ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE

Wielkość: px
Rozpocząć pokaz od strony:

Download "ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE"

Transkrypt

1 RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 8. ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE 1

2 Zbieżość ciągu zmieych losowych z prawdopodobieństwem 1 (prawie apewo) Ciąg zmieych losowych (X ) jest zbieży do zmieej losowej X z prawdopodobieństwem 1 jeśli P ({ }) ω : lim X ( ω) = X ( ω) = 1 2

3 Średiokwadratowa zbieżość ciągu zmieych losowych Ciąg zmieych losowych (X ) jest średiokwadratowo zbieży do zmieej losowej X jeśli lim E ( ) 2 X X = 0 Rozpatrując te rodzaj zbieżości zakładamy, że dla występujących tu zmieych losowych (X ), X istieje skończoy momet rzędu 2. Niekiedy stosuje się zapis l.i.m. (skrót od limit i mea ). X = X 3

4 Stochastycza zbieżość ciągu zmieych losowych Ciąg zmieych losowych (X ) jest stochastyczie (wg prawdopodobieństwa) zbieży do zmieej losowej X jeśli ( X X < ) = 1 lim P ε > 0 ε lub rówoważie > lim P( X ) X ε = 0 ε 0 4

5 Zbieżość ciągu zmieych losowych wg dystrybuat (wg rozkładu) Ciąg zmieych losowych (X ) jest zbieży do zmieej losowej X wg dystrybuat jeśli ciąg ich dystrybuat F jest zbieży do dystrybuaty F w każdym pukcie jej ciągłości (F jest dystrybuatą zmieej losowej X). 5

6 ZBIEŻNOŚĆ Z PRAWDOPODOBIEŃSTWEM 1 ZBIEŻNOŚĆ ŚREDNIOKWADRATOWA ZBIEŻNOŚĆ STOCHASTYCZNA zbieżość do stałej (tz. gdy graica ma rozkład jedopuktowy) ZBIEŻNOŚĆ WG DYSTRYBUANT 6

7 Przykład. Rozpatrzmy ciąg zmieych losowych skokowych określoych a przedziale [0, 1) w astępujący sposób k k gdy ω ; X k ( ω) = k k gdy ω [0, 1) ; 1 1 P( X k = 1) = ; P( X k = 0) = 1 Ciąg X 01, X 02, X 12, X 03, X 13, X 23,... zbieży stochastyczie do zera bo 0< < ε 1 lim P 1 ( X ε ) = lim = 0 jest Natomiast ciąg te ie jest zbieży w żadym pukcie przedziale [0, 1) bowiem dla każdego ustaloego puktu otrzymujemy rozbieży ciąg zer i jedyek (zera i jedyki występują a dowolie dalekich miejscach). 7

8 Przykład. Ciąg zmieych losowych X ciągłych o rozkładach jedostajych a przedziałach (0, 1/) jest zbieży do rozkładu jedopuktowego X P ( X = 0) = ) wg dystrybuat. ( 1 8

9 Cetrale twierdzeie graicze Lideberga Levy'ego Jeśli iezależe zmiee losowe X i (i = 1, 2,..., ) mają taki sam rozkład oraz istieje E(X ) = m i D 2 (X ) = σ 2 > 0 to ciąg dystrybuat (F ) stadaryzowaych średich arytmetyczych X (lub stadaryzowaych sum i= 1 Y X i = ) X σ / m = i=1 X σ m jest zbieży do dystrybuaty Φ rozkładu N(0, 1). 9

10 Aby się przekoać, że suma iezależych zmieych losowych o takim samym rozkładzie może dążyć do rozkładu N(0, 1) porówajmy rozkład N(0, 1) i stadaryzowae rozkłady X, (X + Y)/2, (X + Y + Z)/3, gdzie X, Y, Z iezależe zmiee losowe o rozkładzie jedostajym w przedziale [ 0,5; 0,5]. 10

11 N X x 11

12 12

13 Wiosek Dla dużych (w praktyce 30) P a i= 1 X σ i m < b Φ( b) Φ( a) 13

14 W przypadku szczególym gdy X i (i = 1, 2,..., ) maja rozkład zerojedykowy to powyższe twierdzeie azywamy twierdzeiem Moivre'a-Laplace'a (zmiee losowe dwumiaowy). Y = X i maja rozkład i= 1 14

