LABORATORIUM MECHANIKI EKSPERYMENTALNEJ. Instrukcja do ćwiczenia

Wielkość: px
Rozpocząć pokaz od strony:

Download "LABORATORIUM MECHANIKI EKSPERYMENTALNEJ. Instrukcja do ćwiczenia"

Transkrypt

1 LABORATORIUM MECHANIKI EKSPERYMENTALNEJ Instrukcja do ćwicenia 3 Ruch precesjn giroskopu Cel ćwicenia Obserwacja jawiska precesji regularnej. Badanie ależności prędkości kątowej precesji od momentu sił ewnętrnch. Literatura Do roumienia jawisk giroskopowch potrebne jest opanowanie podstawowch wiadomości kinematki i dnamiki ruchu kulistego ciała stwnego. Należ anacć, że wiadomości ogólne, awarte w niniejsej instrukcji, stanowią tlko niewielkie strescenie teorii giroskopu. Dlatego, pred prstąpieniem do wkonwania ćwicenia, treba prestudiować agadnienie poniżej proponowanch podręcników. [1] J.Leko, Mechanika ogólna, tom I, rod. XIV, tom II, rod. VII, rod. IX, rod. XII. [2] A.Piekara, Mechanika ogólna, stron [3] M.Łuno, A.Saniawski, Zars Mechaniki ogólnej, rod. 11, 12, 15,17, 20, 21. [4] A.Janusajtis, Fika dla Politechnik, 34, 35, 36. [5] S.Soeniowski, Fika doświadcalna, cęść I, rod; X. Zagadnienia kontrolne Stopień prgotowania się do ćwicenia, pod wględem opanowania potrebnej wied ogólnej, można sprawdić, starając się odpowiedieć na niżej podane ptania: 1. Co to jest ruch kulist i jakie są jego właściwości? 2. Prędkość w ruchu kulistm. 3. Co to jest kręt ciała (wględem punktu i wględem osi)? 4. Pojęcia wektora i momentu głównego. 5. Jaka jest treść asad krętu? (także interpretacja co niej wnika) 6. Jak definiujem moment sił? 7. Co to jest moment bewładności brł wględem osi? 8. Co to są główne osie, główne moment bewładności i główne centralne moment bewładności? 9. Co to jest ruch precesjn? 10. Co to jest precesja regularna? 11. Jak definiuje się prędkość kątową? 12. Zależność pomięd okresem ruchu a cęstością kołową. 13. Zależność międ prędkością kątową precesji i momentem sił ewnętrnch. 14. Prebieg ćwicenia. wer MT 1

2 1. Podstaw teoretcne wiąane preprowadanm ekspermentem Giroskop to ciało stwne, sbko wirujące dokoła swojej osi smetrii. Gd moment główn M r ewnętrnch sił, prłożonch do giroskopu, jest równ ero, to na podstawie asad krętu: r kręt giroskopu jest wektorem stałm ( r = M, (1) r K = const ) i oś obrotu giroskopu achowuje swój kierunek w prestreni. Jeżeli moment główn M r ewnętrnch sił nie jest równ ero, to giroskop porusa się tak, że tlko jeden jego punkt jest nieruchom. Ruch giroskopu w tm prpadku można traktować jako ruch obrotow dokoła osi chwilowej, prechodącej pre ten nieruchom punkt. Mam tu do cnienia ruchem kulistm giroskopu, a środek ruchu kulistego leż na osi smetrii i jest najcęściej punktem podparcia (np. pregub kulist) giroskopu. Równanie wektorowe (1) jest równoważne trem równaniom skalarnm: M, = M =, = M, (2) gdie: M, M, M - miar rutów na osie układu współrędnch momentu M r sił ewnętrnch diałającch na giroskop, K, K, K - kręt wględem osi,, a araem miar rutów krętu K r na te osie. Jeżeli osie,, pokrwają się głównmi osiami bewładności ciała, to: K = I ω, K = I ω, K = I ω gdie: I, I, I - są głównmi momentami bewładności ciała, a ω, ω, ω to składowe chwilowej prędkości kątowej r ω wględem głównch osi bewładności. Ocwiście, jeśli: ω ω I I ω ω I I ω ω I I to kierunek osi chwilowej, godn kierunkiem wektora ω r, nie pokrwa się żadną głównch osi bewładności ciała i nie pokrwa się także kierunkiem K r krętu ciała. Dlatego w giroskopie, najdującm się pod diałaniem momentu sił ewnętrnch, koniecne jest roróżnienie trech prostch, prechodącch pre nieruchom punkt (punkt podparcia giroskopu), a mianowicie: 1. kierunek chwilowej prędkości kątowej ω r, 2. kierunek krętu K r, 3. kierunek osi smetrii giroskopu. wer MT 2

