Probabilistyka i statystyka
|
|
- Aniela Kurek
- 8 lat temu
- Przeglądów:
Transkrypt
1 Probabilistyka i statystyka Wykład dr iż. Barbara Swatowska Katedra Elektroiki, AGH swatow@agh.edu.pl Pla zajęć Zajęcia: Wykład h oraz Ćwiczeia h PLAN realizacji tematyki:. Kombiatoryka, symbol Newtoa. Prawdopodobieństwo całkowite, warukowe i iezależe, Twierdzeie Bayesa. Zmiea losowa i dystrybuata. Obliczaie prawdopodobieństwa z wykorzystaiem gęstości. Wprowadzeie do statystyki, średia, odchyleie stadardowe, wariacja. Aaliza regresji przykładowych daych 7. Obliczaie przedziału ufości dla różych daych 8. Estymacja i wioskowaie statystycze
2 Literatura:. Krysicki W., Bartos J., i ii., Rachuek prawdopodobieństwa i statystyka matematycza część I, II, Wydawictwo Naukowe PWN, Warszawa Plucińska A., Pluciński E.: Zadaia z rachuku prawdopodobieństwa i statystyki matematyczej dla studetów politechik, PWN. Plucińska A., Pluciński E.: Probabilistyka, Rachuek prawdopodobieństwa, statystyka matematycza, procesy stochastycze, Wydawictwo Naukowo- Techicze, Warszawa. Jakubowski J., Sztecel R.: Wstęp do teorii prawdopodobieństwa, SCRIPT,. Ostasiewicz S., Rusak Z., Siedlecka U., Statystyka. Elemety teorii i zadaia. Wydawictwo Akademii Ekoomiczej im. Oskara Lagego we Wrocławiu, 999. Greń Jerzy: Statystyka matematycza. Modele i zadaia. 7. Sobczyk Mieczysław: Statystyka, Wydawictwo Naukowe PWN, Warszawa, Koroacki J, Mieliczuk J.: Statystyka dla studetów kieruków techiczych i przyrodiczych, Wydawictwo Naukowo-Techicze, Warszawa Czym zajmuje się probabilistyka i statystyka? Teoria prawdopodobieństwa (także rachuek prawdopodobieństwa lub probabilistyka) dział matematyki zajmujący się zdarzeiami losowymi. Zdarzeie losowe to wyik doświadczeia losowego. Doświadczeie losowe może być powtarzae dowolie wiele razy w warukach idetyczych lub bardzo zbliżoych a jego wyik ie daje się przewidzieć jedozaczie. Częstość zdarzeia: l gdzie l ozacza ile razy zaszło zdarzeie, gdy doświadczeie powtarzao razy. Prawidłowość statystycza przy coraz większej liczbie doświadczeń losowych częstość zdarzeia dąży do pewej stałej liczby
3 Czym zajmuje się probabilistyka i statystyka? Rachuek prawdopodobieństwa zajmuje się badaiem abstrakcyjych pojęć matematyczych stworzoych do opisu zjawisk, które ie są determiistycze:. zmieych losowych w przypadku pojedyczych zdarzeń oraz. procesów stochastyczych w przypadku zdarzeń powtarzających się (w czasie). Jako matematyczy fudamet statystyki, teoria prawdopodobieństwa odgrywa istotą rolę w sytuacjach, w których koiecza jest aaliza dużych zbiorów daych. Jedym z ajwiększych osiągięć fizyki dwudziestego wieku było odkrycie probabilistyczej atury zjawisk fizyczych w skali mikroskopowej, co zaowocowało powstaiem mechaiki kwatowej. Statystyka zajmuje się metodami zbieraia iformacji (liczbowych) oraz ich aalizą i iterpretacją. Czym zajmuje się probabilistyka i statystyka? Statystyka OPISOWA ANALIZA DANYCH (DESCRIPTIVE STATISTICS) Orgaizacja daych Podsumowaie daych Prezetacja daych DEDUKCYJNA MODELOWANIE STOCHASTYCZNE ( STATISTICAL INFERENCE) Podaje metody formułowaia wiosków dotyczące obiektu badań (populacji geeralej) w oparciu o miej liczy zbiór (próbę) GRAFICZNA NUMERYCZNA Elektroiki
