-EN-EU Strona 1 8 Dot. Eurokodu EN Wkonał Alain Bureau Data grudień 004 Sprawdił Yvan Galéa Data grudień 004 Prkład: Belka swobodnie podparta be stęŝeń bocnch Prkład ilustruje asad

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

3. Metody rozwiązywania zagadnień polowych

3. Metody rozwiązywania zagadnień polowych 3. Metod rowiąwania agadnień polowch 3.. Dokładne metod anali pola Dokładne metod anali pola powalają na uskanie dokładnego rowiąania równania róŝnickowego lub całkowego w dowolnm punkcie obsaru diałania

Bardziej szczegółowo

TEORIA SPRĘŻYSTOŚCI 10

TEORIA SPRĘŻYSTOŚCI 10 W YKŁ ADY Z T EOII S ĘŻYSTOŚCI ZADANIE BOUSSINESQA I FLAMANTA olitechnika onańska Kopac, Kawck, Łodgowski, łotkowiak, Świtek, Tmpe Olga Kopac, Kstof Kawck, Adam Łodgowski, Michał łotkowiak, Agnieska Świtek,

Bardziej szczegółowo

Metoda pasm skończonych płyty dwuprzęsłowe

Metoda pasm skończonych płyty dwuprzęsłowe etoda pasm skończonch płt dwuprzęsłowe Dla płt przedstawionej na rsunku należ: 1. Dla obciążenia ciężarem własnm q oraz obciążeniami p 1 i p obliczć ugięcia w punktach A i B oraz moment, i w punktach A,B

Bardziej szczegółowo

Przykład 6.1. Przestrzenny stan naprężenia i odkształcenia

Przykład 6.1. Przestrzenny stan naprężenia i odkształcenia Prkład Pretrenn tan naprężenia i odktałcenia Stan naprężenia Stan naprężenia w punkcie jet określon a pomocą diewięciu kładowch, które onacam literą odpowiednimi indekami Pierw indek onaca normalną ewnętrną

Bardziej szczegółowo

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH MES W ANALIZIE SPRĘŻYS UKŁADÓW PRĘOWYCH Prykłady obliceń Belki Lidia FEDOROWICZ Jan FEDOROWICZ Magdalena MROZEK Dawid MROZEK Gliwice 7r. 6-4 Lidia Fedorowic, Jan Fedorowic, Magdalena Mroek, Dawid Mroek

Bardziej szczegółowo

ALGEBRA rok akademicki

ALGEBRA rok akademicki ALGEBRA rok akademck -8 Tdeń Tematka wkładu Tematka ćwceń ajęć Struktur algebracne (grupa cało; be Dałana na macerach perścen Defncja macer Dałana na macerach Oblcane wnacnków Wnacnk jego własnośc Oblcane

Bardziej szczegółowo

REDUKCJA PŁASKIEGO UKŁADU SIŁ

REDUKCJA PŁASKIEGO UKŁADU SIŁ olitechnika rocławska dział Budownictwa lądowego i odnego Katedra echaniki Budowli i Inżnierii iejskiej EDUKCJA ŁASKIEG UKŁADU SIŁ ZIĄZANIE ANALITYCZNE I GAFICZNE Zadanie nr. Dokonać redukcji układu sił

Bardziej szczegółowo

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH ZADANIA ZAMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0 B. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa B. 9 C. D. 5 Zadanie. ( pkt) Liczba

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu miennch wkład MATEMATYKI Automatka i robotka studia niestacjonarne sem II, rok ak 2009/2010 Katedra Matematki Wdiał Informatki Politechnika Białostocka Niech R ndef ={( 1, 2,, n ): 1 R 2

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu miennch wkład MATEMATYKI Automatka i Robotka sem I, rok ak 2008/2009 Katedra Matematki Wdiał Informatki Politechnika Białostocka Niech R n def = {( 1, 2,, n ): 1 R 2 R n R } Funkcją n miennch

Bardziej szczegółowo

TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1

TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 ĆWICZENIE NR 1 TEMAT: Próba statycna rociągania metali. Obowiąująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 Podać nacenie następujących symboli: d o -.....................................................................