3 Pierwse dwa kierunki są niewidocne w casie ruchu giroskopu i mieniają się w prestreni ora wględem samego giroskopu. Oś smetrii giroskopu jest widocna i w casie ruchu giroskopu mienia swoje położenie tlko wględem otacającej prestreni. W prbliżonej, elementarnej teorii ruchu giroskopu akłada się, że kierunki wektorów K r i ω r mało się różnią od kierunku osi smetrii i to w dowolnej chwili. Tak jest wted, gd giroskop sbko obraca się dokoła osi smetrii pokrwającej się, np. osią. Wted: ω >> ω, ω >> ω atem, ω r ma kierunek mało różniąc się od kierunku osi smetrii. Ponieważ I, I, I są tego samego rędu i awcaj: I > I, I > I, to kierunek K r będie bliski kierunkowi osi. Pr bardo sbkim wirowaniu giroskopu dokoła osi smetrii wektor chwilowej prędkości kątowej i wektor krętu prawie leżą na osi smetrii. Dlatego można wnioskować o ruchu chwilowej osi obrotu obserwując ruch osi smetrii giroskopu. Gd nie ma momentu sił ewnętrnch ( M r r =0), to równania (1) otrmujem: K = const. Wted kręt K r, prędkość kątowa ω r i oś smetrii giroskopu poostają w prestreni nieruchome i stałe co do wielkości. Dla krótkotrwałego diałania sił ewnętrnch (uderenie) cas mał, dlatego (równanie (1)) będie bardo mał prrost krętu: r r K = M t t jest bardo stąd małe będą mian kierunków w prestreni wektorów K r i ω r i osi smetrii. Gd ewnętrne sił diałają długo, nawet wted, gd ich moment jest niewielki, kierunek w prestreni wektora K r i wektora ω r i kierunek osi smetrii będą się mieniać. Taki ruch nawa się precesją. Niech giroskop ma postać jednorodnej tarc S (rs.1) sbko obracającej się na pręcie L awiesonm na nici F. Gd nadam giroskopowi obrot i ustawim jego oś poiomo, to acnie się ona obracać w płascźnie poiomej dokoła punktu awiesenia O. W omawianm prpadku na giroskop diała moment M r sił ciężkości P r (np. ciężar silnicka): (3) M = P h (4) h jest odległością od punktu O do środka ciężkości giroskopu, a M modułem wektora momentu. wer MT 3

4 Rs.1. Moment M r jest prostopadł do płascn rsunku i skierowan od ocu patrącego na rsunek. Jeżeli tarca giroskopu sbko obraca się tak, jak anacono na rsunku, to wektor r r r K = K + K twor kąt ϕ wektorem K r. Kąt ϕ leż w płascźnie poiomej. Wmuson ruch giroskopu będie odbwał się w płascźnie poiomej, godnie ruchem wskaówek egara, jeśli patr się gór. Łatwo sprawdić, że gd mieni się kierunek obrotów tarc giroskopu, płascna obrotu osi giroskopu poostanie ta sama ale kierunek obracania osi będie odwrotn, niż poprednio. Kierunki odpowiednich wektorów są nane i dalej ropatrwane będą tlko ich wartości. Niech Ω onaca prędkość kątową procesji, tn. prędkość obracania się osi giroskopu pod diałaniem stałego momentu sił ewnętrnch. W casie t prrost krętu (rs.1) będie wnosił: K = K ϕ stąd K = K ϕ. t t Prechodąc do granic, gd t->0, otrmujem: Prędkość kątowa precesji wnosi: dϕ = K (5) dϕ Ω = Ponieważ = M i K = I ω, e woru (5) otrmam: wer MT 4

5 dϕ = K = KΩ = M, M = IωΩ (6) 2. Prebieg ćwicenia Celem wkonwanch pomiarów jest pośrednie wnacenie prędkości obrotowej wirnika giroskopu na podstawie wprowadonch ależności. Prrąd składa się metalowego pręta (1) (rs.2) awiesonego pregubowo na pionowm wałku (2). Pręt (1) może obracać się dokoła osi poiomej i pionowej, które prechodą pre jego środek. Na jednm końcu pręta jest umocowan silnicek (3). Silnicek ten jest asilan prądem trójfaowm (400 H, 36 V) popre tr pierścienie (4) i blaski kontaktowe (5). Zasilac najduje się w podstawie prrądu. Wirnik silnicka, obracając się dużą prędkością kątową, jest właśnie giroskopem. Na drugim ramieniu pręta (1) umiesca się preciw-wagę (6) silnika; jej położenie dobiera się tak, ab pręt (1) poostawał w pocji poiomej. Dodatkow ciężarek (7) wtwara moment sił ewnętrnej, wwołując ruch precesjn. Dla małego momentu będie mała prędkość kątowa Ω precesji, a cas pełnego obrotu osi giroskopu będie nacn. W tm casie może ujawnić się diałanie momentu sił tarcia w awiesaniu (8) wałka (2) na belce (9); giroskop będie w precesji także dokoła osi poiomej poprecnej do pręta (1). Dlatego w awieseniu (8) powinn bć dobre łożska poprecno-wdłużne. Wted, dla dwóch lub trech obrotów precesjnch, kąt międ prętem (1) i pionem poostanie, w prbliżeniu, prostm. Rs.2. Podcas wkonwania ćwicenia należ wkonać następujące cnności. 1. Na wstępie, treba sprawdić, c pręt (1) może swobodnie obracać się dokoła pionowej i poiomej osi. Następnie ustala się położenie preciwwagi (6) tak, ab pręt (1) poostał w pocji poiomej. wer MT 5