4 Rys historyczy Matematycza teoria prawdopodobieństwa sięga swoimi korzeiami do aalizy gier losowych podjętej w siedemastym wieku przez Pierre de Fermata oraz Blaise Pascala. Z tego powodu, początkowo teoria prawdopodobieństwa zajmowała się iemal wyłączie zjawiskami dyskretymi i używała metod kombiatoryczych. Zmiee ciągłe zostały wprowadzoe do teorii prawdopodobieństwa zaczie późiej. Za początek stworzeia współczesej teorii prawdopodobieństwa powszechie uważa się jej aksjomatyzację, której w 9 dokoał Adriej Kołmogorow. 7 Hazard Zdecydowaa większość gier losowych opiera się a prawdopodobieństwie zdarzeia......ajprostszy, jak rzut moetą,......złożoy, jak rozdaie pokera......oraz może być pod tym kątem aalizowaa....całkowicie losowy jak ruletka... Prawdopodobieństwo trafieia oczka Ilość uikatowych rozdań w pokerze 8
5 Rys historyczy Blaise Pascal (-) XVII w., Paryż, Fracja Uieśmiertelił kawalera de Méré oraz jego paradoks hazardowy Trójkąt Pascala wykorzystyway przy potędze sumy Elektroiki k k k b a k b a + ) ( dwumia Newtoa 9 Trójkąt Pascala! )! (! k k k Symbol
6 Trójkąt Pascala + Rys historyczy Pierre de Fermat (-) Początek XVII w., Touluse, Fracja Badał właściwości liczb pierwszych, teorię liczb, rówolegle opracował metodę współrzędych w geometrii. Razem z Pascalem stworzył podstawy pod współczesy rachuek prawdopodobieństwa. Elektroiki
7 Rys historyczy Siméo Deis Poisso (78-8) XVIII-XIX w., Paryż, Fracja Przyjaciel Lagrage'a, uczeń Laplace'a a sławej École Polytechique. Poza zagadieiami fizyczymi zajmował się teorią prawdopodobieństwa. Proces stochastyczy (podobie jak pr. Markowa), rozkład Poissoa - dystrybuata! Elektroiki Rys historyczy Carl Frederich Gauss (777-8) XVIII-XIX w., Getyga, Niemcy Profesor Uiwersytetu w Getydze Geialy matematyk, który już w dzieciństwie wyprzedzał umiejętościami rówieśików. W szkole podstawowej jako jedyy rozwiązał zadaie auczyciela - zsumowaie liczb do zauważając, że jest to (+)* Rozkład ormaly, zway krzywą Gaussa Elektroiki
8 Paradoks kawalera de Méré Dwaj hazardziści S i S umawiają się, że zagrają pewą serię partii i że zwycięzcą będzie te, kto pierwszy wygra pięć partii. Co ależy zrobić, gdy trzeba będzie grę przedwcześie przerwać? Załóżmy, że S wygrywa cztery partie, a S tylko trzy. Jak sprawiedliwie podzielić stawki? Propozycja : podzielić stawki w stosuku : Propozycja : podzielić stawki w stosuku (-):(-): wg W.R. Fuchs, Matematyka populara, Wiedza Powszecha, Warszawa 97 Paradoks kawalera de Méré Blaise Pascal rozwiązał zadaie rozumując bardzo prosto. Aby rozstrzygąć grę, ależy zagrać jeszcze ajwyżej dwie partie. Jeżeli pierwszą partię wygra S, to gra będzie rozstrzygięta od razu. Gdy pierwszą partię wygra S, to wygraie drugiej partii przez S przesądziłoby grę a jego korzyść. Jedak jeśli pozostałe dwie partie wygra S to o zostaie zwycięzcą. Zatem sprawiedliwy podział stawki to :
9 Statystyka - typy daych ILOŚCIOWE (QUANTITATIVE, NUMERICAL) JAKOŚCIOWE (QUALITATIVE, CATEGORIAL) Przykłady: Zbiór ludzi Wiek Wzrost Wysokość zarobków Obliczeia pewych parametrów, jak p. średia arytmetycza, mediaa, ekstrema, mają ses Przykłady: Płeć Sta cywily Moża przypisać różym cechom arbitrale wartości liczbowe. Obliczeia parametrów ie mają sesu, moża jedyie podawać p. udział procetowy Elektroiki 7 Pojęcie zmieej losowej Zmiea losowa jest to fukcja X, która przypisuje liczbę rzeczywistą x daemu wyikowi eksperymetu losowego. Ω e, e, { K X : Ω R } X( e ) x R i i Przykłady:.Rzut moetą: zdarzeiu orzeł przypisujemy ; zdarzeiu reszka przypisujemy..aalog. losowaie wyrobów: zdarzeiu brak (wadliwy) -, dobry.rzut kostką wyrzuceie, itd.odciek [a, b] a osi liczbowej wybór puktu o współrzędej x przypisujemy p. wartość x ; wartość si (x+7) itp. 8
