Szeregi o wyrazach dodatnich. Kryteria zbieżności d'alemberta i Cauchy'ego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Szeregi o wyrazach dodatnich. Kryteria zbieżności d'alemberta i Cauchy'ego"

Transkrypt

1 Szeregi o wyrazach dodatnich. Kryteria zbieżności d'alemberta i Cauchy'ego Przy założeniu, że wszystkie składniki szeregu jest rosnący. Wynika stąd natychmiast stwierdzenie: są dodatnie, ciąg jego sum częściowych Stwierdzenie Szereg o wyrazach dodatnich jest albo zbieżny, albo rozbieżny do. Twierdzenie (kryterium porównawcze) Można je wyrażać w różnych wersjach; tu jest jedna z nich Jeśli dla wszystkich zachodzi i jeśli szereg jest zbieżny, to zbieżny jest również szereg. Przy tym zachodzi Oznaczmy sumy częściowe szeregów i jako i : Mamy oczywiście ciągów monotonicznych). Mamy też: (przypomnijmy sobie odpowiednie twierdzenia o granicach Z nierówności tej wnioskujemy, że ciąg sum częściowych szeregu jest ograniczony, a więc szereg jest zbieżny. Z drugiej strony, wynika stąd nierówność. Bo jak pamiętamy, dla ciągów było: Jeżeli dla ciągu { } każdego zachodzi:, to.

2 Kryterium powyższe jest ogólne i sukces w jego stosowaniu do jakiegoś szeregu zależy od tego, czy znajdziemy taki szereg zbieżny, który szacuje od góry. Pokażemy zbieżność szeregu Uczynimy to przez porównanie go z szeregiem: mamy: czyli granica sum częściowych szeregu (2) jest:. Na mocy kryterium porównawczego, szereg jest zbieżny [1]. Biorąc do porównywania w kryterium porównawczym szereg geometryczny, otrzymujemy następujące dwa kryteria. Twierdzenie (kryterium d'alemberta) Szereg o wyrazach dodatnich, spełniający warunek jest zbieżny. Weźmy takie, aby były spełniona nierówności:. Istnieje więc takie, że dla mamy, czyli. Tak więc szereg ma składniki odpowiednio nie większe od składników szeregu geometrycznego. Ten szereg geometryczny jest zbieżny, bo. Z kryterium porównawczego jest więc zbieżny

3 szereg, a co za tym idzie i szereg. Twierdzenie (kryterium Cauchy'ego) Szereg o wyrazach dodatnich, spełniający warunek jest zbieżny. Podobnie jak w kryterium d'alemberta, istnieje takie i takie, że dla zachodzi, a to jest równoważne nierówności. Porównując teraz szereg z szeregiem geometrycznym, widzimy, że jeżeli szereg geometryczny jest zbieżny (tzn. ), to zbieżny jest również szereg. Ustaliliśmy więc pewne kryteria zbieżności. Daje się też znaleźć kryteria rozbieżności. Twierdzenie (Kryteria rozbieżności) Jeśli dla szeregu o składnikach dodatnich zachodzi jedna z nierówności to szereg jest rozbieżny. Jeśli ma miejsce pierwsza z nierówności (5), to dla dostatecznie dużych mamy a to znaczy, że ciąg { } nie jest zbieżny do 0, czyli nie jest spełniony warunek konieczny zbieżności szeregu tak więc szereg jest rozbieżny. Jeśli natomiast spełniona jest druga z nierówności (5), to dla dostatecznie dużych mamy i znowu ciąg { } nie jest zbieżny do 0.

4 Szereg: dla jest zbieżny. Mamy: Z kryterium d'alemberta wynika, że szereg (6) jest zbieżny. Kryterium d'alemberta nie rozstrzyga o zbieżności szeregu harmonicznego ani szeregu (2), bo w obu przypadkach. Szeregi bezwzględnie zbieżne Def. Szereg nazywamy bezwzględnie zbieżnym, jeśli szereg jest zbieżny. Szereg, który jest zbieżny, ale nie jest bezwzględnie zbieżny, nazywamy warunkowo zbieżnym. Twierdzenie Jeśli szereg jest zbieżny bezwzględnie, to jest też zbieżny w zwykłym sensie. Ponadto Zgodnie z warunkiem Cauchy'ego zbieżności szeregów, musimy oszacować sumę: i pokazać, że dla dostatecznie dużych i dowolnych dowolnie mała. Mamy: suma ta jest Ostatnia suma powyżej, jako reszta szeregu zbieżnego, dąży do 0, gdy dąży do. Innymi