6 2. Po włąceniu prądu, należ odcekać około 10 minut, aż wirnik silnika uska maksmalne obrot. Gd silnik acnie pracować na maksmalnch obrotach, prtrmujem pręt (1) i awiesam dodatkow ciężarek /ciężarki (7). 3. Wted ostrożnie pusca się giroskop; ropocnie się ruch precesjn. Pr pomoc sekundomiera wnaca się okres T pełnego obrotu precesjnego giroskopu. Stąd prędkość kątowa precesji: 2π Ω = (7) T Ta prędkość odpowiada momentowi M, wtworonemu pre ciężarek (7). Należ wnacć prędkość kątową precesji dla różnch wartości momentu M, mieniając wielkość i /lub ramię sił ciężkości ciężarka (7) wg aproponowanch w tabeli wariantów ćwicenia. Wariant Licba Ramię sił podwiesonch ciężarków w jednm punkcie 1 2 Diesięć różnch wartości dobranch tak ab żroskop dokonał chociaż jednego pełnego obiegu w pocji poiomej 2 3 Diesięć różnch wartości dobranch tak ab żroskop dokonał chociaż jednego pełnego obiegu w pocji poiomej 3 4 Diesięć różnch wartości dobranch tak ab żroskop dokonał chociaż jednego pełnego obiegu w pocji poiomej 4 2 i następnie 3 Po pięć różnch wartości dobranch tak ab żroskop dokonał chociaż jednego pełnego obiegu w pocji poiomej ora adan moment sił nie powtórł się 5 3 i następnie 4 Po pięć różnch wartości dobranch tak ab żroskop dokonał chociaż jednego pełnego obiegu w pocji poiomej ora adan moment sił nie powtórł się 6 2 i następnie 4 Po pięć różnch wartości dobranch tak ab żroskop dokonał chociaż jednego pełnego obiegu w pocji poiomej ora adan moment sił nie powtórł się 7 dowolna Diesięć różnch wartości dobranch tak ab żroskop dokonał chociaż jednego pełnego obiegu w pocji poiomej ora adan moment sił nie powtórł się wer MT 6

7 Uwaga! Po wkonaniu każdego pomiaru prtrmaj pręt (1), ustaw go w miarę możliwości poiomo i dopiero ropocnij kolejn pomiar. Pamiętaj ab włącać stoper wted gd giroskop będie już w ruchu ustalonm (a nie ara po uwolnieniu go). Stąd awse uwalniaj go wceśniej niż osiągnie wbrane pre ciebie położenie opowiadające pocji pocątkowej. Okres ruchu precesjnego dla niewielkich momentów sił może bć bardo długi. Z powodu sił tarcia nie uda się wted mierć nawet całego okresu ruchu. Pr adanm obciążeniu należ tak dobrać ramię sił ab móc mierć jeden okres ruchu. 4. Scegółowe kroki preprowadonch pomiarów i kolejność ora sposób wkonania obliceń są narucone popre arkus sprawodania. W celu wnacenia prędkości wirnika giroskopu ω skorstaj ależności: M = IωΩ Należ prjąć, że moment bewładności wirnika giroskopu wnosi: I = 5 2 ( 16,8 ± 0,2 ) 10 kgm 5. Po wkonaniu adanej licb pomiarów należ włącć asilanie silnika. 6. Sformułuj wnioski dotcące prede wsstkim godności otrmanego wniku prewidwanm, ewentualnch prcn robieżności, obserwowanego jawiska, recwistej / teoretcnej ależności pomięd momentem sił a okresem/ cęstością precesji itp. wer MT 7

Ruch kulisty bryły. Kąty Eulera. Precesja regularna

Ruch kulisty bryły. Kąty Eulera. Precesja regularna Ruch kulist brł. Kąt Eulera. Precesja regularna Ruchem kulistm nawam ruch, w casie którego jeden punktów brł jest stale nieruchom. Ruch kulist jest obrotem dookoła chwilowej osi obrotu (oś ta mienia swoje

Bardziej szczegółowo

cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321

cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 Wkład 8: Brła stwna c. Dr inż. Zbigniew Sklarski Katedra Elektroniki, paw. C-, pok.3 skla@agh.edu.pl http://laer.uci.agh.edu.pl/z.sklarski/ 05.04.08 Wdiał nformatki, Elektroniki i Telekomunikacji - Teleinformatka

Bardziej szczegółowo

KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA

KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA ĆWICZENIE 5 KONWENCA ZNAKOWANIA OENTÓW I WZÓR NA NAPRĘŻENIA Wektor momentu pr ginaniu ukośnm można rutować na osie,, będące głównmi centralnmi osiami bewładności prekroju. Prjmujem konwencję nakowania

Bardziej szczegółowo

Zginanie ukośne LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki

Zginanie ukośne LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki Katedra Wtrmałości Materiałów i Metod Komputerowch Mechaniki Wdiał Mechanicn Technologicn Politechnika Śląska LABORATORUM WYTRZYMAŁOŚC MATERAŁÓW Zginanie ukośne ZGNANE UKOŚNE 2 1. CEL ĆWCZENA Ćwicenie

Bardziej szczegółowo

Geometria analityczna w przestrzeni. Kierunek. Długość. Zwrot

Geometria analityczna w przestrzeni. Kierunek. Długość. Zwrot - podstawowe pojęcia Geometria analitcna w prestreni Wektorem acepionm w prestreni R 3 nawam uporądkowaną parę punktów A ora B i onacam go pre AB. Punkt A nawam jego pocątkiem, a punkt B - jego końcem.

Bardziej szczegółowo

1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił

1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił . REDUKCJA DOWOLNYCH UKŁADÓW IŁ Redukcja płaskiego układu sił Zadanie. Znaleźć wartość licbową i równanie linii diałania wpadkowej cterech sił predstawionch na rsunku. Wartości licbowe sił są następujące:

Bardziej szczegółowo

Postać Jordana macierzy

Postać Jordana macierzy Rodiał 8 Postać Jordana macier 8.1. Macier Jordana Niech F = R lub F = C. Macier J r () F r r postaci 1. 1... J r () =..........,.... 1 gdie F, nawam klatką Jordana stopnia r. Ocwiście J 1 () = [. Definicja

Bardziej szczegółowo

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. god. Cel ćwicenia: aponanie się diałaniem elementów smetrii

Bardziej szczegółowo

Przestrzeń liniowa R n.

