Wstęp do probabilistyki i statystyki
|
|
- Władysława Brzezińska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Wstęp do probabilistyki i statystyki Wykład dr inż. Barbara Swatowska Katedra Elektroniki, AGH swatow@agh.edu.pl
2 Plan zajęć Zajęcia: Wykład 0 h oraz Ćwiczenia 0 h PLAN realizacji tematyki:. Kombinatoryka, symbol Newtona 2. Prawdopodobieństwo całkowite, warunkowe i niezależne, Twierdzenie Bayesa 3. Zmienna losowa i dystrybuanta 4. Obliczanie prawdopodobieństwa z wykorzystaniem gęstości 5. Wprowadzenie do statystyki, średnia, odchylenie standardowe, wariancja 6. Analiza regresji przykładowych danych 7. Obliczanie przedziału ufności dla różnych danych 8. Estymacja i wnioskowanie statystyczne 2
3 Literatura:. Krysicki W., Bartos J., i inni., Rachunek prawdopodobieństwa i statystyka matematyczna część I, II, Wydawnictwo Naukowe PWN, Warszawa Plucińska A., Pluciński E.: Zadania z rachunku prawdopodobieństwa i statystyki matematycznej dla studentów politechnik, PWN 3. Plucińska A., Pluciński E.: Probabilistyka, Rachunek prawdopodobieństwa, statystyka matematyczna, procesy stochastyczne, Wydawnictwo Naukowo- Techniczne, Warszawa Jakubowski J., Sztencel R.: Wstęp do teorii prawdopodobieństwa, SCRIPT, Ostasiewicz S., Rusnak Z., Siedlecka U., Statystyka. Elementy teorii i zadania. Wydawnictwo Akademii Ekonomicznej im. Oskara Langego we Wrocławiu, Greń Jerzy: Statystyka matematyczna. Modele i zadania. 7. Sobczyk Mieczysław: Statystyka, Wydawnictwo Naukowe PWN, Warszawa, Koronacki J, Mielniczuk J.: Statystyka dla studentów kierunków technicznych i przyrodniczych, Wydawnictwo Naukowo-Techniczne, Warszawa 200 3
4 Czym zajmuje się probabilistyka i statystyka? Teoria prawdopodobieństwa (także rachunek prawdopodobieństwa lub probabilistyka) dział matematyki zajmujący się zdarzeniami losowymi. Zdarzenie losowe to wynik doświadczenia losowego. Doświadczenie losowe może być powtarzane dowolnie wiele razy w warunkach identycznych lub bardzo zbliżonych a jego wynik nie daje się przewidzieć jednoznacznie. Częstość zdarzenia: l n gdzie l oznacza ile razy zaszło zdarzenie, gdy doświadczenie powtarzano n razy. Prawidłowość statystyczna przy coraz większej liczbie doświadczeń losowych częstość zdarzenia dąży do pewnej stałej liczby 4
5 Czym zajmuje się probabilistyka i statystyka? Rachunek prawdopodobieństwa zajmuje się badaniem abstrakcyjnych pojęć matematycznych stworzonych do opisu zjawisk, które nie są deterministyczne:. zmiennych losowych w przypadku pojedynczych zdarzeń oraz 2. procesów stochastycznych w przypadku zdarzeń powtarzających się (w czasie). Jako matematyczny fundament statystyki, teoria prawdopodobieństwa odgrywa istotną rolę w sytuacjach, w których konieczna jest analiza dużych zbiorów danych. Jednym z największych osiągnięć fizyki dwudziestego wieku było odkrycie probabilistycznej natury zjawisk fizycznych w skali mikroskopowej, co zaowocowało powstaniem mechaniki kwantowej. Statystyka zajmuje się metodami zbierania informacji (liczbowych) oraz ich analizą i interpretacją. 5
6 Czym zajmuje się probabilistyka i statystyka? Statystyka OPISOWA ANALIZA DANYCH (DESCRIPTIVE STATISTICS) DEDUKCYJNA MODELOWANIE STOCHASTYCZNE ( STATISTICAL INFERENCE) Organizacja danych Podsumowanie danych Prezentacja danych Podaje metody formułowania wniosków dotyczące obiektu badań (populacji generalnej) w oparciu o mniej liczny zbiór (próbę) GRAFICZNA NUMERYCZNA 6