5 słowy, dla dowolnego istnieje takie, że, skąd dla każdego. W ten sposób pokazaliśmy zbieżność szeregu granicy, wynika. Ponadto, oznaczając: oraz mamy:, skąd, po przejściu do a to jest dokładnie wzór (7). y 1. Szereg geometryczny, gdzie, jest zbieżny bezwzględnie, ponieważ jest zbieżny szereg Szereg jest zbieżny bezwzględnie dla każdego. Jak się niedługo okaże, jego suma jest równa. Szereg anharmoniczny jest zbieżny warunkowo, ponieważ szereg wartości bezwzględnych jego składników to szereg harmoniczny, który jest rozbieżny. (Pozorne) paradoksy z szeregami nieskończonymi Przyjrzymy się teraz zagadnieniu przemienności szeregów nieskończonych. Wiemy, że dodawanie jest przemienne, tzn., co implikuje, że suma skończonej ilości składników jest przemienna, tzn. nie zależy od kolejności składników. Okazuje się, że analogiczna własność ma też miejsce dla szeregów bezwzględnie zbieżnych, natomiast na ogół nie zachodzi dla szeregów zbieżnych warunkowo. Będziemy to pokazywać, ale najsampierw sprecyzujemy, co rozumiemy przez zmianę kolejności składników, gdy ilość tych składników jest nieskończona. Permutacja Przez permutację ciągu liczb naturalnych rozumiemy ciąg liczb naturalnych { } taki, że każda liczba naturalna występuje w ciągu { } dokładnie raz. Jeśli jest permutacją ciągu liczb naturalnych, to mówimy, że szereg powstał z szeregu przez zmianę porządku jego składników. Twierdzenie Każdy szereg bezwzględnie zbieżny jest przemienny. Inaczej mówiąc, jeśli szereg bezwzględnie zbieżny i jeśli jest permutacją ciągu liczb naturalnych, to jest

6 Niech. Ze zbieżności szeregu wynika, że istnieje takie, że Ponieważ ciąg { } zawiera wszystkie liczby naturalne, więc istnieje takie, że wśród liczb występują liczby aż do. Ponieważ zaś każda liczba naturalna występuje dokładnie raz w ciągu { }, to dla każdego mamy. Jeśli więc przy danym ze zbioru skreślimy liczby, to pozostaną w nim wyłącznie liczby większe od (przy tym wszystkie różne). Tak więc, oznaczając i skreślając w różnicy składniki o równych wskaźnikach, otrzymamy w różnicy jedynie składniki o wskaźnikach większych od. Wynika stąd, że skąd mamy: na mocy (9). Ponieważ ta ostatnia nierówność zachodzi dla każdego Uwaga, to zachodzi:, a to oznacza, że spełniona jest teza twierdzenia, tzn. (8). Powyższe twierdzenie nie jest prawdziwe dla dowolnego szeregu zbieżnego. Jako przykład, weźmy szereg anharmoniczny i oznaczymy jego sumę przez (niedługo okaże się, że ), policzmy : w czym rozpoznajemy sumę szeregu anharmonicznego po przestawieniu składników. Tak więc przez

7 przestawienie składników uzyskaliśmy szereg zbieżny do innej wartości. Okazuje się, że ma miejsce nawet bardziej (pozornie) paradoksalna sytuacja: Twierdzenie (Riemanna) Mając dany szereg zbieżny warunkowo, można przez zmianę porządku jego składników uzyskać szereg rozbieżny lub zbieżny do dowolnej, z góry zadanej granicy (skończonej lub nieskończonej). Bez dowodu. (Dla ciekawych, jest np. w skrypcie P. Urbańskiego, "Analiza", t. 1). Zagadka Widzieliśmy, że energia elektrostatyczna kryształu jednowymiarowego jest równa sumie szeregu anharmonicznego. Czy to znaczy, że ta energia może być dowolna, jeśli przez zmianę kolejności sumowania można uzyskać dowolną wartość? Może więc energia elektrostatyczna jest źle określoną wielkością? Mnożenie szeregów Wiemy, że jeśli pomnożymy dwie skończone sumy, to znów otrzymamy jakąś sumę. Przy szeregach nieskończonych pojawiają się pytania o zbieżność. Poniższe twierdzenie pokazuje, że dla szeregów bezwzględnie zbieżnych szeregi dadzą się pomnożyć, i szereg w wyniku powstały ma taką postać, jakiej oczekujemy. Twierdzenie (Cauchy'ego) Jeżeli szeregi: i są bezwzględnie zbieżne, to również szereg jest bezwzględnie zbieżny. Oznaczmy czyli