Przestrzeń liniowa R n. MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c

Bardziej szczegółowo

POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y

POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y POTENCJALNE POLE SIŁ POLE SKALARNE Polem skalarnm V(r) nawam funkcję prpisującą każdemu punktowi w prestreni licbę recwistą (skalar): V (r): r=(,, ) V (r) POLE WEKTOROWE SIŁ Polem wektorowm sił F(r) nawam

Bardziej szczegółowo

J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie

J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie J. antr - Wkład Napór hdrostatcn Napór hdrostatcn na ścian płaskie Napór elementarn: d n( p pa ) d nρgd Napór całkowit: ρg nd ρgn d gdie: C Napór hdrostatcn na ścianę płaską predstawia układ elementarnch

Bardziej szczegółowo

Wyznaczanie ruchliwości i koncentracji nośników prądu w półprzewodnikach metodą efektu Halla

Wyznaczanie ruchliwości i koncentracji nośników prądu w półprzewodnikach metodą efektu Halla Ćwicenie 13 Wnacanie ruchliwości i koncentracji nośników prądu w półprewodnikach metodą efektu alla Cel ćwicenia Celem ćwicenia jest aponanie się e jawiskiem alla, stałoprądową metodą badania efektu alla,

Bardziej szczegółowo

Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8

Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8 Wnacanie reakcji dnaicnch ora wważanie ciała w ruchu oroow wokół sałej osi 8 Wprowadenie Jeśli dowolne ciało swne o asie jes w ruchu oroow wokół osi, o na podporach powsają reakcje A i B. Składowe ch reakcji

Bardziej szczegółowo

Ruch kulisty bryły. Kinematyka

Ruch kulisty bryły. Kinematyka Ruch kulist bł. Kinematka Ruchem kulistm nawam uch, w casie któego jeden punktów bł jest stale nieuchom. Ruch kulist jest obotem dookoła chwilowej osi obotu (oś ta mienia swoje położenie w casie). a) b)

Bardziej szczegółowo

napór cieczy - wypadkowy ( hydrostatyczny )

napór cieczy - wypadkowy ( hydrostatyczny ) 5. apór hdrostatcn i równowaga ciał płwającch Płn najdując się w stanie równowagi oddiałwuje na ścian ogranicające ropatrwaną jego objętość i sił te nawane są naporami hdrostatcnmi. Omawiana problematka

Bardziej szczegółowo

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ).

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ). Materiał ddaktcne Geodeja geometrcna Marcin Ligas, Katedra Geomatki, Wdiał Geodeji Górnicej i Inżnierii Środowiska UKŁADY WSPÓŁZĘDNYCH NA KULI Pierwsm prbliżeniem kstałtu Ziemi (ocwiście po latach płaskich

Bardziej szczegółowo

I. Rachunek wektorowy i jego zastosowanie w fizyce.

I. Rachunek wektorowy i jego zastosowanie w fizyce. Blok 1: Rachunek wektorow i jego astosowanie w fice Podstawowe wielkości ficne w kinematce Opis ruchu w różnch układach odniesienia Ruch wględn I Rachunek wektorow i jego astosowanie w fice Wsstkie wielkości

Bardziej szczegółowo

Elementy symetrii makroskopowej w ujęciu macierzowym.

Elementy symetrii makroskopowej w ujęciu macierzowym. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Element smetrii makroskopowej w ujęciu macierowm. 2 god. Cel ćwicenia: tworenie macier smetrii elementów smetrii makroskopowej

Bardziej szczegółowo

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu J. Santr - Wkład 7 Rch ogóln element płn Rch ogóln ciała stwnego można predstawić jako smę premiescenia liniowego i obrot. Ponieważ płn nie mają stwności postaciowej, w rch płn dochodi dodatkowo do odkstałcenia

Bardziej szczegółowo

>> ω z, (4.122) Przybliżona teoria żyroskopu

>> ω z, (4.122) Przybliżona teoria żyroskopu Prybliżona teoria żyroskopu Żyroskopem naywamy ciało materialne o postaci bryły obrotowej (wirnika), osadone na osi pokrywającej się osią geometrycną tego ciała wanej osią żyroskopową. ζ K θ ω η ω ζ y

Bardziej szczegółowo

GRUPY SYMETRII Symetria kryształu

GRUPY SYMETRII Symetria kryształu GRUPY SYMETRII Smetria krstału Zamknięte (punktowe) operacje smetrii (minimum jeden punkt prestreni nie porusa się wskutek astosowania amkniętej operacji smetrii): Obrot i obrot inwersjne; Inwersja (smetria

Bardziej szczegółowo

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY Cw3_biornik.doc ANALIZA KONTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY 1. W P R O W A D Z E N I E Ciało utworone pre dwie akrwione powierchnie nawane jest powłoką, jeśli preciętna odlełość pomięd

Bardziej szczegółowo

4.2.1. Środek ciężkości bryły jednorodnej

4.2.1. Środek ciężkości bryły jednorodnej 4..1. Środek ciężkości rł jednorodnej Brłą jednorodną nawam ciało materialne, w którm masa jest romiescona równomiernie w całej jego ojętości. Dla takic ciał arówno gęstość, jak i ciężar właściw są wielkościami

Bardziej szczegółowo

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 6 nr Archiwum Technologii Masn i Automatacji 6 ROMAN STANIEK * ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE W artkule predstawiono ależności matematcne