10 Zmiea losowa dyskreta Gdy wartości zmieej losowej X są izolowaymi puktami a osi liczbowej (obejmują skończoy przedział wartości) Rzut moetą Błędy przy trasmisji Wadliwe układy a liii produkcyjej Ilość połączeń przychodzących w ciągu miut ciągła Gdy wartości zmieej losowej staowią wszystkie pukty odcika (obejmują przedział liczb rzeczywistych) Natężeie prądu w przewodiku Temperatura Ciśieie 9 Graficza prezetacja daych x Ilość wystąpień Częstotliwość /, /,7 /,8 /,79 Dae statystycze moża prezetować a wiele sposobów, p. częstość występowaia daej cechy /, Razem:, Elektroiki
11 Graficza prezetacja daych,78,79,,79,78 graf Elektroiki Graficza prezetacja daych,78,79,,79,78 Elektroiki
12 Dae ilościowe Wyiki pomiarów (p. wielkość ziare w [m], temperatura w kolejych diach o godz. : w [deg. C], czas rozmów telefoiczych w [mi], itp.,,,8,,,8, 9,,,,7, 9,,,, 8 8,,,, 8,,, 9,, 9,,,, 7,,, Tak podae wartości są mało czytele! Histogram Sporządzeie wykresu (histogramu):. Uporządkować zbiór wg. rosących (lub malejących) wartości program Excel ma taką opcję.. Wyiki próby (o liczebości ) staowią zbiór -liczb (iekoieczie różiących się od siebie). Celem ich ilustracji dzieli się je a klasy, tworząc tz. szereg rozdzielczy.. Szerokość poszczególych klas ie musi być taka sama, choć zwykle stosuje się klasy o tej samej szerokości. Ilość klas ie może być zbyt mała ai też zbyt licza. Najbardziej optymalą liczbę klas 'k' określa reguła Sturge'a.
13 Histogram klasy Częstość bezwględa 8 8 x Histogram klas 8 7 Częstość bezwzględa,, 8 9,,, 7 8, x Elektroiki
14 Histogram klas 8 7 Częstość bezwzględa,,,,, 7 7, 8 8, 9 9,,,,,,,,77,88,99, x 7 Reguła Sturge'a k+,log Dla aszego przykładu: k. 9 Liczebość próbki, Liczba klas, k < < 7 Elektroiki 8
15 Histogram optymaly klas (optymalie),, Częstość względa,,,, 8 7 x 9 Rachuek prawdopodobieństwa i statystyka w auce i techice Statystyka umożliwia aalizę i modelowaie rozwoju chorób oraz pomaga zapobiegać epidemiom. Statystyka medycza, p. średia liczba zachorowań w regioie Statystyka społecza, p. gęstość zaludieia Statystyka gospodarcza, p. PKB, wydatki a opiekę zdrowotą Liczba zachorowań a świńską grypę w roku 9 w USA (Źródło: Elektroiki
16 Meteorologia Modele pogodowe umożliwiające przewidywaie pogody oraz wykrywaie potecjalych kataklizmów, p. huragaów (Źródło:stormdebris.et/Math_Forecastig.html) Jak rozwiązuje się problem iżyierski? Opis problemu Idetyfikacja ajważiejszych czyików Propozycja modelu Modyfikacja modelu Potwierdzeie rozwiązaia Przeprowadzeie eksperymetów Wioski i rekomedacje
17 Jak rozwiązuje się problem iżyierski? Opis problemu Przykład: Załóżmy, że iżyier projektuje przewód paliwowy, który ma zastosowaie w silikach samochodowych. Iżyier wybiera grubość ściay / cale ale ie jest pewy czy to jest wystarczające dla uzyskaia odpowiediej siły ciągu. Idetyfikacja ajważiejszych czyików Wyprodukowao osiem elemetów, dla których zmierzoo siły ciągu i otrzymao astępujące wartości (w futach):.,.9,.,.,.,.,.,.. Siła ciągu może być traktowaa jako zmiea losowa. Jak rozwiązuje się problem iżyierski? Propozycja modelu Przyjmijmy model, w którym zmiea losowa X jest przedstawioa jako: Stała wartość Zaburzeie (błąd, szum) Stała µ ie zmieia się przy kolejych pomiarach. Małe zmiay w otoczeiu, układzie pomiarowym, różice obserwowae dla obiektu mierzoego wpływają a wartość zaburzeia ε. W świecie rzeczywistym zawsze istieją czyiki prowadzące do iezerowego zaburzeia. Musimy je opisać w sposób ilościowy i zaleźć sposób a ograiczeie ich wpływu a wyik pomiaru.