Bardziej szczegółowo

- 1 - OBLICZENIA WYTRZYMAŁOŚCIOWE - DREWNO

- 1 - OBLICZENIA WYTRZYMAŁOŚCIOWE - DREWNO Użtkownik: Biuro Inżnierskie SPECBUD Autor: mg inż. Jan Kowalski Ttuł: Konstrukcje drewniane wg PN-EN Belka - 1 - Kalkulator Konstrukcji Drewnianch EN v.1.0 OBLICZENIA WYTRZYMAŁOŚCIOWE - DREWNO 2013 SPECBUD

Bardziej szczegółowo

PROJEKT NR 1 METODA PRZEMIESZCZEŃ

PROJEKT NR 1 METODA PRZEMIESZCZEŃ POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr

Bardziej szczegółowo

Pręty silnie zakrzywione 1

Pręty silnie zakrzywione 1 Pęt silnie akwione. DEFIICJ Pętem silnie akwionm nawam pęt, któego oś jest płaską kwą, a stosunek wmiau pekoju popecnego (leżącego w płascźnie kwin) do pomienia kwin osi ciężkości () pęta spełnia waunek.

Bardziej szczegółowo

Przykład: Analiza spręŝysta jednonawowej ramy portalowej wykonanej z blachownic

Przykład: Analiza spręŝysta jednonawowej ramy portalowej wykonanej z blachownic ARKUSZ OBLICZEIOWY Dokument Re: SX00a -PL-EU Strona 7 Ttuł Prkład: Analia spręŝsta jednonawowej ram portalowej wkonanej blachownic Dot. Eurokodu Wkonał Arnaud Lemaire Data April 006 Sprawdił Alain Bureau

Bardziej szczegółowo

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest

Bardziej szczegółowo

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. 2 god. Cel ćwicenia: aponanie się diałaniem elementów smetrii

Bardziej szczegółowo

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach.

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach. CZOŁOWE OWE PRZEKŁADNIE STOŻKOWE PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe) HIPERBOIDALNE ŚLIMAKOWE o ebach prostych o ębach prostych walcowe walcowe o ębach śrubowych o

Bardziej szczegółowo

Równoważne układy sił

Równoważne układy sił Równoważne układ sił Równoważnmi układami sił nawam takie układ, którch skutki diałania na ten sam obiekt są jednakowe. Jeżeli układ sił da się astąpić jedną siłą, to siłę tą nawam siłą wpadkową. Wpadkowa

Bardziej szczegółowo

Zestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t

Zestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t Zesaw adań : Preksałcenia liniowe () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + +, b) n = m = 3, ϕ( +, 3 + + + +, d) n = m = 3, ϕ( +, c) n = m = 3, ϕ( e) n

Bardziej szczegółowo

Wyznaczanie ruchliwości i koncentracji nośników prądu w półprzewodnikach metodą efektu Halla

Wyznaczanie ruchliwości i koncentracji nośników prądu w półprzewodnikach metodą efektu Halla Ćwicenie 13 Wnacanie ruchliwości i koncentracji nośników prądu w półprewodnikach metodą efektu alla Cel ćwicenia Celem ćwicenia jest aponanie się e jawiskiem alla, stałoprądową metodą badania efektu alla,

Bardziej szczegółowo

Ć w i c z e n i e K 1

Ć w i c z e n i e K 1 kademia Górniczo Hutnicza Wdział nżnierii echanicznej i Robotki Katedra Wtrzmałości, Zmęczenia ateriałów i Konstrukcji azwisko i mię: azwisko i mię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena: Podpis:

Bardziej szczegółowo

Badania zginanych belek

Badania zginanych belek Mechanika i wtrzmałość materiałów - instrukcja do ćwiczenia laboratorjneo: Badania zinanch belek oprac. dr inż. Ludomir J. JNKOWSKI, dr inż. nna NIKODM. Wprowadzenie W wtrzmałości materiałów stan obciążenia

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Zginanie Wyznaczanie sił wewnętrznych w belkach i ramach, analiza stanu naprężeń i odkształceń, warunek bezpieczeństwa Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości,

Bardziej szczegółowo

Rozwiazania zadań. Zadanie 1A. Zadanie 1B. Zadanie 2A

Rozwiazania zadań. Zadanie 1A. Zadanie 1B. Zadanie 2A Rowiaania adań Zadanie A = ( i) = 4 8i 4 = 8i Badam licbȩ espolon a 8i Jej moduł 8i jest równ 8 Jej postać espolona jest równa 8(cosα + isinα) α = /π St ad cosα = i sinα = Mam pierwiastki które oblicam

Bardziej szczegółowo

Zestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t

Zestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t Zesaw adań : Preksałcenia liniowe. Maciere preksałceń liniowch () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + ) = +, b) n = m = 3, ϕ( ) = +, 3 + + + +, d) n

Bardziej szczegółowo

) q przyłożona jest w punkcie o współrzędnej x = x + x. Przykład Łuk trójprzegubowy.