Bardziej szczegółowo

Fizyka 1 (mechanika) AF14. Wykład 9

Fizyka 1 (mechanika) AF14. Wykład 9 Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m

Bardziej szczegółowo

1. Podstawy rachunku wektorowego

1. Podstawy rachunku wektorowego 1 Postaw rachunku wektorowego Wektor Wektor est wielkością efiniowaną pre ługość (mouł) kierunek iałania ora wrot Dwa wektor o tm samm moule kierunku i wrocie są sobie równe Wektor presunięt równolegle

Bardziej szczegółowo

Rozdział 9. Baza Jordana

Rozdział 9. Baza Jordana Rodiał 9 Baa Jordana Niech X będie n wmiarową prestrenią wektorową nad ciałem F = R lub F = C Roważm dowoln endomorfim f : X X Wiem, że postać macier endomorfimu ależ od wboru ba w prestreni X Wiem również,

Bardziej szczegółowo

Równoważne układy sił

Równoważne układy sił Równoważne układ sił Równoważnmi układami sił nawam takie układ, którch skutki diałania na ten sam obiekt są jednakowe. Jeżeli układ sił da się astąpić jedną siłą, to siłę tą nawam siłą wpadkową. Wpadkowa

Bardziej szczegółowo

Część 1 2. PRACA SIŁ WEWNĘTRZNYCH 1 2. PRACA SIŁ WEWNĘTRZNYCH Wstęp

Część 1 2. PRACA SIŁ WEWNĘTRZNYCH 1 2. PRACA SIŁ WEWNĘTRZNYCH Wstęp Cęść 1. PRC SIŁ WEWNĘTRZNYCH 1.. PRC SIŁ WEWNĘTRZNYCH.1. Wstęp Na wstępie prpomnijm, że gd premiescenie danego eementu jest funkcją diałającej nań sił Δ = f(p), to praca sił na tm premiesceniu jest równa:

Bardziej szczegółowo

Adam Bodnar: Wytrzymałość Materiałów. Ukośne zginanie 13. UKOŚNE ZGINANIE

Adam Bodnar: Wytrzymałość Materiałów. Ukośne zginanie 13. UKOŚNE ZGINANIE . UKOŚNE GINNIE.. Naprężenia i odkstałcenia Ukośne ginanie pręta prmatcnego wstępuje wówcas gd układ sił ewnętrnch po jednej stronie jego prekroju poprecnego pręta redukuje się do momentu ginającego, którego

Bardziej szczegółowo

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa: PRW ZCHOWNI Pawa achowania nabadie fundamentalne pawa: o ewnętne : pawo achowania pędu, pawo achowania momentu pędu, pawo achowania enegii; o wewnętne : pawa achowania np. całkowite licb nukleonów w eakci

Bardziej szczegółowo

Mechanika Robotów. Wojciech Lisowski. 2 Opis położenia i orientacji efektora Model geometryczny zadanie proste

Mechanika Robotów. Wojciech Lisowski. 2 Opis położenia i orientacji efektora Model geometryczny zadanie proste Katedra Robotki i Mechatroniki Akademia Górnico-Hutnica w Krakowie Mechanika Robotów Wojciech Lisowski Opis położenia i orientacji efektora Model geometrcn adanie proste Mechanika Robotów KRIM, AGH w Krakowie

Bardziej szczegółowo

DryLin T System prowadnic liniowych

DryLin T System prowadnic liniowych DrLin T Sstem prowadnic liniowch Prowadnice liniowe DrLin T ostał opracowane do astosowań wiąanch automatką i transportem materiałów. Chodiło o stworenie wdajnej, beobsługowej prowadnic liniowej do astosowania

Bardziej szczegółowo

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących

Bardziej szczegółowo

MECHANIKA OGÓLNA. Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014

MECHANIKA OGÓLNA. Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 MECHANIKA OGÓLNA Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Licba godin: sem. II *) - wkład 30 god., ćwicenia 30 god. sem. III *) - wkład 30 god., ćwicenia 30 god., ale dla kier.

Bardziej szczegółowo

Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać:

Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać: ochodna kierunkowa i gradient Równania parametrcne prostej prechodącej pre punkt i skierowanej wdłuż jednostkowego wektora mają postać: Oblicam pochodną kierunkową u ( u, u ) 1 + su + su 1 (, ) d d d ˆ

Bardziej szczegółowo

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. 2 god. Cel ćwicenia: aponanie się diałaniem elementów smetrii

Bardziej szczegółowo

Graficzne modelowanie scen 3D. Wykład 4

Graficzne modelowanie scen 3D. Wykład 4 Wkład 4 Podstawowe pojęcia i definicje . Modelowanie. Definicja Model awiera wsstkie dane i obiekt ora wiąki pomięd nimi, które są niebędne do prawidłowego wświetlenia i realiowania interakcji aplikacją,

Bardziej szczegółowo

EPR. W -1/2 =-1/2 gµ B B

EPR. W -1/2 =-1/2 gµ B B Hamiltonian spinow Elektronow reonans paramanetcn jest wiąan absorpcją pola wsokiej cęstotliwości, która towars mianie orientacji spin w ewnętrnm polu manetcnm. Niesparowane spinowe moment manetcne µ s

Bardziej szczegółowo

Adam Bodnar: Wytrzymałość Materiałów. Proste zginanie

Adam Bodnar: Wytrzymałość Materiałów. Proste zginanie dam Bodnar: trmałość ateriałów. Proste ginanie. PROSTE GINNIE.. Naprężenia i odkstałcenia Proste ginanie pręta prmatcnego wstępuje wówcas gd układ sił ewnętrnch po jednej stronie jego prekroju poprecnego

Bardziej szczegółowo

Przykład 3.7. Naprężenia styczne przy zginaniu belki cienkościennej.