15 Wiosek z twierdzeia Moivre'a-Laplace'a: Y p P i a < b Φ( b) Φ( a) pq Uwaga. Powyższe twierdzeia wskazują a ważą rolę rozkładu ormalego. 15

16 Przykład Wadliwość partii żarówek wyosi 0,01. Z tej partii żarówek wylosowao 625 żarówek. Obliczyć prawdopodobieństwo, że wśród wylosowaych żarówek będzie a) miej iż 10 wadliwych, b) ajwyżej 10 wadliwych. 16

17 Rozwiązaie. Y liczba wadliwych żarówek wśród wylosowaych, Ad a) P( Y i < 10) = P Y i 625 0, ,01 0,99 < , ,01 0,99 Φ(1,51) = 0,

18 18 Ad b) 0,97193 ) (1, ,01 0, , ,01 0, ,01 ) 11 ( 10) ( 10) ( 10) ( = Φ < = = < = = + < = i i i i i Y P PY P Y PY P Y

19 Prawo wielkich liczb Chiczya (X i ) ciąg iezależych zmieych losowych o takim samym rozkładzie oraz iech istieje E(X i ) = m. 1 Y = Wtedy ciąg X i jest zbieży i= 1 stochastyczie do m. 19

20 Wiosek Dla dużych jeśli istieje D 2 (X ) = σ 2 > 0 to ε > 0 ε σ ( Y m < ε ) 2Φ 1 P 20

21 Przypadek szczególy prawo wielkich liczb Beroulliego: (X i ) ciąg iezależych zmieych losowych o rozkładzie dwumiaowym wtedy ciąg jest stochastyczie zbieży do p. X 21

22 Wiosek Dla dużych : X 2Φ ε P p < ε > 0 pq ε 1 22

23 Przykład Wadliwość partii żarówek wyosi 0,1. Z tej partii żarówek losujemy żarówek. Ile żarówek ależy wylosować aby prawdopodobieństwo, że średia liczba wadliwych żarówek różiła się co do wartości bezwzględej od wadliwości partii o miej iż 0,025 było co ajmiej rówe 0,95. 23

24 Rozwiązaie Y liczba wadliwych żarówek wśród wylosowaych Y 0,025 0,1 0,025 2 P < Φ 1 0,1 0,9 stąd oraz 0,025 Φ 0,1 0,9 0,025 1,96 0,1 0,9 0,975 0,95 zatem 23, 52 i >

25 Przybliżeia lokale. Przybliżeie lokale Poissoa dla dużych (praktyczie 30) i małych p (praktyczie p 0,2) mamy k p k q k k λ e k! λ gdzie λ = p 25

26 Przybliżeie lokale Moivre a-laplace a dla dużych mamy k k 1 k p p q f k pq pq Gdzie f- gęstość rozkładu N(0, 1). 26

27 Oceę odchyleia wartości zmieej losowej od jej wartości oczekiwaej daje ierówość Czebyszewa: X zmiea losowa oraz istieje E(X) = m i D 2 (X) = σ 2 > 0 wtedy P 2 σ ( X m ε ) 2 ε > 0 ε 27

28 Z ierówością Czebyszewa związae są ie ierówości p. 1) ierówość Markowa E X P ε > 0 p> 0 ε 2) ierówość Czebyszewa II EX P( X ε ) ε >0 ε ( X ε ) p 3) ierówość Czebyszewa III (wykładicza) jeśli λ Ee X Ee λ < P( X ε ) ε >0 λε e 4) ierówość Bersteia jeśli S liczba sukcesów w próbach Beroulliego z prawdopodobieństwem sukcesu p to S 2 2ε P p ε 2e ε > 0 p X 28

Twierdzenia graniczne:

Twierdzenia graniczne: Twierdzeia graicze: Tw. ierówośd Markowa Jeżeli P(X > 0) = 1 oraz EX 0: P X k 1 k EX. Tw. ierówośd Czebyszewa Jeżeli EX = m i 0 < σ = D X 0: P( X m tσ) 1 t. 1. Z partii towaru o wadliwości