8 Będziemy szacować różnicę Ponieważ szeregi: i są zbieżne, a więc ograniczone, to istnieje taka liczba, że dla każdego zachodzi: Warunek zbieżności szeregu oznacza dokładnie tyle, co warunek zbieżności ciągu { }; zapiszmy warunek Cauchy'ego zbieżności ciągu { }: Dla każdego istnieje takie, że jeśli, to zachodzi Podobnie dla szeregu mamy W dalszym ciągu weźmy. Na mocy (q11) mamy Oszacujmy teraz pierwszy nawias wykorzystując (13), a drugi wykorzystując (12),pamiętając zarazem, że oraz : Tym samym pokazaliśmy, że nierówność: zachodzi dla każdego. Znaczy to, że. Ponieważ zaś ciągi: { } i { } są zbieżne, więc zachodzi wzór (10)., a to znaczy, że, czyli Pokażemy, że Mamy bowiem:

9 (przy ostatniej równości wykorzystaliśmy wzór dwumienny Newtona). Uwaga Twierdzenie o mnożeniu szeregów jest prawdziwe też przy słabszym założeniu, a mianowicie, że jeden z szeregów (tu: ) jest bezwzględnie zbieżny, a drugi(tu: ) jest zbieżny, ale niekoniecznie bezwzględnie. W dowodzie wykorzystywaliśmy bowiem tylko bezwzględną zbieżność szeregu. Jeśli natomiast oba szeregi są warunkowo zbieżne, to szereg może być rozbieżny. Weźmy szeregi i są wówczas zbieżne (z jakiego kryterium?), zaś szereg jest rozbieżny. 1. Zobaczymy później, że suma szeregu (1) jest równa

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny:

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny: Podstawowe definicje Definicja ciągu Ciągiem nazywamy funkcję na zbiorze liczb naturalnych, tzn. przyporządkowanie każdej liczbie naturalnej jakiejś liczby rzeczywistej. (Mówimy wtedy o ciągu o wyrazach

Bardziej szczegółowo

SZEREGI LICZBOWE I FUNKCYJNE

SZEREGI LICZBOWE I FUNKCYJNE Mając dowolny ciąg można z niego utworzyć nowy ciąg sum częściowych: Ten nowy rodzaj ciągu nazywamy szeregiem liczbowym, a jeśli to mamy do czynienia z nieskończonym szeregiem liczbowym, który oznaczany

Bardziej szczegółowo

Całki niewłaściwe. Całki w granicach nieskończonych

Całki niewłaściwe. Całki w granicach nieskończonych Całki niewłaściwe Całki w granicach nieskończonych Wiemy, co to jest w przypadku skończonego przedziału i funkcji ograniczonej. Okazuje się potrzebne uogólnienie tego pojęcia w różnych kierunkach (przedział

Bardziej szczegółowo

Krzysztof Rykaczewski. Szeregi

Krzysztof Rykaczewski. Szeregi Krzysztof Rykaczewski Spis treści 1 Definicja szeregu 2 Zbieżność szeregu 3 Kryteria zbieżności szeregów 4 Iloczyn Cauchy ego szeregów 5 Bibliografia 1 / 13 Definicja szeregu Niech dany będzie ciąg (a

Bardziej szczegółowo

Zapisujemy to symbolicznie jako równość:. Mówimy też, że ciąg posiada granicę niewłaściwą (równą nieskończoności).

Zapisujemy to symbolicznie jako równość:. Mówimy też, że ciąg posiada granicę niewłaściwą (równą nieskończoności). Ciągi rozbieżne do Def. Mówimy, że ciąg jest rozbieżny do, jeśli Zapisujemy to symbolicznie jako równość:. Mówimy też, że ciąg posiada granicę niewłaściwą (równą nieskończoności). Można obrazowo powiedzieć,

Bardziej szczegółowo

Funkcja wykładnicza kilka dopowiedzeń

Funkcja wykładnicza kilka dopowiedzeń Funkcje i ich granice Było: Zbiór argumentów; zbiór wartości; monotoniczność; funkcja odwrotna; funkcja liniowa; kwadratowa; wielomiany; funkcje wymierne; funkcje trygonometryczne i ich odwrotności; funkcja