Przykład 3.7. Naprężenia styczne przy zginaniu belki cienkościennej. Prkład.7. Naprężenia tcne pr ginaniu belki cienkościennej. Wnac rokład naprężenia tcnego w prekroju podporowm belki wpornikowej o prekroju cienkościennm obciążonej na wobodnm końcu pionową iłą P. Siła

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

Rozwiazania zadań. Zadanie 1A. Zadanie 1B. Zadanie 2A

Rozwiazania zadań. Zadanie 1A. Zadanie 1B. Zadanie 2A Rowiaania adań Zadanie A = ( i) = 4 8i 4 = 8i Badam licbȩ espolon a 8i Jej moduł 8i jest równ 8 Jej postać espolona jest równa 8(cosα + isinα) α = /π St ad cosα = i sinα = Mam pierwiastki które oblicam

Bardziej szczegółowo

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego.

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego. Transformator Φ r Φ M Φ r i i u u Φ i strumień magnetycny prenikający pre i-ty wój pierwsego uwojenia; siła elektromotorycna indukowana w i-tym woju: dφ ei, licba wojów uwojenia pierwotnego i wtórnego.

Bardziej szczegółowo

Zginanie Proste Równomierne Belki

Zginanie Proste Równomierne Belki Zginanie Proste Równomierne Belki Prebieg wykładu : 1. Rokład naprężeń w prekroju belki. Warunki równowagi. Warunki geometrycne 4. Zwiąek fiycny 5. Wskaźnik wytrymałości prekroju na ginanie 6. Podsumowanie

Bardziej szczegółowo

x od położenia równowagi

x od położenia równowagi RUCH HARMONICZNY Ruch powtarając się w regularnch odstępach casu nawa ruche okresow. Jeżeli w taki ruchu seroko rouiane odchlenie od stanu równowagi ( np. odchlenie as podcepionej do sprężn, wartość wektora

Bardziej szczegółowo

PRAWIDŁOWE ODPOWIEDZI I PUNKTACJA

PRAWIDŁOWE ODPOWIEDZI I PUNKTACJA MAŁOPOLSKI KONKURS MATEMATYCZNY Rok skoln 08/09 ETAP REJONOWY 0 grudnia 08 roku PRAWIDŁOWE ODPOWIEDZI I PUNKTACJA adanie odpowiedź punkt B 3 C 3 3 A 3 4 B 3 5 E 3 6 B 3 7 E 3 8 C 3 9 D 3 0 A 3 7 adania

Bardziej szczegółowo

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: I. Animacje na slajdach przygotował mgr inż.

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: I. Animacje na slajdach przygotował mgr inż. SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE CZĘŚĆ: I DR INŻ. TOMASZ LASKOWSKI Animacje na slajdach 13-30 prgotował mgr inż. Marcin Płosiński MOTTO WYKŁADU Nie treba końcć studiów na kierunku elektronika, ab

Bardziej szczegółowo

σ x σ y σ z σ z, Adam Bodnar: Wytrzymałość Materiałów. Równania fizyczne.

σ x σ y σ z σ z, Adam Bodnar: Wytrzymałość Materiałów. Równania fizyczne. Ada Bodnar: Wtrałość Materiałów. Równania ficne. 7. RÓWNANIA FIZCZN 7.. Zwiąki ięd stane odkstałcenia i naprężenia. I i II postać równań Hooke a Zależność deforacji brł od obciążeń ewnętrnch naruca istnienie

Bardziej szczegółowo

Fale skrętne w pręcie

Fale skrętne w pręcie ae skrętne w ręcie + -(+) eement ręta r π ) ( 4 Lokane skręcenie o () moment skręcając moduł stwności r romień ręta r 4 ) ( π Pod włwem wadkowego momentu eement ręta uskuje rsiesenie kątowe i sełnion jest

Bardziej szczegółowo

Bąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O).

Bąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O). Bryła sztywna (2) Bąk Równowaga Rozważmy bąk podparty wirujący do okoła pionowej osi. Z zasady zachowania mementu pędu wynika, że jeśli zapewnimy znikanie momentów sił to kierunek momentu pędu pozostanie

Bardziej szczegółowo

Pręty silnie zakrzywione 1

Pręty silnie zakrzywione 1 Pęt silnie akwione. DEFIICJ Pętem silnie akwionm nawam pęt, któego oś jest płaską kwą, a stosunek wmiau pekoju popecnego (leżącego w płascźnie kwin) do pomienia kwin osi ciężkości () pęta spełnia waunek.

Bardziej szczegółowo

Przykład 6.3. Uogólnione prawo Hooke a

Przykład 6.3. Uogólnione prawo Hooke a Prkład 6 Uogónione prawo Hooke a Zwiąki międ odkstałceniami i naprężeniami w prpadku ciała iotropowego opisuje uogónione prawo Hooke a: ] ] ] a Rowiąując równania a wgędem naprężeń otrmujem wiąki: b W

Bardziej szczegółowo

3. Metody rozwiązywania zagadnień polowych

3. Metody rozwiązywania zagadnień polowych 3. Metod rowiąwania agadnień polowch 3.. Dokładne metod anali pola Dokładne metod anali pola powalają na uskanie dokładnego rowiąania równania róŝnickowego lub całkowego w dowolnm punkcie obsaru diałania