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA. WYKŁAD 0 (powt. wiadomości z r. p-stwa)

STATYSTYKA MATEMATYCZNA. WYKŁAD 0 (powt. wiadomości z r. p-stwa) STATYSTYKA MATEMATYCZNA WYKŁAD 0 (powt. wiadomości z r. p-stwa) Literatura M. Cieciura, J. Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 005 R.Leiter, J.Zacharski, "Zarys

Bardziej szczegółowo

Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne

Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne Wykład 4 Niezależość zmieych, fukcje i charakterystyki wektora losowego, cetrale twierdzeia graicze Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki

Bardziej szczegółowo

WYKŁAD 1. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 1. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD Zdarzeia losowe i prawdopodobieństwo Zmiea losowa i jej rozkłady Metody statystycze metody opisu metody wioskowaia statystyczego sytetyczy liczbowy opis właściwości zbioru daych ocea charakterystyk

Bardziej szczegółowo

Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym

Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym Lista 5 Zadaia a zastosowaie ierówosci Markowa i Czebyszewa. Zadaie 1. Niech zmiea losowa X ma rozkład jedostajy a odciku [0, 1]. Korzystając z ierówości Markowa oszacować od góry prawdopodobieństwo, że

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VI: Metoda Mote Carlo 17 listopada 2014 Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Przybliżoe obliczaie całki ozaczoej Rozważmy całkowalą fukcję f : [0, 1] R. Chcemy zaleźć przybliżoą

Bardziej szczegółowo

Rozkłady statystyk z próby Twierdzenia graniczne

Rozkłady statystyk z próby Twierdzenia graniczne Rozkłady statystyk z róby Twierdzeia graicze PRÓBA LOSOWA Próbą losową rostą azyway ciąg -zieych losowych iezależych i osiadających jedakowe rozkłady takie jak rozkład zieej losowej w oulacji geeralej

Bardziej szczegółowo

Wykład 8: Zbieżność według rozkładu. Centralne twierdzenie graniczne.

Wykład 8: Zbieżność według rozkładu. Centralne twierdzenie graniczne. Rachuek prawopoobieństwa MA5 Wyział Elektroiki, rok aka 20/2, sem leti Wykłaowca: r hab A Jurlewicz Wykła 8: Zbieżość weług rozkłau Cetrale twierzeie graicze Zbieżości ciągu zmieych losowych weług rozkłau

Bardziej szczegółowo

Wykład 13: Zbieżność według rozkładu. Centralne twierdzenie graniczne.

Wykład 13: Zbieżność według rozkładu. Centralne twierdzenie graniczne. Rachuek prawopoobieństwa MA064 Wyział Elektroiki, rok aka 2008/09, sem leti Wykłaowca: r hab A Jurlewicz Wykła 3: Zbieżość weług rozkłau Cetrale twierzeie graicze Zbieżości ciągu zmieych losowych weług

Bardziej szczegółowo

STATYSTKA I ANALIZA DANYCH LAB II

STATYSTKA I ANALIZA DANYCH LAB II STATYSTKA I ANALIZA DANYCH LAB II 1. Pla laboratorium II rozkłady prawdopodobieństwa Rozkłady prawdopodobieństwa dwupuktowy, dwumiaowy, jedostajy, ormaly. Związki pomiędzy rozkładami prawdopodobieństw.

Bardziej szczegółowo

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej

Bardziej szczegółowo

1 Twierdzenia o granicznym przejściu pod znakiem całki

1 Twierdzenia o granicznym przejściu pod znakiem całki 1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae

Bardziej szczegółowo

Lista 6. Estymacja punktowa

Lista 6. Estymacja punktowa Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223

Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223 Aaliza umerycza Kurs INP002009W Wykład Narzędzia matematycze Karol Tarowski karol.tarowski@pwr.wroc.pl A- p.223 Pla wykładu Czym jest aaliza umerycza? Podstawowe pojęcia Wzór Taylora Twierdzeie o wartości