18 Jak rozwiązuje się problem iżyierski? Przeprowadzeie eksperymetów Rysuek - przedstawia uzyskae wyiki w postaci diagramu puktowego (dot diagram). Diagramy tego typu są użytecze dla małej ilości daych (do ok. obserwacji). Wykresy tego typu pozwalają oceić położeie (środek) i rozproszeie (rozrzut) Średia wartość siły ciągu wyosi. futów. Iżyier zmieia grubość ściay do /8 cali zakładając, że pomoże to zwiększyć siłę ciągu. Zowu zbudowao 8 prototypów, przeprowadzoo eksperymety i otrzymao wyiki siły ciągu:.9,.7,.8,.9,.,.,.,.. Wyiki, w porówaiu z poprzedim eksperymetem, zestawioo a Rys. -.. Jak rozwiązuje się problem iżyierski? Modyfikacja (udoskoaleie) modelu Średia wartość siły ciągu wyosi. futy.
19 Jak rozwiązuje się problem iżyierski? Potwierdzeie rozwiązaia? Wykres stwarza wrażeie, że zwiększeie grubości ściay prowadzi do wzrostu siły ciągu. Jedak, pozostaje pytaie czy jest tak istotie? 7 Jak rozwiązuje się problem iżyierski? Wioski (rekomedacje?) Statystyka pomoże am udzielić odpowiedzi a pytaia: Skąd pewość, że ia próbka elemetów ie da iych wyików? Czy próbka 8-elemetowa jest wystarczająca aby dać wyiki, którym moża ufać? Jeżeli użyjemy wyików, które do tej pory otrzymaliśmy, aby sformułować wiosek (decyzja), że wzrost grubości ściay jest korzysty, jak oszacować ryzyko z tym związae? Czy jest możliwe, że pozory wzrost siły ciągu obserwoway dla grubszych elemetów ma charakter jedyie losowy? Może ie ma sesu zwiększaie grubości ścia (powiększaie kosztów produkcji)? 8
Wstęp do probabilistyki i statystyki
Wstęp do probabilistyki i statystyki Wykład dr inż. Barbara Swatowska Katedra Elektroniki, AGH e-mail: swatow@agh.edu.pl http://home.agh.edu.pl/~swatow Plan zajęć Zajęcia: Wykład 0 h oraz Ćwiczenia 0 h
Wstęp do probabilistyki i statystyki. Wykład 1. Wstęp
Wstęp do probabilistyki i statystyki Wykład 1. Wstęp dr hab.inż. Katarzyna Zakrzewska, prof.agh Katedra Elektroniki, AGH e-mail: zak@agh.edu.pl http://home.agh.edu.pl/~zak Wstęp do probabilistyki i statystyki.
Wstęp do probabilistyki i statystyki. Wykład 1. Wstęp
Wstęp do probabilistyki i statystyki Wykład. Wstęp dr hab.iż. Katarzya Zakrzewska, prof.agh Katedra Elektroiki, AGH e-mail: zak@agh.edu.pl http://home.agh.edu.pl/~zak Wstęp do probabilistyki i statystyki.
Elementy modelowania matematycznego
Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,
Wykład 1. Wstęp. Rys historyczny. Rodzaje danych. Prezentacja danych. Zastosowania statystyki. Parametry opisowe
Wstęp do probabilistyki i statystyki Wykład 1. Wstęp dr hab.inż. Katarzyna Zakrzewska, prof.agh Katedra Elektroniki, AGH e-mail: zak@agh.edu.pl http://home.agh.edu.pl/~zak Wstęp do probabilistyki i statystyki.