7 Rys historyczny Matematyczna teoria prawdopodobieństwa sięga swoimi korzeniami do analizy gier losowych podjętej w siedemnastym wieku przez Pierre de Fermata oraz Blaise Pascala. Z tego powodu, początkowo teoria prawdopodobieństwa zajmowała się niemal wyłącznie zjawiskami dyskretnymi i używała metod kombinatorycznych. Zmienne ciągłe zostały wprowadzone do teorii prawdopodobieństwa znacznie później. Za początek stworzenia współczesnej teorii prawdopodobieństwa powszechnie uważa się jej aksjomatyzację, której w 933 dokonał Andriej Kołmogorow. 7
8 Hazard Zdecydowana większość gier losowych opiera się na prawdopodobieństwie zdarzenia......najprostszy, jak rzut monetą,......złożony, jak rozdanie pokera......oraz może być pod tym kątem analizowana. Prawdopodobieństwo trafienia oczka Ilość unikatowych rozdań w pokerze...całkowicie losowy jak ruletka... 8
9 Rys historyczny Blaise Pascal (60-662) XVII w., Paryż, Francja Unieśmiertelnił kawalera de Méré oraz jego paradoks hazardowy Trójkąt Pascala wykorzystywany przy potędze sumy ( a n n + b) k 0 n a k dwumian Newtona k b n k 9
10 Trójkąt Pascala n n n n n n n 0! )! (! k k n n k n Symbol
11 Trójkąt Pascala n 0 n n 2 n 3 n 4 n 5 n 6
12 Rys historyczny Pierre de Fermat (60-665) Początek XVII w., Touluse, Francja Badał właściwości liczb pierwszych, teorię liczb, równolegle opracował metodę współrzędnych w geometrii. Razem z Pascalem stworzył podstawy pod współczesny rachunek prawdopodobieństwa. 2
13 Rys historyczny Siméon Denis Poisson (78-840) XVIII-XIX w., Paryż, Francja Przyjaciel Lagrange'a, uczeń Laplace'a na sławnej École Polytechnique. Poza zagadnieniami fizycznymi zajmował się teorią prawdopodobieństwa. Proces stochastyczny (podobnie jak pr. Markowa), rozkład Poissona - dystrybuanta! 3
14 Rys historyczny Carl Frederich Gauss ( ) XVIII-XIX w., Getynga, Niemcy Profesor Uniwersytetu w Getyndze Genialny matematyk, który już w dzieciństwie wyprzedzał umiejętnościami rówieśników. W szkole podstawowej jako jedyny rozwiązał zadanie nauczyciela - zsumowanie liczb do 40 zauważając, że jest to (40+)*20 Rozkład normalny, zwany krzywą Gaussa. 4
15 Paradoks kawalera de Méré Dwaj hazardziści S i S 2 umawiają się, że zagrają pewną serię partii i że zwycięzcą będzie ten, kto pierwszy wygra pięć partii. Co należy zrobić, gdy trzeba będzie grę przedwcześnie przerwać? Załóżmy, że S wygrywa cztery partie, a S 2 tylko trzy. Jak sprawiedliwie podzielić stawki? Propozycja : podzielić stawki w stosunku 4:3 Propozycja 2: podzielić stawki w stosunku (5-3):(5-4)2: wg W.R. Fuchs, Matematyka popularna, Wiedza Powszechna, Warszawa 972 5
16 Blaise Pascal rozwiązał zadanie rozumując bardzo prosto. Aby rozstrzygnąć grę, należy zagrać jeszcze najwyżej dwie partie. Paradoks kawalera de Méré Jeżeli pierwszą partię wygra S, to gra będzie rozstrzygnięta od razu. Gdy pierwszą partię wygra S 2, to wygranie drugiej partii przez S przesądziłoby grę na jego korzyść. Jednak jeśli pozostałe dwie partie wygra S 2 to on zostanie zwycięzcą. Zatem sprawiedliwy podział stawki to 3:. 6