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych Katarzya Borkowska, Wykłady dla EIT, UTP Układy rówań liiowych Defiicja.. Układem U m rówań liiowych o iewiadomych azywamy układ postaci: U: a x + a 2 x 2 +... + a x =b, a 2 x + a 22 x 2 +... + a 2 x =b

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,

będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0, Zadaie iech X, X,, X 6 będą iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), a Y, Y,, Y6 iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), gdzie, są iezaymi

Bardziej szczegółowo

P ( i I A i) = i I P (A i) dla parami rozłącznych zbiorów A i. F ( ) = lim t F (t) = 0, F (+ ) = lim t + F (t) = 1.

P ( i I A i) = i I P (A i) dla parami rozłącznych zbiorów A i. F ( ) = lim t F (t) = 0, F (+ ) = lim t + F (t) = 1. Podstawy teorii miary probabilistyczej. Zbiory mierzale σ ciało zbiorów Załóżmy, że mamy jakiś zbiór Ω. Niech F będzie taką rodzią podzbiorów Ω, że: Ω F A F A F i I A i F i I A i F Wtedy rodzię F azywamy

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA TATYTYKA MATEMATYCZNA ROZKŁADY PODTAWOWYCH TATYTYK zmiea losowa odpowiedik badaej cechy, (,,..., ) próba losowa (zmiea losowa wymiarowa, i iezależe zmiee losowe o takim samym rozkładzie jak (taką próbę

Bardziej szczegółowo

są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X

są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X Prawdoodobieństwo i statystyka 5..008 r. Zadaie. Załóżmy że 3 są iezależymi zmieymi losowymi o jedakowym rozkładzie Poissoa z wartością oczekiwaą λ rówą 0. Obliczyć v = var( 3 + + + 3 = 9). (A) v = 0 (B)

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uiwersytet Ekoomiczy w Katowicach 2015/16 ROND, Fiase i Rachukowość, rok 2 Rachuek prawdopodobieństwa Rzucamy 10 razy moetą, dla której prawdopodobieństwo wyrzuceia orła w pojedyczym

Bardziej szczegółowo

1 Dwuwymiarowa zmienna losowa

1 Dwuwymiarowa zmienna losowa 1 Dwuwymiarowa zmiea loowa 1.1 Dwuwymiarowa zmiea loowa kokowa X = x i, Y = y k = p ik przy czym i, k N oraz p ik = 1; i k p i = X = x i = p ik dla i N; p k = Y = y k = p ik dla k N; k i F 1 x = p i dla

Bardziej szczegółowo

Rozkład normalny (Gaussa)

Rozkład normalny (Gaussa) Rozład ormaly (Gaussa) Wyprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowych. Rozważmy pomiar wielości m, tóry jest zaburzay przez losowych efetów o wielości e ażdy, zarówo zaiżających ja i

Bardziej szczegółowo

Wstęp. zbiór wszystkich zdarzeń elementarnych (sample space), S zbiór zdarzeń, (events), P prawdopodobieństwo (probability distribution).

Wstęp. zbiór wszystkich zdarzeń elementarnych (sample space), S zbiór zdarzeń, (events), P prawdopodobieństwo (probability distribution). Wstęp,, S P przestrzeń probabilistycza (Probability space), zbiór wszystich zdarzeń elemetarych (sample space), S zbiór zdarzeń, (evets), P prawdopodobieństwo (probability distributio). P : S R ZMIENNA

Bardziej szczegółowo

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7 Metody probabilistycze i statystyka Estymacja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Statystyka matematyczna. Wykład II. Estymacja punktowa

Statystyka matematyczna. Wykład II. Estymacja punktowa Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe Metody probabilistycze i statystyka Wykład 1 Zdarzeia losowe, defiicja prawdopodobieństwa, zmiee losowe Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki

Bardziej szczegółowo

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40.