Bardziej szczegółowo

,..., u x n. , 2 u x 2 1

,..., u x n. , 2 u x 2 1 . Równania różnickowe cąstkowe Definicja. Równaniem różnickowm cąstkowm (rrc) nawam równanie różnickowe, w którm wstępuje funkcja niewiadoma dwóch lub więcej miennch i jej pochodne cąstkowe. Ogólna postać

Bardziej szczegółowo

Podstawy wytrzymałości materiałów

Podstawy wytrzymałości materiałów Podstaw wtrmałości materiałów IMiR - MiBM - Wkład Nr 5 Analia stanu odkstałcenia Składowe stanu odkstałcenia, uogólnione prawo Hooke a, prawo Hooke a dla cstego ścinania, wględna miana objętości, klasfikacja

Bardziej szczegółowo

ALGEBRA rok akademicki

ALGEBRA rok akademicki ALGEBRA rok akademck -8 Tdeń Tematka wkładu Tematka ćwceń ajęć Struktur algebracne (grupa cało; be Dałana na macerach perścen Defncja macer Dałana na macerach Oblcane wnacnków Wnacnk jego własnośc Oblcane

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

RZUTOWANIE. rzutnia (ekran) obserwator

RZUTOWANIE. rzutnia (ekran) obserwator WYKŁAD 6 RZUTOWANIE Plan wkładu: Układ współr rędnch, ogólne asad rutowania Rutowanie równolegr wnoległe Rutowanie perspektwicne Ogóln prpadek rutowania 1. Układ współr rędnch, ogólne asad rutowania Lewoskrętn

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXII: Porównanie ruchu obrotowego z ruchem postępowym. Bak Precesja Żyroskop

Bryła sztywna. Fizyka I (B+C) Wykład XXII: Porównanie ruchu obrotowego z ruchem postępowym. Bak Precesja Żyroskop Bryła sztywna Wykład XXII: Fizyka I (B+C) Porównanie ruchu obrotowego z ruchem postępowym Bak Precesja Żyroskop Ogólne wyrażenie na moment pędu Tensor momentu bezwładności Osie główne Porównanie Punkt

Bardziej szczegółowo

Wyznaczanie środka ścinania w prętach o przekrojach niesymetrycznych

Wyznaczanie środka ścinania w prętach o przekrojach niesymetrycznych Insttut Mechaniki i Inżnierii Obliceniowej Wdiał Mechanicn echnologicn Politechnika Śląska www.imio.polsl.pl LBORORIUM WYRZYMŁOŚCI MERIŁÓW Wnacanie środka ścinania w prętach o prekrojach niesmetrcnch WYZNCZNIE

Bardziej szczegółowo

TEORIA SPRĘŻYSTOŚCI 10

TEORIA SPRĘŻYSTOŚCI 10 W YKŁ ADY Z T EOII S ĘŻYSTOŚCI ZADANIE BOUSSINESQA I FLAMANTA olitechnika onańska Kopac, Kawck, Łodgowski, łotkowiak, Świtek, Tmpe Olga Kopac, Kstof Kawck, Adam Łodgowski, Michał łotkowiak, Agnieska Świtek,

Bardziej szczegółowo

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XXI:

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XXI: Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XXI: Porównanie ruchu obrotowego z ruchem postępowym Ogólne wyrażenie na moment pędu Tensor momentu bezwładności Osie główne Równania Eulera Bak swobodny Porównanie

Bardziej szczegółowo

Laboratorium grafiki komputerowej i animacji. Ćwiczenie IV - Biblioteka OpenGL - transformacje przestrzenne obiektów

Laboratorium grafiki komputerowej i animacji. Ćwiczenie IV - Biblioteka OpenGL - transformacje przestrzenne obiektów Laboratorium grafiki komputerowej i animacji Ćwicenie IV - Biblioteka OpenGL - transformacje prestrenne obiektów Prgotowanie do ćwicenia: 1. Zaponać się transformacjami prestrennmi (obrót, presunięcie,

Bardziej szczegółowo

Podstawy wytrzymałości materiałów

Podstawy wytrzymałości materiałów Podstaw wtrmałości materiałów IMiR -IA- Wkład Nr 9 Analia stanu odkstałcenia Składowe stanu odkstałcenia, uogólnione prawo Hooke a, prawo Hooke a dla cstego ścinania, wględna miana objętości, klasfikacja

Bardziej szczegółowo

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydiał Mechanicny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 3 1. CEL ĆWICZENIA Wybrane

Bardziej szczegółowo

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły

Bardziej szczegółowo

Złożone działanie sił wewnętrznych w prętach prostych

Złożone działanie sił wewnętrznych w prętach prostych Złożone diałanie sił wewnętrnch w rętach rostch Jeżeli sił wewnętrne nie redukują się włącnie do sił odłużnej N, orecnej T i momentu gnącego Mg c momentu skręcającego Ms, to radki takie nawa się łożonmi

Bardziej szczegółowo

WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA ĆWICZENIE

WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA ĆWICZENIE ĆWICZENIE 1 WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Cel ćwiczenia: Doświadczalne potwierdzenie twierdzenia Steinera, wyznaczenie

Bardziej szczegółowo

BADANIE STANÓW RÓWNOWAGI UKŁADU MECHANICZNEGO

BADANIE STANÓW RÓWNOWAGI UKŁADU MECHANICZNEGO Ćwiczenie 3 BADANIE STANÓW RÓWNOWAGI UKŁADU MECHANICZNEGO 3.. Cel ćwiczenia Celem ćwiczenia jest teoretyczne i doświadczalne wyznaczenie położeń równowagi i określenie stanu równowagi prostego układu mechanicznego

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach.