17 Statystyka - typy danych ILOŚCIOWE (QUANTITATIVE, NUMERICAL) JAKOŚCIOWE (QUALITATIVE, CATEGORIAL) Przykłady: Zbiór ludzi Wiek Wzrost Wysokość zarobków Obliczenia pewnych parametrów, jak np. średnia arytmetyczna, mediana, ekstrema, mają sens Przykłady: Płeć Stan cywilny Można przypisać różnym cechom arbitralne wartości liczbowe. Obliczenia parametrów nie mają sensu, można jedynie podawać np. udział procentowy 7
18 Pojęcie zmiennej losowej Zmienna losowa jest to funkcja X, która przypisuje liczbę rzeczywistą x danemu wynikowi eksperymentu losowego. Ω { e, e2, X : Ω R X ( e i ) K x i R Przykłady:. Rzut monetą: zdarzeniu orzeł przypisujemy ; zdarzeniu reszka przypisujemy Analog. losowanie wyrobów: zdarzeniu brak (wadliwy) - 0, dobry 3. Rzut kostką wyrzucenie, 2 2 itd 4. Odcinek [a, b] na osi liczbowej wybór punktu o współrzędnej x przypisujemy np. wartość x ; wartość sin 2 (3x+7) itp. } 8
19 Zmienna losowa dyskretna Gdy wartości zmiennej losowej X są izolowanymi punktami na osi liczbowej (obejmują skończony przedział wartości). Rzut monetą Błędy przy transmisji Wadliwe układy na linii produkcyjnej Ilość połączeń przychodzących w ciągu 5 minut ciągła Gdy wartości zmiennej losowej stanowią wszystkie punkty odcinka (obejmują przedział liczb rzeczywistych) Natężenie prądu w przewodniku Temperatura Ciśnienie 9
20 Graficzna prezentacja danych x Ilość wystąpień Częstotliwość 3 3/23 0, /23 0, /23 0, /23 0,739 Dane statystyczne można prezentować na wiele sposobów, np. częstość występowania danej cechy 5 /23 0,0435 Razem: 23,
21 Graficzna prezentacja danych Wykres kołowy , , ,43 4 0,739 7% 4% 3% 22% 5 0, % graf 2
22 Graficzna prezentacja danych Wykres kolumnowy 0, , ,43 4 0, , ,45 0,4 0,35 0,3 0,25 0,2 0,5 0, 0,05 Serie
23 Dane ilościowe Wyniki 34 pomiarów (np. wielkość ziaren w [nm], temperatura w kolejnych dniach o godz. :00 w [deg. C], czas rozmów telefonicznych w [min], itp. 3,6 3,2 2 2,8 3,5 5,2 4,8 2,3 9, 6,6 5,3,7 6,2 9,4 6,2 6,2 5,3 8 8,2 6,2 6,3 2, 8,4 4,5 6,6 9,3 5,3 9,2 6,5 0,4,2 7,2 6,2 2,3 Tak podane wartości są mało czytelne! 23
24 Histogram Sporządzenie wykresu (histogramu):. Uporządkować zbiór wg. rosnących (lub malejących) wartości program Excel ma taką opcję. 2. Wyniki próby (o liczebności n) stanowią zbiór n-liczb (niekoniecznie różniących się od siebie). Celem ich ilustracji dzieli się je na klasy, tworząc tzn. szereg rozdzielczy. 3. Szerokość poszczególnych klas nie musi być taka sama, choć zwykle stosuje się klasy o tej samej szerokości 4. Ilość klas nie może być zbyt mała ani też zbyt liczna. Najbardziej optymalną liczbę klas 'k' określa reguła Sturge'a. 24
25 Histogram 3 klasy Częstość bezwględna x 25
26 Histogram 2 klas Częstość bezwzględna ,5 5 6,5 8 9,5 2,5 4 5,5 7 8,5 20 x 26
27 Histogram 35 klas Częstość bezwzględna ,5 3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9,5 0 0,5,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9,5 x 27
28 Reguła Sturge'a k+3,3log 0 n Dla naszego przykładu: n 34 k Liczebność próbki, n Liczba klas, k < <
29 Histogram optymalny 6 klas (optymalnie) 0,3 0,25 Częstość względna 0,2 0,5 0, 0, x 29
30 Rachunek prawdopodobieństwa i statystyka w nauce i technice Statystyka umożliwia analizę i modelowanie rozwoju chorób oraz pomaga zapobiegać epidemiom. Statystyka medyczna, np. średnia liczba zachorowań w regionie. Statystyka społeczna, np. gęstość zaludnienia. Statystyka gospodarcza, np. PKB, wydatki na opiekę zdrowotną. Liczba zachorowań na świńską grypę w roku 2009 w USA (Źródło: 30