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40. Portfele polis Poieważ składka jest ustalaa jako wartość oczekiwaa rzeczywistego, losowego kosztu ubezpieczeia, więc jest tym bliższa średiej wydatków im większa jest liczba ubezpieczoych Polisy grupuje

Bardziej szczegółowo

Podstawowe rozkłady zmiennych losowych typu dyskretnego

Podstawowe rozkłady zmiennych losowych typu dyskretnego Podstawowe rozkłady zmieych losowych typu dyskretego. Zmiea losowa X ma rozkład jedopuktowy, skocetroway w pukcie x 0 (ozaczay przez δ(x 0 )), jeżeli P (X = x 0 ) =. EX = x 0, V arx = 0. e itx0.. Zmiea

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie

Bardziej szczegółowo

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,. Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Szeregi liczbowe

Zadania z analizy matematycznej - sem. I Szeregi liczbowe Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych

Bardziej szczegółowo

Wzór Taylora. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Wzór Taylora. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Wzór Taylora Szeregi potęgowe Matematyka Studium doktorackie KAE SGH Semestr leti 8/9 R. Łochowski Graica fukcji w pukcie Niech f: R D R, R oraz istieje ciąg puktów D, Fukcja f ma w pukcie graicę dowolego

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa aaliza daych doświadczalych Wykład 6.04.06 dr iż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr leti 05/06 Własości rozkładu ormalego Cetrale twierdzeie graicze Fukcja charakterystycza

Bardziej szczegółowo

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są

Bardziej szczegółowo

MACIERZE STOCHASTYCZNE

MACIERZE STOCHASTYCZNE MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:

Bardziej szczegółowo

1 Przedziały ufności. ). Obliczamy. gdzie S pochodzi z rozkładu B(n, 1 2. P(2 S n 2) = 1 P(S 2) P(S n 2) = 1 2( 2 n +n2 n +2 n ) = 1 (n 2 +n+2)2 n.

1 Przedziały ufności. ). Obliczamy. gdzie S pochodzi z rozkładu B(n, 1 2. P(2 S n 2) = 1 P(S 2) P(S n 2) = 1 2( 2 n +n2 n +2 n ) = 1 (n 2 +n+2)2 n. Przedziały ufości W tym rozdziale będziemy zajmować się przede wszystkim zadaiami związaymi z przedziałami ufości Będą as rówież iteresować statystki pozycyje oraz estymatory ajwiększej wiarygodości (Eg

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy

Bardziej szczegółowo

Kurs Prawdopodobieństwo Wzory

Kurs Prawdopodobieństwo Wzory Kurs Prawdoodobieństwo Wzory Elemety kombiatoryki Klasycza deiicja rawdoodobieństwa gdzie: A - liczba zdarzeń srzyjających A - liczba wszystkich zdarzeń P A Tel. 603 088 74 Prawdoodobieństwo deiicja Kołmogorowa

Bardziej szczegółowo

θx θ 1, dla 0 < x < 1, 0, poza tym,

θx θ 1, dla 0 < x < 1, 0, poza tym, Zadaie 1. Niech X 1,..., X 8 będzie próbą z rozkładu ormalego z wartością oczekiwaą θ i wariacją 1. Niezay parametr θ jest z kolei zmieą losową o rozkładzie ormalym z wartością oczekiwaą 0 i wariacją 1.

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie 1 Rzucamy 4 kości do gry (uczciwe). Prawdopodobieństwo zdarzeia iż ajmiejsza uzyskaa a pojedyczej kości liczba oczek wyiesie trzy (trzy oczka mogą wystąpić a więcej iż jedej kości) rówe jest: (A)

Bardziej szczegółowo

16 Przedziały ufności

16 Przedziały ufności 16 Przedziały ufości zapis wyiku pomiaru: sugeruje, że rozkład błędów jest symetryczy; θ ± u(θ) iterpretacja statystycza przedziału [θ u(θ), θ + u(θ)] zależy od rozkładu błędów: P (Θ [θ u(θ), θ + u(θ)])

Bardziej szczegółowo

Rozkład normalny (Gaussa)

Rozkład normalny (Gaussa) Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch

Bardziej szczegółowo

PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1).

PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1). TATYTYKA MATEMATYCZNA WYKŁAD 3 RZEDZIAŁY UFNOŚCI Niech θ - iezay parametr rozkład cechy. Niech będzie liczbą z przedział 0,. Jeśli istieją statystyki, U i U ; U U ; których rozkład zależy od θ oraz U θ

Bardziej szczegółowo

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru

Bardziej szczegółowo

Rozkład normalny (Gaussa)

Rozkład normalny (Gaussa) Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch

Bardziej szczegółowo

Statystyka Matematyczna. Skrypt. Spis treści. SKN Matematyki Stosowanej. s k n. m s 23 kwietnia Oznaczenia i definicje 3

Statystyka Matematyczna. Skrypt. Spis treści. SKN Matematyki Stosowanej. s k n. m s 23 kwietnia Oznaczenia i definicje 3 Spis treści Ozaczeia i defiicje 3 Wioskowaie statystycze 3. Statystyki dostatecze................................................. 3.. Rodzia rozkładów wykładiczych......................................

Bardziej szczegółowo

oznaczają łączne wartości szkód odpowiednio dla k-tego kontraktu w t-tym roku. O składnikach naszych zmiennych zakładamy, że:

oznaczają łączne wartości szkód odpowiednio dla k-tego kontraktu w t-tym roku. O składnikach naszych zmiennych zakładamy, że: Zadaie. Niech zmiee losowe: X t,k = μ + α k + β t + ε t,k, k =,2,, K oraz t =,2,, T, ozaczają łącze wartości szkód odpowiedio dla k-tego kotraktu w t-tym roku. O składikach aszych zmieych zakładamy, że:

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Estymatory nieobciążone o minimalnej wariancji

Estymatory nieobciążone o minimalnej wariancji Estymatory ieobciążoe o miimalej wariacji Model statystyczy (X, {P θ, θ Θ}); g : Θ R 1 Zadaie: oszacować iezaą wartość g(θ) Wybrać takie δ(x 1, X 2,, X ) by ( θ Θ) ieobciążoość E θ δ(x 1, X 2,, X ) = g(θ)

Bardziej szczegółowo

ZMIENNA LOSOWA I JEJ PARAMETRY -powtórzenie

ZMIENNA LOSOWA I JEJ PARAMETRY -powtórzenie WNIOSKOWANIE STATYSTYCZNE ZMIENNA LOSOWA I JEJ PARAMETRY -powtórzeie,, S P przestrzeń probabilistycza (matematyczy model zjawiska losowego), zbiór wszystkich zdarzeń elemetarych, S zbiór zdarzeń, (podzbiory

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2 (LUX), lato 2017/18. a n n = 10.

Jarosław Wróblewski Analiza Matematyczna 2 (LUX), lato 2017/18. a n n = 10. Czy istieje ciąg (a ) taki, że (podać przykład lub dowieść, że ie istieje) : 576. a > 1 dla ieskończeie wielu, a > 0, szereg a jest zbieży. N 577. a = 1 2 dla ieskończeie wielu, a = 10. 578. a 2 = 1 N,

Bardziej szczegółowo

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą

Bardziej szczegółowo

ZADANIA NA ĆWICZENIA 3 I 4

ZADANIA NA ĆWICZENIA 3 I 4 Agata Boratyńska Statystyka aktuariala... 1 ZADANIA NA ĆWICZENIA 3 I 4 1. Wygeeruj szkody dla polis z kolejych lat wg rozkładu P (N = 1) = 0, 1 P (N = 0) = 0, 9, gdzie N jest liczbą szkód z jedej polisy.

Bardziej szczegółowo

0.1 Statystyczne Podstawy Modelu Regresji

0.1 Statystyczne Podstawy Modelu Regresji 0.1 Statystycze Podstawy Modelu Regresji iech daa będzie przestrzeń probabilistycza (Ω, F, P ). Fukcję X : Ω R, określoą a przestrzei zdarzeń elemetarych Ω, o wartościach rzeczywistych, takich że x R {ω

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12

zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12 Rozwiazaia zadań z pierwszej klasówki, 0 listopada 06 r zestaw A Ciag a ) jest zaday rekuryjie: a a, a + a a 9, a R, a

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I Grupę n dzieci ustawiono w sposób losowy w szereg. Oblicz prawdopodobieństwo