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Definicja ciągu liczbowego. Definicja 1.1. Ciągiem liczbowym nazywamy funkcję a : N R odwzorowującą zbiór liczb naturalnych N w zbiór liczb rzeczywistych R i oznaczamy przez {a

Bardziej szczegółowo

Szeregi liczbowe. Szeregi liczbowe i ich kryteria zbieżności. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi liczbowe. Szeregi liczbowe i ich kryteria zbieżności. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi liczbowe Szeregi liczbowe i ich kryteria zbieżności Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi liczbowe str. 1/25 Szereg liczbowy Niech(a n ) będzie

Bardziej szczegółowo

Pochodne wyższych rzędów definicja i przykłady

Pochodne wyższych rzędów definicja i przykłady Pochodne wyższych rzędów definicja i przykłady Pochodne wyższych rzędów Drugą pochodną funkcji nazywamy pochodną pochodnej tej funkcji. Trzecia pochodna jest pochodną drugiej pochodnej; itd. Ogólnie, -ta

Bardziej szczegółowo

Szeregi liczbowe. Analiza Matematyczna. Alexander Denisjuk

Szeregi liczbowe. Analiza Matematyczna. Alexander Denisjuk Analiza Matematyczna Szeregi liczbowe Alexander Denisjuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych zamiejscowy ośrodek dydaktyczny w Gdańsku ul. Brzegi 55 80-045 Gdańsk

Bardziej szczegółowo

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1.

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1. Rozdział 5 Szeregi liczbowe 5. Szeregi liczbowe Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy ( ). Ciąg (s n ) określony wzorem s n = n a j, n N, nazywamy ciągiem sum częściowych ciągu

Bardziej szczegółowo

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach

Bardziej szczegółowo

Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014)

Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014) dr inż. Ryszard Rębowski DEFINICJA CIĄGU LICZBOWEGO Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z grudnia 04) Definicja ciągu liczbowego Spośród

Bardziej szczegółowo

Wykład 7: Szeregi liczbowe i potęgowe. S 1 = a 1 S 2 = a 1 + a 2 S 3 = a 1 + a 2 + a 3. a k

Wykład 7: Szeregi liczbowe i potęgowe. S 1 = a 1 S 2 = a 1 + a 2 S 3 = a 1 + a 2 + a 3. a k Wykład 7: Szeregi liczbowe i potęgowe. Definicja 1. Niech (a n ) - ustalony ciąg liczbowy. Określamy nowy ciąg: S 1 = a 1 S 2 = a 1 + a 2 S 3 = a 1 + a 2 + a 3. S n =. Ciąg sum częściowych (S n ) nazywamy

Bardziej szczegółowo

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości. Własności Odległości i normy w Będziemy się teraz zajmować funkcjami od zmiennych, tzn. określonymi na (iloczyn kartezja/nski egzemplarzy ). Punkt należący do będziemy oznaczać jako Przykł. Wysokość terenu

Bardziej szczegółowo

7. CIĄGI. WYKŁAD 5. Przykłady :

7. CIĄGI. WYKŁAD 5. Przykłady : WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na

Bardziej szczegółowo

1 Liczby rzeczywiste. 1.1 Dlaczego nie wystarczają liczby wymierne

1 Liczby rzeczywiste. 1.1 Dlaczego nie wystarczają liczby wymierne Liczby rzeczywiste. Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być:.

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

Analiza matematyczna. 1. Ciągi

Analiza matematyczna. 1. Ciągi Analiza matematyczna 1. Ciągi Definicja 1.1 Funkcję a: N R odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tego odwzorowania w punkcie n nazywamy n

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

Dlaczego nie wystarczają liczby wymierne

Dlaczego nie wystarczają liczby wymierne Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości

Bardziej szczegółowo

Definicja odwzorowania ciągłego i niektóre przykłady

Definicja odwzorowania ciągłego i niektóre przykłady Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)

Bardziej szczegółowo

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)

Bardziej szczegółowo

EGZAMIN, ANALIZA 1A, zadań po 5 punktów, progi: 20=3.0, 24=3.5, 28=4.0, 32=4.5, 36=5.0