31 Meteorologia Modele pogodowe umożliwiające przewidywanie pogody oraz wykrywanie potencjalnych kataklizmów, np. huraganów (Źródło:stormdebris.net/Math_Forecasting.html) 3
32 Jak rozwiązuje się problem inżynierski? Opis problemu Identyfikacja najważniejszych czynników Propozycja modelu Modyfikacja modelu Potwierdzenie rozwiązania Przeprowadzenie eksperymentów Wnioski i rekomendacje 32
33 Jak rozwiązuje się problem inżynierski? Opis problemu Przykład: Załóżmy, że inżynier projektuje przewód paliwowy, który ma zastosowanie w silnikach samochodowych. Inżynier wybiera grubość ściany 3/32 cale ale nie jest pewny czy to jest wystarczające dla uzyskania odpowiedniej siły ciągu. Identyfikacja najważniejszych czynników Wyprodukowano osiem elementów, dla których zmierzono siły ciągu i otrzymano następujące wartości (w funtach): 2.6, 2.9, 3.4, 2.3, 3.6, 3.5, 2.6, 3.. Siła ciągu może być traktowana jako zmienna losowa. 33
34 Jak rozwiązuje się problem inżynierski? Propozycja modelu Przyjmijmy model, w którym zmienna losowa X jest przedstawiona jako: Stała wartość Zaburzenie (błąd, szum) Stała µ nie zmienia się przy kolejnych pomiarach. Małe zmiany w otoczeniu, układzie pomiarowym, różnice obserwowane dla obiektu mierzonego wpływają na wartość zaburzenia ε. W świecie rzeczywistym zawsze istnieją czynniki prowadzące do niezerowego zaburzenia. Musimy je opisać w sposób ilościowy i znaleźć sposób na ograniczenie ich wpływu na wynik pomiaru. 34
35 Jak rozwiązuje się problem inżynierski? Przeprowadzenie eksperymentów Rysunek -2 przedstawia uzyskane wyniki w postaci diagramu punktowego (dot diagram). Diagramy tego typu są użyteczne dla małej ilości danych (do ok. 20 obserwacji). Wykresy tego typu pozwalają ocenić położenie (środek) i rozproszenie (rozrzut) Średnia wartość siły ciągu wynosi 3.0 funtów. 35
36 Inżynier zmienia grubość ściany do /8 cali zakładając, że pomoże to zwiększyć siłę ciągu. Znowu zbudowano 8 prototypów, przeprowadzono eksperymenty i otrzymano wyniki siły ciągu: 2.9, 3.7, 2.8, 3.9, 4.2, 3.2, 3.5, 3.. Wyniki, w porównaniu z poprzednim eksperymentem, zestawiono na Rys Jak rozwiązuje się problem inżynierski? Modyfikacja (udoskonalenie) modelu Średnia wartość siły ciągu wynosi 3.4 funty. 36
37 Jak rozwiązuje się problem inżynierski? Potwierdzenie rozwiązania? Wykres stwarza wrażenie, że zwiększenie grubości ściany prowadzi do wzrostu siły ciągu. Jednak, pozostaje pytanie czy jest tak istotnie? 37
38 Jak rozwiązuje się problem inżynierski? Wnioski (rekomendacje?) Statystyka pomoże nam udzielić odpowiedzi na pytania: Skąd pewność, że inna próbka elementów nie da innych wyników? Czy próbka 8-elementowa jest wystarczająca aby dać wyniki, którym można ufać? Jeżeli użyjemy wyników, które do tej pory otrzymaliśmy, aby sformułować wniosek (decyzja), że wzrost grubości ściany jest korzystny, jak oszacować ryzyko z tym związane? Czy jest możliwe, że pozorny wzrost siły ciągu obserwowany dla grubszych elementów ma charakter jedynie losowy? Może nie ma sensu zwiększanie grubości ścian (powiększanie kosztów produkcji)? 38
39 Zasady rysowania wykresów Czy ten wykres jest narysowany zgodnie z zasadami?. Należy wyraźnie zaznaczyć punkty eksperymentalne!!!