) q przyłożona jest w punkcie o współrzędnej x = x + x. Przykład Łuk trójprzegubowy. rzkład 0.. Łuk trójprzegubow. Rsunek 0.. przedstawia łuk trójprzegubow, którego oś ma kształt półokręgu (jest to łuk kołow ). Łuk obciążon jest ciężarem konstrukcji podwieszonej. Narsować wkres momentów

Bardziej szczegółowo

ODKSZTAŁCENIE PLASTYCZNE MATERIAŁÓW IZOTROPOWYCH. Opis dla ośrodka ciągłego

ODKSZTAŁCENIE PLASTYCZNE MATERIAŁÓW IZOTROPOWYCH. Opis dla ośrodka ciągłego ODKSZTAŁCENIE LASTYCZNE MATERIAŁÓW IZOTROOWYCH. Opis dla ośrodka ciągłego (opracowano na podstawie: C.N. Reid, deformation geometr for Materials Scientists, ergamon ress, Oford, 97) Wstęp Omówim tera sposób

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wtrmałość ateriałów konspekt wkładów dla studentów studiów diennch kierunek: budownictwo dr hab. inż. Janus German Katedra Wtrmałości ateriałów Wdiał Inżnierii Lądowej Politechnika Krakowska Kraków, 5

Bardziej szczegółowo

x od położenia równowagi

x od położenia równowagi RUCH HARMONICZNY Ruch powtarając się w regularnch odstępach casu nawa ruche okresow. Jeżeli w taki ruchu seroko rouiane odchlenie od stanu równowagi ( np. odchlenie as podcepionej do sprężn, wartość wektora

Bardziej szczegółowo

Zginanie belek o przekroju prostokątnym i dwuteowym naprężenia normalne i styczne, projektowanie 8

Zginanie belek o przekroju prostokątnym i dwuteowym naprężenia normalne i styczne, projektowanie 8 Zinanie belek o przekroju prostokątnm i dwuteowm naprężenia normalne i stczne, projektowanie 8 Na rs. 8.1 przedstawiono belkę obciążoną momentami zinającmi w płaszczźnie x. oment nąceo dla tak obciążonej

Bardziej szczegółowo

Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi:

Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi: Stan naprężenia Przkład 1: Tarcza (płaski stan naprężenia) Określić sił masowe oraz obciążenie brzegu tarcz jeśli stan naprężenia wnosi: 5 T σ. 8 Składowe sił masowch obliczam wkonując różniczkowanie zapisane

Bardziej szczegółowo

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił 3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej

Bardziej szczegółowo

Naprężenia i odkształcenia Stress & strain. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki

Naprężenia i odkształcenia Stress & strain. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki Naprężenia i odkstałcenia Stress & strain Naprężenia i odkstałcenia Simplifing assumptions:. Soil is continuous. Soil is homogeneous. Soil is isotropic A continuous bod subjected to a sstem of eternal

Bardziej szczegółowo

Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8

Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8 Wnacanie reakcji dnaicnch ora wważanie ciała w ruchu oroow wokół sałej osi 8 Wprowadenie Jeśli dowolne ciało swne o asie jes w ruchu oroow wokół osi, o na podporach powsają reakcje A i B. Składowe ch reakcji

Bardziej szczegółowo

Fale skrętne w pręcie

Fale skrętne w pręcie ae skrętne w ręcie + -(+) eement ręta r π ) ( 4 Lokane skręcenie o () moment skręcając moduł stwności r romień ręta r 4 ) ( π Pod włwem wadkowego momentu eement ręta uskuje rsiesenie kątowe i sełnion jest

Bardziej szczegółowo

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydiał Mechanicny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 3 1. CEL ĆWICZENIA Wybrane

Bardziej szczegółowo

Zad.1 Zad. Wyznaczyć rozkład sił wewnętrznych N, T, M, korzystając z komputerowej wersji metody przemieszczeń. schemat konstrukcji:

Zad.1 Zad. Wyznaczyć rozkład sił wewnętrznych N, T, M, korzystając z komputerowej wersji metody przemieszczeń. schemat konstrukcji: Zad. Wznaczć rozkład sił wewnętrznch N, T, M, korzstając z komputerowej wersji metod przemieszczeń. schemat konstrukcji: ϕ 4, kn 4, 4, macierz transformacji (pręt nr): α = - ϕ = -, () 5 () () E=5GPa; I

Bardziej szczegółowo

ANALIZA STANU NAPRĘŻEŃ

ANALIZA STANU NAPRĘŻEŃ MACIJ PAWŁOWSKI ANALIZA STANU NAPRĘŻŃ Skrpt dla studentów Gdańsk 08 dr hab inż Maciej Pawłowski, prof GSW Wdiał Nauk Inżnierskich, Gdańska Skoła Wżsa Redakcja Tomas Mikołajcewski Wdanie pierwse, Gdańsk

Bardziej szczegółowo