Zadania z Rachunku Prawdopodobieństwa I Grupę n dzieci ustawiono w sposób losowy w szereg. Oblicz prawdopodobieństwo Zadaia z Rachuku Prawdopodobieństwa I - 1 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją koło

Bardziej szczegółowo

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona Ćwiczeie r 4 Porówaie doświadczalego rozkładu liczby zliczeń w zadaym przedziale czasu z rozkładem Poissoa Studeta obowiązuje zajomość: Podstawowych zagadień z rachuku prawdopodobieństwa, Zajomość rozkładów

Bardziej szczegółowo

Funkcja generująca rozkład (p-two)

Funkcja generująca rozkład (p-two) Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są

Bardziej szczegółowo

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

Zadanie 3. ( ) Udowodnij, że jeśli (X n, F n ) jest martyngałem, to. X i > t) E X n. . t. P(sup

Zadanie 3. ( ) Udowodnij, że jeśli (X n, F n ) jest martyngałem, to. X i > t) E X n. . t. P(sup Szkice rozwiązań zadań z serii dwuastej oraz części zadań z kartkówki. Zadaie 1. Niech (X, F ) będzie martygałem. Czy X jest domykaly, jeśli ciąg EX l X jest zbieży? X jest zbieży prawie a pewo? X jest

Bardziej szczegółowo

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1 Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.

Bardziej szczegółowo

2. Nieskończone ciągi liczbowe

2. Nieskończone ciągi liczbowe Ciągiem liczbowym azywamy fukcję 2. Nieskończoe ciągi liczbowe a: N R. Wartości tej fukcji ozaczamy przez a) = a i azywamy wyrazami ciągu. Często ciąg ozaczamy przez {a } = lub po prostu przez {a }. Prostymi

Bardziej szczegółowo

Ciągi liczbowe wykład 3

Ciągi liczbowe wykład 3 Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych

Bardziej szczegółowo

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością

Bardziej szczegółowo

Statystyka Matematyczna. Skrypt. Spis treści. SKN Matematyki Stosowanej. s k n. m s 11 czerwca Oznaczenia i definicje 4

Statystyka Matematyczna. Skrypt. Spis treści. SKN Matematyki Stosowanej. s k n. m s 11 czerwca Oznaczenia i definicje 4 Spis treści Ozaczeia i defiicje 4 Wioskowaie statystycze 4. Statystyki dostatecze................................................. 4.. Rodzia rozkładów wykładiczych......................................

Bardziej szczegółowo

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic). Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic

Bardziej szczegółowo

n n X n = σ σ = n n n Ponieważ zmienna losowa standaryzowana ma rozkład normalny N(0, 1), więc

n n X n = σ σ = n n n Ponieważ zmienna losowa standaryzowana ma rozkład normalny N(0, 1), więc 5.3. Zagadieia estymacji 87 Rozważmy teraz dokładiej zagadieie szacowaia wartości oczekiwaej m zmieej losowej X o rozkładzie ormalym N(m, F), w którym odchyleie stadardowe F jest zae. Niech X, X,..., X

Bardziej szczegółowo

5 Twierdzenia graniczne

5 Twierdzenia graniczne A. Kasprzyk, STATYSTYKA A 22 5 Twierzeia graicze 5.1 Typy zbieżości zmieych losowych Defiicja 5.1 Rozważmy ciag ciag z.l. { }, z których każa ma ystrybuate F, oraz z.l. Z o ystrybuacie F. Mówimy że ciag

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja

Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja Podstawowe ozaczeia i wzory stosowae a wykładzie i laboratorium Część I: estymacja 1 Ozaczeia Zmiee losowe (cechy) ozaczamy a wykładzie dużymi literami z końca alfabetu. Próby proste odpowiadającymi im

Bardziej szczegółowo

+ ln = + ln n + 1 ln(n)

+ ln = + ln n + 1 ln(n) "Łatwo z domu rzeczywistości zajśd do lasu matematyki, ale ieliczi tylko umieją wrócid." Hugo Dyoizy Steihaus Niech (a ) będzie ieskooczoym ciągiem rzeczywistym. Def. Szeregiem = a azywamy parę ciągów