40 Trzeba nanieść błąd pomiaru
41 3. Dobrać zakresy osi współrzędnych odpowiednio do zakresu zmienności danych pomiarowych!!!
42 4. Właściwie opisać osie współrzędnych i dobrać skalę, tak aby łatwo można było odczytać wartości zmierzone. co jest na osiach??? 42
43 Nie łączyć punktów eksperymentalnych linią łamaną!!! Jeśli znany jest przebieg teoretyczny to dokonać dopasowania teorii do doświadczenia (przeprowadzić fitowanie) ρ [µω cm] T [K] 43
44 6. Zadbać o aspekt estetyczny wykresu (opis, zamknięcie ramką, itp.) 44
45 45
46 Dziękuję za uwagę 46
Wstęp do probabilistyki i statystyki. Wykład 1. Wstęp
Wstęp do probabilistyki i statystyki Wykład 1. Wstęp dr hab.inż. Katarzyna Zakrzewska, prof.agh Katedra Elektroniki, AGH e-mail: zak@agh.edu.pl http://home.agh.edu.pl/~zak Wstęp do probabilistyki i statystyki.
Wykład 1. Wstęp. Rys historyczny. Rodzaje danych. Prezentacja danych. Zastosowania statystyki. Parametry opisowe
Wstęp do probabilistyki i statystyki Wykład 1. Wstęp dr hab.inż. Katarzyna Zakrzewska, prof.agh Katedra Elektroniki, AGH e-mail: zak@agh.edu.pl http://home.agh.edu.pl/~zak Wstęp do probabilistyki i statystyki.
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.
Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013
0,KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013 A.
Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013 A.
Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki
Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);
Metody Statystyczne. Metody Statystyczne.
gkrol@wz.uw.edu.pl #4 1 Sprawdzian! 5 listopada (ok. 45-60 minut): - Skale pomiarowe - Zmienne ciągłe i dyskretne - Rozkład teoretyczny i empiryczny - Miary tendencji centralnej i rozproszenia - Standaryzacja
Przedmiot statystyki. Graficzne przedstawienie danych.
Przedmiot statystyki. Graficzne przedstawienie danych. dr Mariusz Grządziel 23 lutego 2009 Przedmiot statystyki Statystyka dzieli się na trzy części: -zbieranie danych; -opracowanie i kondensacja danych
II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15
II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa
Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy
Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy
Wykład ze statystyki. Maciej Wolny
Wykład ze statystyki Maciej Wolny T1: Zajęcia organizacyjne Agenda 1. Program wykładu 2. Cel zajęć 3. Nabyte umiejętności 4. Literatura 5. Warunki zaliczenia Program wykładu T1: Zajęcia organizacyjne T2:
Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu
Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)
Z poprzedniego wykładu
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne
Statystyka opisowa. Wykład I. Elementy statystyki opisowej
Statystyka opisowa. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Elementy statystyku opisowej 1 Elementy statystyku opisowej 2 3 Elementy statystyku opisowej Definicja Statystyka jest to nauka o
Statystyka w pracy badawczej nauczyciela
Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem
Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii
Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:
LABORATORIUM Z FIZYKI
LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
1.1 Wstęp Literatura... 1
Spis treści Spis treści 1 Wstęp 1 1.1 Wstęp................................ 1 1.2 Literatura.............................. 1 2 Elementy rachunku prawdopodobieństwa 2 2.1 Podstawy..............................
Wykład: 20 godz., ćwiczenia: 20 godz. Zasady zaliczenia: zaliczenie ćwiczeń na ocenę, zaliczenie wykładu - egzamin (pisemne).
Tematy: Statystyka opisowa. rozproszenia. WSTĘP Miary tendencji centralnej i Doświadczenia losowe. Aksjomaty teorii prawdopodobieństwa. Własności prawdopodobieństwa. Klasyczna definicja prawdopodobieństwa.
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena
Opis przedmiotu: Probabilistyka I
Opis : Probabilistyka I Kod Nazwa Wersja TR.SIK303 Probabilistyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność Jednostka prowadząca
LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.