EGZAMIN, ANALIZA 1A, zadań po 5 punktów, progi: 20=3.0, 24=3.5, 28=4.0, 32=4.5, 36=5.0 Zadanie. W każdym z zadań.-.5 podaj kresy zbioru oraz napisz, czy kresy należą do zbioru (napisz TAK lub NIE). Kres może być liczbą rzeczywistą lub może być równy albo +. Za każde zadanie, w którym podasz

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Matematyka dyskretna. Andrzej Łachwa, UJ, /10 Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji

Bardziej szczegółowo

Pochodna funkcji odwrotnej

Pochodna funkcji odwrotnej Pochodna funkcji odwrotnej Niech będzie dana w przedziale funkcja różniczkowalna i różnowartościowa. Wiadomo, że istnieje wówczas funkcja odwrotna (którą oznaczymy tu : ), ciągła w przedziale (lub zależnie

Bardziej szczegółowo

Wykład 8. Informatyka Stosowana. 26 listopada 2018 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 31

Wykład 8. Informatyka Stosowana. 26 listopada 2018 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 31 Wykład 8 Informatyka Stosowana 26 listopada 208 Magdalena Alama-Bućko Informatyka Stosowana Wykład 8 26..208, M.A-B / 3 Definicja Ciagiem liczbowym {a n }, n N nazywamy funkcję odwzorowujac a zbiór liczb

Bardziej szczegółowo

CIĄGI wiadomości podstawowe

CIĄGI wiadomości podstawowe 1 CIĄGI wiadomości podstawowe Jak głosi definicja ciąg liczbowy to funkcja, której dziedziną są liczby naturalne dodatnie (w zadaniach oznacza się to najczęściej n 1) a wartościami tej funkcji są wszystkie

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 6/14 Sumy Oto dwie konwencje zapisu skończonych sum wyrazów: (notacja Sigma, Fourier, 1820) Czasami stosowana jest ogólniejsza notacja,

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 3/15 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej

Bardziej szczegółowo

Ciągi liczbowe wykład 3

Ciągi liczbowe wykład 3 Ciągi liczbowe wykład 3 dr Mariusz Grządziel 3 kwietnia 203 Definicja (ciągu liczbowego). Ciagiem liczbowym nazywamy funkcję odwzorowuja- ca zbiór liczb naturalnych w zbiór liczb rzeczywistych. Wartość

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1

Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1 Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład dr Mariusz Grządziel 5 lutego 04 Paradoks Zenona z Elei wersja uwspółcześniona Zenek goni Andrzeja; prędkość Andrzeja:

Bardziej szczegółowo

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Marcin Michalski 14.11.014 1 Wprowadzenie Jedną z intuicji na temat liczb rzeczywistych jest myślenie o nich jako liczbach,

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 7/15 Rachunek różnicowy Dobrym narzędziem do obliczania skończonych sum jest rachunek różnicowy. W rachunku tym odpowiednikiem operatora

Bardziej szczegółowo

EGZAMIN, ANALIZA 1A, zadań po 5 punktów, progi: 30=3.0, 36=3.5, 42=4.0, 48=4.5, 54=5.0

EGZAMIN, ANALIZA 1A, zadań po 5 punktów, progi: 30=3.0, 36=3.5, 42=4.0, 48=4.5, 54=5.0 EGZAMIN, ANALIZA A, 5.0.04 zadań po 5 punktów, progi: 30=3.0, 36=3.5, 4=4.0, 48=4.5, 54=5.0 Zadanie. W każdym z zadań.-.5 podaj w postaci uproszczonej) kresy zbioru oraz napisz, czy kresy należą do zbioru

Bardziej szczegółowo

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,

Bardziej szczegółowo

S n = a 1 1 qn,gdyq 1

S n = a 1 1 qn,gdyq 1 Spis treści Powtórzenie wiadomości... 9 Zadania i zbiory... 10 Obliczenia... 18 Ciągi... 27 Własności funkcji... 31 Funkcje liniowe i kwadratowe... 39 Wielomiany i wyrażenia wymierne... 45 Funkcje wykładnicze

Bardziej szczegółowo

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) 1. Liczby wymierne. - wartość bezwzględna liczby. dla 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) - dla < 0 ( wartością bezwzględną liczby ujemnej jest liczba do niej przeciwna) W interpretacji

Bardziej szczegółowo

EGZAMIN Z ANALIZY MATEMATYCZNEJ (CZEŚĆ 1)