Plan wykładu. Analiza danych Wykład 1: Statystyka opisowa. Literatura. Podstawowe pojęcia
Pla wykładu Aaliza daych Wykład : Statystyka opisowa. Małgorzata Krętowska Wydział Iformatyki Politechika Białostocka. Statystyka opisowa.. Estymacja puktowa. Własości estymatorów.. Rozkłady statystyk
Estymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy
3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy
Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe
Metody probabilistycze i statystyka Wykład 1 Zdarzeia losowe, defiicja prawdopodobieństwa, zmiee losowe Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki
X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.
Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,
STATYSTKA I ANALIZA DANYCH LAB II
STATYSTKA I ANALIZA DANYCH LAB II 1. Pla laboratorium II rozkłady prawdopodobieństwa Rozkłady prawdopodobieństwa dwupuktowy, dwumiaowy, jedostajy, ormaly. Związki pomiędzy rozkładami prawdopodobieństw.
Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona
Ćwiczeie r 4 Porówaie doświadczalego rozkładu liczby zliczeń w zadaym przedziale czasu z rozkładem Poissoa Studeta obowiązuje zajomość: Podstawowych zagadień z rachuku prawdopodobieństwa, Zajomość rozkładów
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością
STATYSTYKA OPISOWA WYKŁAD 1 i 2
STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest
d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistyczna Definicja Odwzorowanie X: Ω R nazywamy 1-wymiarowym wektorem
d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistycza Defiicja Odwzorowaie X: Ω R d azywamy d-wymiarowym wektorem losowym jeśli dla każdego (x 1, x 2,,x d ) є R d zbiór Uwaga {ω є Ω: X(ω)
Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.
Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,
Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora
Aaliza wyików symulacji i rzeczywistego pomiaru zmia apięcia ładowaego kodesatora Adrzej Skowroński Symulacja umożliwia am przeprowadzeie wirtualego eksperymetu. Nie kostruując jeszcze fizyczego urządzeia
PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1).
TATYTYKA MATEMATYCZNA WYKŁAD 3 RZEDZIAŁY UFNOŚCI Niech θ - iezay parametr rozkład cechy. Niech będzie liczbą z przedział 0,. Jeśli istieją statystyki, U i U ; U U ; których rozkład zależy od θ oraz U θ
Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)
Elemety statystyki opisowej Izolda Gorgol wyciąg z prezetacji (wykład I) Populacja statystycza, badaie statystycze Statystyka matematycza zajmuje się opisywaiem i aalizą zjawisk masowych za pomocą metod
Lista 6. Estymacja punktowa
Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?
Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja
Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym)
Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych (w zakresie materiału przedstawioego a wykładzie orgaizacyjym) Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli
Statystyka opisowa. () Statystyka opisowa 24 maja / 8
Część I Statystyka opisowa () Statystyka opisowa 24 maja 2010 1 / 8 Niech x 1, x 2,..., x będą wyikami pomiarów, p. temperatury, ciśieia, poziomu rzeki, wielkości ploów itp. Przykład 1: wyiki pomiarów
Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7
Metody probabilistycze i statystyka Estymacja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
STATYSTYKA I ANALIZA DANYCH
TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica
Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy.
MIARY POŁOŻENIA I ROZPROSZENIA WYNIKÓW SERII POMIAROWYCH Miary położeia (tedecji cetralej) to tzw. miary przecięte charakteryzujące średi lub typowy poziom wartości cechy. Średia arytmetycza: X i 1 X i,
Statystyczny opis danych - parametry
Statystyczy opis daych - parametry Ozaczeia żółty owe pojęcie czerwoy, podkreśleie uwaga * materiał adobowiązkowy Aa Rajfura, Matematyka i statystyka matematycza a kieruku Rolictwo SGGW Zagadieia. Idea
2.1. Studium przypadku 1
Uogóliaie wyików Filip Chybalski.. Studium przypadku Opis problemu Przedsiębiorstwo ŚRUBEX zajmuje się produkcją wyrobów metalowych i w jego szerokim asortymecie domiują różego rodzaju śrubki i wkręty.
Estymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności)
IV. Estymacja parametrów Estymacja: Puktowa (ocea, błędy szacuku Przedziałowa (przedział ufości Załóżmy, że rozkład zmieej losowej X w populacji geeralej jest opisay dystrybuatą F(x;α, gdzie α jest iezaym
2. INNE ROZKŁADY DYSKRETNE
Ie rozkłady dyskrete 9. INNE ROZKŁADY DYSKRETNE.. Rozkład dwumiaowy - kotyuacja Przypomijmy sobie pojęcie rozkładu dwumiaowego prawdopodobieństwa k sukcesów w próbach Beroulli ego: P k k k k = p q m =
Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.
Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują
Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym
Lista 5 Zadaia a zastosowaie ierówosci Markowa i Czebyszewa. Zadaie 1. Niech zmiea losowa X ma rozkład jedostajy a odciku [0, 1]. Korzystając z ierówości Markowa oszacować od góry prawdopodobieństwo, że
Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407
Statystyka i Opracowaie Daych W7. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Estymacja parametrycza Podstawowym arzędziem szacowaia iezaego parametru jest estymator obliczoy a podstawie
1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o
1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady
Ćwiczenie 2 ESTYMACJA STATYSTYCZNA
Ćwiczeie ETYMACJA TATYTYCZNA Jest to metoda wioskowaia statystyczego. Umożliwia oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej
Prawdopodobieństwo i statystyka r.
Zadaie 1 Rzucamy 4 kości do gry (uczciwe). Prawdopodobieństwo zdarzeia iż ajmiejsza uzyskaa a pojedyczej kości liczba oczek wyiesie trzy (trzy oczka mogą wystąpić a więcej iż jedej kości) rówe jest: (A)
WYKŁAD 1. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD Zdarzeia losowe i prawdopodobieństwo Zmiea losowa i jej rozkłady Metody statystycze metody opisu metody wioskowaia statystyczego sytetyczy liczbowy opis właściwości zbioru daych ocea charakterystyk
Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12
Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych w zakresie materiału przedstawioego a wykładzie orgaizacyjym Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli doświadczeie,
Prawdopodobieństwo i statystyka
Wykład VI: Metoda Mote Carlo 17 listopada 2014 Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Przybliżoe obliczaie całki ozaczoej Rozważmy całkowalą fukcję f : [0, 1] R. Chcemy zaleźć przybliżoą
RACHUNEK PRAWDOPODOBIEOSTWA
RACHUNEK PRAWDOPODOBIEOSTWA Elemetarym pojęciem w rachuku prawdopodobieostwa jest zdarzeie elemetare tz. możliwy wyik pewego doświadczeia p. rzut moetą: wyrzuceie orła lub reszki arodziy człowieka: urodzeie
Kurs Prawdopodobieństwo Wzory
Kurs Prawdoodobieństwo Wzory Elemety kombiatoryki Klasycza deiicja rawdoodobieństwa gdzie: A - liczba zdarzeń srzyjających A - liczba wszystkich zdarzeń P A Tel. 603 088 74 Prawdoodobieństwo deiicja Kołmogorowa
Scenariusz lekcji: Kombinatoryka utrwalenie wiadomości
Sceariusz lekcji: Kombiatoryka utrwaleie wiadomości 1 1. Cele lekcji a) Wiadomości Uczeń: za pojęcia: permutacja, wariacja i kombiacja, zdarzeie losowe, prawdopodobieństwo, za iezbęde wzory. b) Umiejętości
Wykład 11 ( ). Przedziały ufności dla średniej
Wykład 11 (14.05.07). Przedziały ufości dla średiej Przykład Cea metra kwadratowego (w tys. zł) z dla 14 losowo wybraych mieszkań w mieście A: 3,75; 3,89; 5,09; 3,77; 3,53; 2,82; 3,16; 2,79; 4,34; 3,61;
Jak obliczać podstawowe wskaźniki statystyczne?
Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań
Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości)
Kospekt lekcji (Kółko matematycze, kółko przedsiębiorczości) Łukasz Godzia Temat: Paradoks skąpej wdowy. O procecie składaym ogólie. Czas lekcji 45 miut Cele ogóle: Uczeń: Umie obliczyć procet składay
z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X
Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie
Prawdopodobieństwo i statystyka r.
Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie
L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3
L.Kowalski zadaia ze statystyki matematyczej-zestaw 3 ZADANIA - ZESTAW 3 Zadaie 3. Cecha X populacji ma rozkład N m,. Z populacji tej pobrao próbę 7 elemetową i otrzymao wyiki x7 = 9, 3, s7 =, 5 a Na poziomie
Statystyka i rachunek prawdopodobieństwa
Statystyka i rachuek prawdopodobieństwa Filip A. Wudarski 22 maja 2013 1 Wstęp Defiicja 1. Statystyka matematycza opisuje i aalizuje zjawiska masowe przy użyciu metod rachuku prawdopodobieństwa. Defiicja
ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 8. ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE 1 Zbieżość ciągu zmieych losowych z prawdopodobieństwem 1 (prawie apewo) Ciąg zmieych losowych (X ) jest
Wykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2
Wykład 5 Przedziały ufości Zwykle ie zamy parametrów populacji, p. Chcemy określić a ile dokładie y estymuje Kostruujemy przedział o środku y, i taki, że mamy 95% pewości, że zawiera o Nazywamy go 95%
Statystyka matematyczna. Wykład II. Estymacja punktowa
Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych
Opracowanie danych pomiarowych. dla studentów realizujących program Pracowni Fizycznej
Opracowaie daych pomiarowych dla studetów realizujących program Pracowi Fizyczej Pomiar Działaie mające a celu wyzaczeie wielkości mierzoej.. Do pomiarów stosuje się przyrządy pomiarowe proste lub złożoe.
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu
Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny
TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości
POLITECHNIKA OPOLSKA
POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia
Statystyka powtórzenie (I semestr) Rafał M. Frąk
Statystyka powtórzeie (I semestr) Rafał M. Frąk TEORIA Statystyka Statystyka zajmuje się badaiem procesu zbieraia oraz iterpretacji daych liczbowych lub jakościowych. Przedmiotem statystyki są metody badaia
MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU
Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów
KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1
KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę
Statystyka opisowa. (n m n m 1 ) h (n m n m 1 ) + (n m n m+1 ) 2 +1), gdy n jest parzyste
Statystyka opisowa Miary statystycze: 1. miary położeia a) średia z próby x = 1 x = 1 x = 1 x i - szereg wyliczający x i i - szereg rozdzielczy puktowy x i i - szereg rozdzielczy przedziałowy, gdzie x
ANALIZA DANYCH DYSKRETNYCH
ZJAZD ESTYMACJA Jest to metoda wioskowaia statystyczego. Umożliwia oa oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej estymatorem,
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są
Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
1 Układy równań liniowych
Katarzya Borkowska, Wykłady dla EIT, UTP Układy rówań liiowych Defiicja.. Układem U m rówań liiowych o iewiadomych azywamy układ postaci: U: a x + a 2 x 2 +... + a x =b, a 2 x + a 22 x 2 +... + a 2 x =b
ZADANIA NA ĆWICZENIA 3 I 4
Agata Boratyńska Statystyka aktuariala... 1 ZADANIA NA ĆWICZENIA 3 I 4 1. Wygeeruj szkody dla polis z kolejych lat wg rozkładu P (N = 1) = 0, 1 P (N = 0) = 0, 9, gdzie N jest liczbą szkód z jedej polisy.
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA. Wykład wstępy. Teoria prawdopodobieństwa i elemety kombiatoryki 3. Zmiee losowe 4. Populacje i próby daych 5. Testowaie hipotez i estymacja parametrów 6. Test t 7. Test 8. Test
Egzamin maturalny z matematyki CZERWIEC 2011
Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr
0.1 ROZKŁADY WYBRANYCH STATYSTYK
0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.
Statystyka opisowa - dodatek
Statystyka opisowa - dodatek. *Jak obliczyć statystyki opisowe w dużych daych? Liczeie statystyk opisowych w dużych daych może sprawiać problemy. Dla przykładu zauważmy, że aiwa implemetacja średiej arytmetyczej
Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej).
Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy
STATYSTYKA OPISOWA I PROJEKTOWANIE EKSPERYMENTU dr inż Krzysztof Bryś
1 STATYSTYKA OPISOWA I PROJEKTOWANIE EKSPERYMENTU dr iż Krzysztof Bryś Pojȩcia wstȩpe populacja - ca ly zbiór badaych przedmiotów lub wartości. próba - skończoy podzbiór populacji podlegaj acy badaiu.