LABORATORIUM 4 1. Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. I) WNIOSKOWANIE STATYSTYCZNE (STATISTICAL INFERENCE) Populacja
Statystyka matematyczna
Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 25 lutego 2019 Magdalena Alama-Bućko Statystyka matematyczna 25 lutego 2019 1 / 18 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45
dr Jerzy Pusz, st. wykładowca, Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu
Kod przedmiotu TR.SIK303 Nazwa przedmiotu Probabilistyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne
12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych
(pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: Rachunek prawdopodobieństwa i statystyka matematyczna 2. Kod przedmiotu: RPiS 3. Karta przedmiotu ważna od roku akademickiego:
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa
Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej
Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
W1. Wprowadzenie. Statystyka opisowa
W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład
Pobieranie prób i rozkład z próby
Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.
STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych;
STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; - badanie skuteczności nowego leku; - badanie stopnia zanieczyszczenia gleb metalami
Podstawowe pojęcia statystyczne
Podstawowe pojęcia statystyczne Istnieją trzy rodzaje kłamstwa: przepowiadanie pogody, statystyka i komunikat dyplomatyczny Jean Rigaux Co to jest statystyka? Nauka o metodach ilościowych badania zjawisk
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
WYDZIAŁ GEOINŻYNIERII, GÓRNICTWA I GEOLOGII KARTA PRZEDMIOTU Nazwa w języku polskim: Statystyka matematyczna Nazwa w języku angielskim: Mathematical Statistics Kierunek studiów (jeśli dotyczy): Górnictwo
WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO
Zał. nr 4 do ZW WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA STOSOWANA Nazwa w języku angielskim APPLIED STATISTICS Kierunek studiów (jeśli dotyczy): Specjalność
Prawdopodobieństwo i statystyka Wykład I: Nieco historii
Prawdopodobieństwo i statystyka Wykład I: Nieco historii 6 października 2015 Prawdopodobieństwo i statystyka Wykład I: Nieco historii Zasady zaliczenia przedmiotu: Zaliczenie ćwiczeń rachunkowych. Zdanie
Analiza niepewności pomiarów
Teoria pomiarów Analiza niepewności pomiarów Zagadnienia statystyki matematycznej Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Podstawy statystyki matematycznej Histogram oraz wielobok liczebności zmiennej
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Sposoby prezentacji problemów w statystyce
S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki
STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa
STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład I, 22.02.2016 STATYSTYKA OPISOWA, cz. I Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: strona z materiałami z przedmiotu: wne.uw.edu.pl/azylicz akson.sgh.waw.pl/~aborata
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
Literatura. Podgórski J., Statystyka dla studiów licencjackich, PWE, Warszawa 2010.
Metody statystyczne Literatura Podgórski J., Statystyka dla studiów licencjackich, PWE, Warszawa 2010. Stąpor K. Wykłady z metod statystycznych dla informatyków z przykładami w języku R. Wydawnictwo Politechniki
Opis przedmiotu. Karta przedmiotu - Probabilistyka I Katalog ECTS Politechniki Warszawskiej
Kod przedmiotu TR.NIK304 Nazwa przedmiotu Probabilistyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Niestacjonarne
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych
(pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: Rachunek prawdopodobieństwa i statystyka matematyczna 2. Kod przedmiotu: RPiS 3. Karta przedmiotu ważna od roku akademickiego:
Metody probabilistyczne
Metody probabilistyczne 1. Prawdopodobieństwo klasyczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 03.10.2017 1 / 19 Rys historyczny Francja, XVII w.: gry hazardowe
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: przedmiot obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU
STATYSTYKA I DOŚWIADCZALNICTWO
STATYSTYKA I DOŚWIADCZALNICTWO dla studiów magisterskich kierunku ogrodnictwo Wykład 1 Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Słowo statystyka pochodzi
Statystyka z elementami rachunku prawdopodobieństwa
Statystyka z elementami rachunku prawdopodobieństwa dr hab. Tomasz Górecki tomasz.gorecki@amu.edu.pl Zakład Rachunku Prawdopodobieństwa i Statystyki Matematycznej Wydział Matematyki i Informatyki Uniwersytet