EGZAMIN Z ANALIZY MATEMATYCZNEJ (CZEŚĆ 1) WROCŁAW, 12 GRUDNIA 2014 EGZAMIN Z ANALIZY MATEMATYCZNEJ (CZEŚĆ 1) ZA KAŻDE ZADANIE MOŻNA DOSTAĆ OD 0 DO 5 PUNKTÓW. PIERWSZA CZEŚĆ SKŁADA SIE Z 5 ZADAŃ TESTOWYCH I TRWA 80 MINUT OD 10:00 DO 11:20, PO NIEJ

Bardziej szczegółowo

Zbiory, relacje i funkcje

Zbiory, relacje i funkcje Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację

Bardziej szczegółowo

Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego:

Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego: Podstawowe definicje Iloraz różnicowy funkcji Def. Niech funkcja będzie określona w pewnym przedziale otwartym zawierającym punkt. Ilorazem różnicowym funkcji w punkcie dla przyrostu nazywamy funkcję Pochodna

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 6/15 Sumy Oto dwie konwencje zapisu skończonych sum wyrazów: (notacja Sigma, Fourier, 1820) Czasami stosowana jest ogólniejsza notacja,

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Analiza funkcjonalna 1.

Analiza funkcjonalna 1. Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Równania i nierówności wykładnicze i logarytmiczne

Równania i nierówności wykładnicze i logarytmiczne Równania i nierówności wykładnicze i logarytmiczne Paweł Foralewski Teoria Ponieważ funkcje wykładnicza i logarytmiczna zostały wprowadzone wcześniej, tutaj przypomnimy tylko definicję logarytmu i jego

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Zasada indukcji matematycznej

Zasada indukcji matematycznej Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Matematyka dyskretna. Andrzej Łachwa, UJ, /10 Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 3/10 indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej

Bardziej szczegółowo

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a); Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy

Bardziej szczegółowo

5. Logarytmy: definicja oraz podstawowe własności algebraiczne.

5. Logarytmy: definicja oraz podstawowe własności algebraiczne. 5. Logarytmy: definicja oraz podstawowe własności algebraiczne. 78. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 a) 4 2+log 27 = (2 2 ) log 27 4 = 28 2 = 784 29 listopada 2008

Bardziej szczegółowo

Ciągi liczbowe. Zbigniew Koza. Wydział Fizyki i Astronomii

Ciągi liczbowe. Zbigniew Koza. Wydział Fizyki i Astronomii Ciągi liczbowe Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 Co to są ciągi? Ciąg skończony o wartościach w zbiorze A to dowolna funkcja f: 1,2,, n A Ciąg nieskończony o wartościach w zbiorze

Bardziej szczegółowo

granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N

granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N 14. Określenie ciągu i szeregu funkcyjnego, zbieżność punktowa i jednostajna. Własności zbieżności jednostajnej. Kryterium zbieżności jednostajnej szeregu funkcyjnego. 1 Definicja Ciąg funkcyjny Niech

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna Zadanie 1 Wykazać, że dla dowolnego prawdziwa jest równość: Do obu stron założenia indukcyjnego należy dodać brakujący wyraz. Sprawdzamy prawdziwość równości (1) dla. Prawa strona:.

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

Czym jest ciąg? a 1, a 2, lub. (a n ), n = 1,2,

Czym jest ciąg? a 1, a 2, lub. (a n ), n = 1,2, Ciągi liczbowe Czym jest ciąg? Ciąg liczbowy, to funkcja o argumentach naturalnych, której wartościami są liczby rzeczywiste. Wartość ciągu dla liczby naturalnej n oznaczamy symbolem a n i nazywamy n-tym

Bardziej szczegółowo

Ciągi. Pojęcie granicy ciągu.

Ciągi. Pojęcie granicy ciągu. Rozdział 2 Ciągi. Pojęcie granicy ciągu. Definicja 2.. Ciąg jest to funkcja określona na zbiorze liczb naturalnych. Będziemy rozważać ciągi o wyrazach rzeczywistych, czyli zgodnie z powyższą definicją

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2014 andrzej.lachwa@uj.edu.pl 3/15 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 9 Zadania ciągi

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 9 Zadania ciągi 1 TEST WSTĘPNY 1. (1p) Dany jest ciąg (a n) określony wzorem a n = (-1) n dla n 1. Wówczas wyraz a3 tego ciągu jest równy: A. B. C. - D. - 2. (2p) Ile wyrazów ujemnych ma ciąg określony wzorem a n = n

Bardziej szczegółowo

Wyk lad 5. Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu. 1. Granice niew laściwe