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uiwersytet Ekoomiczy w Katowicach 2015/16 ROND, Fiase i Rachukowość, rok 2 Rachuek prawdopodobieństwa Rzucamy 10 razy moetą, dla której prawdopodobieństwo wyrzuceia orła w pojedyczym
ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y
Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:
Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA
Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz
O liczbach naturalnych, których suma równa się iloczynowi
O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą
1 Twierdzenia o granicznym przejściu pod znakiem całki
1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae
INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ
LABORATORIUM OCHRONY ŚRODOWISKA - SYSTEM ZARZĄDZANIA JAKOŚCIĄ - INSTRUKCJA NR 06- POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ 1. Cel istrukcji Celem istrukcji jest określeie metodyki postępowaia w celu
16 Przedziały ufności
16 Przedziały ufości zapis wyiku pomiaru: sugeruje, że rozkład błędów jest symetryczy; θ ± u(θ) iterpretacja statystycza przedziału [θ u(θ), θ + u(θ)] zależy od rozkładu błędów: P (Θ [θ u(θ), θ + u(θ)])
Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski
olorowaie Dywau ierpińskiego Adrzej zablewski, Radosław Peszkowski pis treści stęp... Problem kolorowaia... Róże rodzaje kwadratów... osekwecja atury fraktalej...6 zory rekurecyje... Przekształcaie rekurecji...
Zadania z analizy matematycznej - sem. I Szeregi liczbowe
Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych
Rozkład normalny (Gaussa)
Rozład ormaly (Gaussa) Wyprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowych. Rozważmy pomiar wielości m, tóry jest zaburzay przez losowych efetów o wielości e ażdy, zarówo zaiżających ja i
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera
Istrukcja do ćwiczeń laboratoryjych z przedmiotu: Badaia operacyje Temat ćwiczeia: Problemy trasportowe cd Problem komiwojażera Zachodiopomorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki
Statystyka w pracy badawczej nauczyciela
Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem
oznaczają łączne wartości szkód odpowiednio dla k-tego kontraktu w t-tym roku. O składnikach naszych zmiennych zakładamy, że:
Zadaie. Niech zmiee losowe: X t,k = μ + α k + β t + ε t,k, k =,2,, K oraz t =,2,, T, ozaczają łącze wartości szkód odpowiedio dla k-tego kotraktu w t-tym roku. O składikach aszych zmieych zakładamy, że:
Materiał ćwiczeniowy z matematyki Marzec 2012
Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0
WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ
WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA
STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.
Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,
STATYSTYKA MATEMATYCZNA
TATYTYKA MATEMATYCZNA ROZKŁADY PODTAWOWYCH TATYTYK zmiea losowa odpowiedik badaej cechy, (,,..., ) próba losowa (zmiea losowa wymiarowa, i iezależe zmiee losowe o takim samym rozkładzie jak (taką próbę
Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki
Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);
Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 11
Matematyka I Bezpieczeństwo jądrowe i ochroa radiologicza Semestr zimowy 2018/2019 Wykład 11 Całka ozaczoa podstawowe pojęcia Defiicja podziału odcika Podziałem P odcika < a, b > a części azywamy zbiór
PODSTAWY BIOSTATYSTYKI ĆWICZENIA
PODSTAWY BIOSTATYSTYKI ĆWICZENIA FILIP RACIBORSKI FILIP.RACIBORSKI@WUM.EDU.PL ZAKŁAD PROFILAKTYKI ZAGROŻEŃ ŚRODOWISKOWYCH I ALERGOLOGII WUM ZADANIE 1 Z populacji wyborców pobrao próbkę 1000 osób i okazało
Wykład ze statystyki. Maciej Wolny
Wykład ze statystyki Maciej Wolny T1: Zajęcia organizacyjne Agenda 1. Program wykładu 2. Cel zajęć 3. Nabyte umiejętności 4. Literatura 5. Warunki zaliczenia Program wykładu T1: Zajęcia organizacyjne T2:
będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,
Zadaie iech X, X,, X 6 będą iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), a Y, Y,, Y6 iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), gdzie, są iezaymi
θx θ 1, dla 0 < x < 1, 0, poza tym,
Zadaie 1. Niech X 1,..., X 8 będzie próbą z rozkładu ormalego z wartością oczekiwaą θ i wariacją 1. Niezay parametr θ jest z kolei zmieą losową o rozkładzie ormalym z wartością oczekiwaą 0 i wariacją 1.
Histogram: Dystrybuanta:
Zadaie. Szereg rozdzielczy (przyjmujemy przedziały klasowe o długości 0): x0 xi i środek i*środek i_sk częstości częstości skumulowae 5 5 8 0 60 8 0,6 0,6 5 5 9 0 70 7 0,8 0, 5 5 5 0 600 0, 0,6 5 55 8