Wykład Ćwiczenia Laboratorium Projekt Seminarium 30
Zał. nr 4 do ZW WYDZIAŁ CHEMICZNY KARTA PRZEDMIOTU Nazwa w języku polskim Wstęp do statystyki praktycznej Nazwa w języku angielskim Intriduction to the Practice of Statistics Kierunek studiów (jeśli dotyczy):
4,5. Dyskretne zmienne losowe (17.03; 31.03)
4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład
CZEŚĆ PIERWSZA. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III I. POTĘGI
Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III CZEŚĆ PIERWSZA I. POTĘGI Zamienia potęgi o wykładniku całkowitym ujemnym na odpowiednie potęgi o wykładniku naturalnym. Oblicza wartości
Statystyka i analiza danych pomiarowych Podstawowe pojęcia statystyki cz. 2. Tadeusz M. Molenda Instytut Fizyki, Uniwersytet Szczeciński
Statystyka i analiza danych pomiarowych Podstawowe pojęcia statystyki cz. 2. Tadeusz M. Molenda Instytut Fizyki, Uniwersytet Szczeciński Opracowanie materiału statystycznego Szereg rozdzielczy częstości
I WYKŁAD STATYSTYKA. 5/03/2014 B8 sala 0.10B Godz. 15:15
I WYKŁAD STATYSTYKA 5/03/2014 B8 sala 0.10B Godz. 15:15 STATYSTYKA WYKŁAD I 1. Organizacja zajęć 2. Wstęp do statystyki Prowadzący: Wykłady: 1.prof. Mieczysław Rękas - A-3 IV p. p. 404; rekas@agh.edu.pl
STATYSTYKA MATEMATYCZNA
Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA MATEMATYCZNA Nazwa w języku angielskim Mathematical Statistics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Inżynieria Środowiska. II stopień ogólnoakademicki. przedmiot podstawowy obowiązkowy polski drugi. semestr zimowy
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/2018 STATYSTYKA
Statystyka matematyczna
Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 26 lutego 2018 Magdalena Alama-Bućko Statystyka matematyczna 26 lutego 2018 1 / 16 Wykład : 10h (przez 10 tygodni po 45 minut) zaliczenie wykładu
Dyskretne zmienne losowe
Dyskretne zmienne losowe dr Mariusz Grządziel 16 marca 2009 Definicja 1. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która
Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski
Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW STATYSTYKA to nauka, której przedmiotem
Z-ZIPN1-004 Statystyka. Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki Niestacjonarne Wszystkie Katedra Matematyki dr Zdzisław Piasta
KARTA MODUŁU / KARTA PRZEDMIOTU Z-ZIPN-004 Statystyka Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Statistics Obowiązuje od roku akademickiego 0/04 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Z-LOGN1-006 Statystyka Statistics
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Z-LOGN-006 Statystyka Statistics Obowiązuje od roku akademickiego 0/0 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek
WYKŁAD 5 TEORIA ESTYMACJI II
WYKŁAD 5 TEORIA ESTYMACJI II Teoria estymacji (wyznaczanie przedziałów ufności, błąd badania statystycznego, poziom ufności, minimalna liczba pomiarów). PRÓBA Próba powinna być reprezentacyjna tj. jak
Statystyka. Wykład 1. Magdalena Alama-Bućko. 20 lutego Magdalena Alama-Bućko Statystyka 20 lutego / 19
Statystyka Wykład 1 Magdalena Alama-Bućko 20 lutego 2017 Magdalena Alama-Bućko Statystyka 20 lutego 2017 1 / 19 Wykład : 30h Laboratoria : 30h (grupa B : 14:00, grupa C : 10:30, grupa E : 12:15) obowiazek
Próba własności i parametry
Próba własności i parametry Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony
Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną
Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Finanse i Rachunkowość Rodzaj przedmiotu: podstawowy Opiekun: prof. nadzw. dr hab. Tomasz Kuszewski Poziom studiów (I lub II stopnia): II stopnia
Statystyka matematyczna
Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 20 lutego 2017 Magdalena Alama-Bućko Statystyka matematyczna 20 lutego 2017 1 / 21 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść
MATEMATYKA3 Mathematics3. Elektrotechnika. I stopień ogólnoakademicki. studia stacjonarne. Katedra Matematyki dr Zdzisław Piasta
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 MATEMATYKA3 Mathematics3 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek
Rachunek Prawdopodobieństwa i Statystyka
Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne
Zagadnienia: wprowadzenie podstawowe pojęcia. Doświadczalnictwo. Anna Rajfura
Zagadnienia: wprowadzenie podstawowe pojęcia Doświadczalnictwo 1 Termin doświadczalnictwo Doświadczalnictwo planowanie doświadczeń oraz analiza danych doświadczalnych z użyciem metod statystycznych. Doświadczalnictwo
W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne.