Wyk lad 5. Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu. 1. Granice niew laściwe Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 5 1. Granice niew laściwe Definicja 1 Ci ag (x n ) d aży do (jest rozbieżny do) + jeśli c R N n > N x n > c a do

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 4/14 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej

Bardziej szczegółowo

1 Nierówność Minkowskiego i Hoeldera

1 Nierówność Minkowskiego i Hoeldera 1 Nierówność Minkowskiego i Hoeldera Na państwa użytek załączam precyzyjne sformułowania i dowody nierówności Hoeldera i Minkowskiego: Twierdzenie 1.1 Nierówność Hoeldera). Niech p, q będą takimi liczbami

Bardziej szczegółowo

WZÓR OGÓLNY CIĄGU GEOMETRYCZNEGO

WZÓR OGÓLNY CIĄGU GEOMETRYCZNEGO WZÓR OGÓLNY CIĄGU GEOMETRYCZNEGO, to ciąg, którego kolejne wyrazy powstają poprzez mnożenie poprzednich wyrazów przez liczbę, którą nazywamy ilorazem ciągu geometrycznego i oznaczamy: q Do opisu ciągu

Bardziej szczegółowo

Algebra abstrakcyjna

Algebra abstrakcyjna Algebra abstrakcyjna Przykłady 1. Sama liczba 0 tworzy grupę (rzędu 1) ze względu na zwykłe dodawanie, również liczba 1 tworzy grupę (rzędu 1) ze względu na zwykłe mnożenie.. Liczby 1 i 1 stanowią grupą

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1.

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1. Czwartek 28 marca 2013 - zaczynamy od omówienia zadań z kolokwium nr 1. 122. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 123. Dla ilu trójek liczb rzeczywistych dodatnich a,

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2012/13

Jarosław Wróblewski Matematyka Elementarna, zima 2012/13 Poniedziałek 12 listopada 2012 - zaczynamy od omówienia zadań z kolokwium nr 1. Wtorek 13 listopada 2012 - odbywają się zajęcia czwartkowe. 79. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log

Bardziej szczegółowo

EGZAMIN, ANALIZA 1A, , ROZWIĄZANIA

EGZAMIN, ANALIZA 1A, , ROZWIĄZANIA Zadanie 1. Podać kresy następujących zbiorów. Przy każdym z kresów napisać, czy kres należy do zbioru (TAK = należy, NIE = nie należy). infa = 0 NIE A = infb = 1 TAK { 1 i + 2 j +1 + 3 } k +2 : i,j,k N

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Granice ciągów liczbowych

Granice ciągów liczbowych Granice ciągów liczbowych Obliczyć z definicji granicę ciągu o wyrazie, gdzie jest pewną stałą liczbą. Definicja: granicą ciągu jest liczba, jeśli Sprawdzamy, czy i kiedy granica rozpatrywanego ciągu wynosi

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

Twierdzenia Rolle'a i Lagrange'a

Twierdzenia Rolle'a i Lagrange'a Twierdzenia Rolle'a i Lagrange'a Zadanie 1 Wykazać, że dla dowolnych zachodzi. W przypadku nierówność (a właściwie równość) w treści zadania spełniona jest w sposób oczywisty, więc tego przypadku nie musimy

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2005/06, semestr 1. Tadeusz Rzeżuchowski

ANALIZA MATEMATYCZNA 2005/06, semestr 1. Tadeusz Rzeżuchowski ANALIZA MATEMATYCZNA 2005/06, semestr 1. Tadeusz Rzeżuchowski 1 Spis treści 1 Zbiory liczbowe 5 1.1 Krótka informacja o zbiorach liczb naturalnych, całkowitych i wymiernych 5 1.1.1 Liczby naturalne.........................

Bardziej szczegółowo

Wykłady... b i a i. i=1. m(d k ) inf

Wykłady... b i a i. i=1. m(d k ) inf Wykłady... CŁKOWNIE FUNKCJI WIELU ZMIENNYCH Zaczniemy od konstrukcji całki na przedziale domkniętym. Konstrukcja ta jest, w gruncie rzeczy, powtórzeniem definicji całki na odcinku domkniętym w R 1. Przedziałem

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

Algebra Boole a i jej zastosowania

Algebra Boole a i jej zastosowania lgebra oole a i jej zastosowania Wprowadzenie Niech dany będzie zbiór dwuelementowy, którego elementy oznaczymy symbolami 0 oraz 1, tj. {0, 1}. W zbiorze tym określamy działania sumy :, iloczynu : _ oraz