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach. CZOŁOWE OWE PRZEKŁADNIE STOŻKOWE PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe) HIPERBOIDALNE ŚLIMAKOWE o ebach prostych o ębach prostych walcowe walcowe o ębach śrubowych o

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3. Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Obrót wokół ustalonej osi Prawa ruchu Dla bryły sztywnej obracajacej się wokół ostalonej osi mement

Bardziej szczegółowo

INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCESOWEJ, MATERIAŁOWEJ I FIZYKI STOSOWANEJ POLITECHNIKA CZĘSTOCHOWSKA ĆWICZENIE NR MR-2

INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCESOWEJ, MATERIAŁOWEJ I FIZYKI STOSOWANEJ POLITECHNIKA CZĘSTOCHOWSKA ĆWICZENIE NR MR-2 INTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCEOWEJ, MATERIAŁOWEJ I FIZYKI TOOWANEJ POLITECHNIKA CZĘTOCHOWKA LABORATORIUM Z PRZEDMIOTU METODY REZONANOWE ĆWICZENIE NR MR- EPR JONÓW Ni W FLUOROKRZEMIANIE NIKLU I.

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej

Bardziej szczegółowo

Zestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t

Zestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t Zesaw adań : Preksałcenia liniowe () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + +, b) n = m = 3, ϕ( +, 3 + + + +, d) n = m = 3, ϕ( +, c) n = m = 3, ϕ( e) n

Bardziej szczegółowo

Teoria względności. Wykład 5: Szczególna teoria względności Katarzyna Weron. Jak zmierzyć odległość? Jak zmierzyć odległość?

Teoria względności. Wykład 5: Szczególna teoria względności Katarzyna Weron. Jak zmierzyć odległość? Jak zmierzyć odległość? Teoria wględności Wkład 5: Scególna teoria wględności Katarna Weron Scególna (905) efekt ruchu wględnego gólna (96) efekt pola grawitacjnego siła grawitacji wnika lokalnej geometrii casoprestreni Matematka

Bardziej szczegółowo

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe

Bardziej szczegółowo

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił 3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej

Bardziej szczegółowo

KINEMATYKA. Pojęcia podstawowe

KINEMATYKA. Pojęcia podstawowe KINEMTYK Pojęcia podstawowe Kinematka jest diałem mechaniki ajmującm się badaniem uchu ciał be uwględniania pcn wwołującch ten uch. Jej celem jest opis tego uchu. Ruchem nawam mianę położenia ciała w odniesieniu

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

MECHANIKA BUDOWLI 2 PRACA SIŁ WEWNĘTRZNYCH W PRĘTACH

MECHANIKA BUDOWLI 2 PRACA SIŁ WEWNĘTRZNYCH W PRĘTACH Oga Kopac, am Łogowski, Wojciech Pawłowski, ichał Płotkowiak, Krstof mber Konsutacje naukowe: prof. r hab. JERZY RKOWSKI Ponań /3 ECHIK BUDOWI Praca sił normanch Siła normana prpomnienie (): Jest to siła

Bardziej szczegółowo

[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia.

[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia. rzkład 10.3. Łuk paraboliczn. Rsunek przedstawia łuk wolnopodpart, którego oś ma kształt paraboli drugiego stopnia (łuk paraboliczn ). Łuk obciążon jest ciśnieniem wewnętrznm (wektor elementarnej wpadkowej

Bardziej szczegółowo

ORGANIZACJA I ZARZĄDZANIE

ORGANIZACJA I ZARZĄDZANIE P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Optymaliacja transportu wewnętrnego w akładie mechanicnym

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu miennch wkład MATEMATYKI Automatka i robotka studia niestacjonarne sem II, rok ak 2009/2010 Katedra Matematki Wdiał Informatki Politechnika Białostocka Niech R ndef ={( 1, 2,, n ): 1 R 2

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z

Bardziej szczegółowo

Belki zespolone 1. z E 1, A 1

Belki zespolone 1. z E 1, A 1 Belki espolone. DEFINIC Belki espolone to belki, którch prekrój poprecn składa się co najmniej dwóch materiałów o różnch własnościach ficnch (różne moduł Younga i współcnniki Poissona), pr cm apewnione

Bardziej szczegółowo

Badanie transformatora jednofazowego. (Instrukcja do ćwiczenia)

Badanie transformatora jednofazowego. (Instrukcja do ćwiczenia) 1 Badanie transformatora jednofaowego (Instrukcja do ćwicenia) Badanie transformatora jednofaowego. CEL ĆICZENI: Ponanie asady diałania, budowy i właściwości.transformatora jednofaowego. 1 IDOMOŚCI TEORETYCZNE

Bardziej szczegółowo

BADANIE CYFROWYCH UKŁADÓW ELEKTRONICZNYCH TTL strona 1/7

BADANIE CYFROWYCH UKŁADÓW ELEKTRONICZNYCH TTL strona 1/7 BADANIE CYFROWYCH UKŁADÓW ELEKTRONICZNYCH TTL strona 1/7 BADANIE CYFROWYCH UKŁADÓW ELEKTRONICZNYCH TTL 1. Wiadomości wstępne Monolitcne układ scalone TTL ( ang. Trasistor Transistor Logic) stanowią obecnie

Bardziej szczegółowo

Zasady dynamiki Isaak Newton (1686 r.)

Zasady dynamiki Isaak Newton (1686 r.) Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ . Cel ćwiczenia Pomiar współrzędnych powierzchni swobodnej w naczyniu cylindrycznym wirującym wokół

Bardziej szczegółowo