W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne. dr hab. Jerzy Nakielski Katedra Biofizyki i Morfogenezy Roślin Plan wykładu: 1. Etapy wnioskowania statystycznego 2. Hipotezy statystyczne,
Transport II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Studia stacjonarne (stacjonarne / niestacjonarne)
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Metody probabilistyczne w transporcie Nazwa modułu w języku angielskim Probabilistic
Wydział Inżynierii Produkcji. I Logistyki. Statystyka opisowa. Wykład 3. Dr inż. Adam Deptuła
12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa Wykład 3 Dr inż. Adam Deptuła METODY OPISU DANYCH ILOŚCIOWYCH SKALARNYCH Wykresy: diagramy, histogramy, łamane częstości, wykresy
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU
Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów
WNIOSKOWANIE STATYSTYCZNE SYLABUS A. Informacje ogólne
WNIOSKOWANIE STATYSTYCZNE SYLABUS A. Informacje ogólne Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok studiów /semestr Wymagania wstępne (tzw. sekwencyjny system
1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
POJĘCIA WSTĘPNE. STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych.
[1] POJĘCIA WSTĘPNE STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych. BADANIE STATYSTYCZNE - ogół prac mających na celu poznanie struktury określonej
Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ
Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Zadanie 1. Zmienna losowa przyjmuje wartości -1, 0, 1 z prawdopodobieństwami równymi odpowiednio: ¼, ½, ¼. Należy: a. Wyznaczyć rozkład prawdopodobieństwa
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu
Statystyka matematyczna. dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt
Statystyka matematyczna dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt Zasady zaliczenia przedmiotu: część wykładowa Maksymalna liczba punktów do zdobycia 40. Egzamin będzie
Matematyka 2. dr inż. Rajmund Stasiewicz
Matematyka 2 dr inż. Rajmund Stasiewicz Skala ocen Punkty Ocena 0 50 2,0 51 60 3,0 61 70 3,5 71 80 4,0 81 90 4,5 91-5,0 Zwolnienie z egzaminu Ocena z egzaminu liczba punktów z ćwiczeń - 5 Warunki zaliczenia
KARTA KURSU. Probability theory
KARTA KURSU Nazwa Nazwa w j. ang. Rachunek prawdopodobieństwa Probability theory Kod Punktacja ECTS* 4 Koordynator Dr Ireneusz Krech Zespół dydaktyczny Dr Ireneusz Krech Dr Robert Pluta Opis kursu (cele
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
Rozkład Gaussa i test χ2
Rozkład Gaussa jest scharakteryzowany dwoma parametramiwartością oczekiwaną rozkładu μ oraz dyspersją σ: METODA 2 (dokładna) polega na zmianie zmiennych i na obliczeniu pk jako różnicy całek ze standaryzowanego
Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa
Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy, rok akademicki 2015 2016 Doświadczenie losowe Doświadczenie
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15
Sylabus do programu kształcenia obowiązującego od roku akademickiego 0/5 () Nazwa Rachunek prawdopodobieństwa i statystyka () Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot ()
SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.
Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Rachunek prawdopodobieństwa Probability theory Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
STATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych
STATYSTYKA MATEMATYCZNA WYKŁAD 3 Populacje i próby danych POPULACJA I PRÓBA DANYCH POPULACJA population Obserwacje dla wszystkich osobników danego gatunku / rasy PRÓBA DANYCH sample Obserwacje dotyczące
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Statystyczne Metody Opracowania Wyników Pomiarów
Statystyczne Metody Opracowania Wyników Pomiarów dla studentów Ochrony Środowiska Teresa Jaworska-Gołąb 2017/18 Co czytać [1] H. Szydłowski, Pracownia fizyczna, PWN, Warszawa 1999. [2] A. Zięba, Analiza
przedmiot podstawowy obowiązkowy polski drugi
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 07/08 IN--008 STATYSTYKA W INŻYNIERII ŚRODOWISKA Statistics in environmental engineering