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

1 Funkcje i ich granice

1 Funkcje i ich granice Funkcje i ich granice Było: Zbiór argumentów; zbiór wartości; monotoniczność; funkcja odwrotna; funkcja liniowa; kwadratowa; wielomiany; funkcje wymierne; funkcje trygonometryczne i ich odwrotności; funkcja

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie

Bardziej szczegółowo

Wykład 7. Informatyka Stosowana. 21 listopada Informatyka Stosowana Wykład 7 21 listopada / 27

Wykład 7. Informatyka Stosowana. 21 listopada Informatyka Stosowana Wykład 7 21 listopada / 27 Wykład 7 Informatyka Stosowana 21 listopada 2016 Informatyka Stosowana Wykład 7 21 listopada 2016 1 / 27 Relacje Informatyka Stosowana Wykład 7 21 listopada 2016 2 / 27 Definicja Iloczynem kartezjańskim

Bardziej szczegółowo

Matura z matematyki na poziomie rozszerzonym

Matura z matematyki na poziomie rozszerzonym Tadeusz Socha Matura z matematyki na poziomie rozszerzonym tom V uzupełnienie do matury od 2015 roku o treści zwiększające wymagania maturalne Copyright by Socha Tadeusz, 2013 ISBN 978-83-936602-9-2 www.maturzysta.info

Bardziej szczegółowo

Informacja o przestrzeniach Hilberta

Informacja o przestrzeniach Hilberta Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13 35. O zdaniu 1 T (n) udowodniono, że prawdziwe jest T (1), oraz że dla dowolnego n 6 zachodzi implikacja T (n) T (n+2). Czy można stąd wnioskować, że a) prawdziwe jest T (10), b) prawdziwe jest T (11),

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2015/16

Jarosław Wróblewski Matematyka Elementarna, zima 2015/16 Na ćwiczeniach 6.0.205 omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie.. Sformułować uogólnione cechy podzielności

Bardziej szczegółowo

Rozwiązaniem jest zbiór (, ] (5, )

Rozwiązaniem jest zbiór (, ] (5, ) FUNKCJE WYMIERNE Definicja Miech L() i M() będą niezerowymi wielomianami i niech D { R : M( ) 0 } Funkcję (*) D F : D R określoną wzorem F( ) L( ) M( ) nazywamy funkcją wymierną Funkcja wymierna, to iloraz

Bardziej szczegółowo

V Konkurs Matematyczny Politechniki Białostockiej

V Konkurs Matematyczny Politechniki Białostockiej V Konkurs Matematyczny Politechniki Białostockiej Rozwiązania - klasy drugie 1. Znaleźć wszystkie pary liczb całkowitych (x, y) spełniające nierówności x + 1 + y 4 x + y 4 5 x 4 + y 1 > 4. Ważne jest zauważenie,

Bardziej szczegółowo

Wykład 11: Martyngały: definicja, twierdzenia o zbieżności

Wykład 11: Martyngały: definicja, twierdzenia o zbieżności RAP 412 14.01.2009 Wykład 11: Martyngały: definicja, twierdzenia o zbieżności Wykładowca: Andrzej Ruciński Pisarz:Mirosława Jańczak 1 Wstęp Do tej pory zajmowaliśmy się ciągami zmiennych losowych (X n

Bardziej szczegółowo

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie 9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).

Bardziej szczegółowo

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka

Bardziej szczegółowo

Indukcja matematyczna. Zasada minimum. Zastosowania.

Indukcja matematyczna. Zasada minimum. Zastosowania. Indukcja matematyczna. Zasada minimum. Zastosowania. Arkadiusz Męcel Uwagi początkowe W trakcie zajęć przyjęte zostaną następujące oznaczenia: 1. Zbiory liczb: R - zbiór liczb rzeczywistych; Q - zbiór

Bardziej szczegółowo

Zagadnienia stacjonarne

Zagadnienia stacjonarne Zagadnienia stacjonarne Karol Hajduk 19 grudnia 2012 Nierówność wariacyjna (u (t), v u(t)) + a(u, v u) + Ψ(v) Ψ(u) (f, v u), v V. Zagadnienie stacjonarne ma postać (u (t) = 0): a(u, v u) + Ψ(v) Ψ(u) (f,

Bardziej szczegółowo