Bardziej szczegółowo

Zmienna losowa N ma rozkład ujemny dwumianowy z parametrami (, q) = 7,

Zmienna losowa N ma rozkład ujemny dwumianowy z parametrami (, q) = 7, Matematyka ubezpieczeń majątkowych.0.008 r. Zadaie. r, Zmiea losowa N ma rozkład ujemy dwumiaowy z parametrami (, q), tz.: Pr( N k) (.5 + k) (.5) k! Γ Γ * Niech k ozacza taką liczbę aturalą, że: * k if{

Bardziej szczegółowo

Przestrzeń probabilistyczna

Przestrzeń probabilistyczna Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11 RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest

Bardziej szczegółowo

Trochę zadań kombinatorycznych. 1. na ile sposobów można siedmiu stojących na peronie pasażerów umieścić w trzech wagonach?

Trochę zadań kombinatorycznych. 1. na ile sposobów można siedmiu stojących na peronie pasażerów umieścić w trzech wagonach? Trochę zadań kombiatoryczych 1. a ile sposobów moża siedmiu stojących a peroie pasażerów umieścić w trzech wagoach? 2. Na szachowicy o wymiarach umieszczamy 8 ierozróżialych wież szachowych tak aby żade

Bardziej szczegółowo

Estymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności)

Estymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności) IV. Estymacja parametrów Estymacja: Puktowa (ocea, błędy szacuku Przedziałowa (przedział ufości Załóżmy, że rozkład zmieej losowej X w populacji geeralej jest opisay dystrybuatą F(x;α, gdzie α jest iezaym

Bardziej szczegółowo

Ważne rozkłady i twierdzenia

Ważne rozkłady i twierdzenia Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne

Bardziej szczegółowo

Zadania z rachunku prawdopodobieństwa I* Siedmiu pasażerów przydzielono losowo do trzech wagonów. Jakie jest prawdopodobieństwo

Zadania z rachunku prawdopodobieństwa I* Siedmiu pasażerów przydzielono losowo do trzech wagonów. Jakie jest prawdopodobieństwo Zadaia z rachuku prawdopodobieństwa I* - 1 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie, b) Jacek, Placek i Agatka stoją koło

Bardziej szczegółowo

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim. Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako

Bardziej szczegółowo

Matematyka ETId I.Gorgol Twierdzenia o granicach ciagów. Twierdzenia o granicach ciagów

Matematyka ETId I.Gorgol Twierdzenia o granicach ciagów. Twierdzenia o granicach ciagów Twierdzeia o graicach ciagów Matematyka ETId I.Gorgol Zbieżość ciagu a jego ograiczoość TWIERDZENIE Jeżeli ci ag liczbowy a ) jest zbieży do graicy skończoej, to jest ograiczoy. Zbieżość ciagu a jego ograiczoość

Bardziej szczegółowo

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i Statystyka

Rachunek Prawdopodobieństwa i Statystyka Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA

PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F

Bardziej szczegółowo

Wykład z Rachunku Prawdopodobieństwa II

Wykład z Rachunku Prawdopodobieństwa II Matematyka stosowaa Wykład z Rachuku Prawdopodobieństwa II Adam Osękowski ados@mimuw.edu.pl http://www.mimuw.edu.pl/~ados Uiwersytet Warszawski, 2011 Streszczeie. Celem iiejszego skryptu jest wprowadzeie

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I Siedmiu pasażerów przydzielono losowo do trzech wagonów. Jakie jest prawdopodobieństwo

Zadania z Rachunku Prawdopodobieństwa I Siedmiu pasażerów przydzielono losowo do trzech wagonów. Jakie jest prawdopodobieństwo Zadaia z Rachuku Prawdopodobieństwa I - 1 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie, b) Jacek, Placek i Agatka stoją koło

Bardziej szczegółowo

dna szeregu. ; m., k N ; ó. ; u. x 2n 1 ; e. n n! jest, że

dna szeregu. ; m., k N ; ó. ; u. x 2n 1 ; e. n n! jest, że KILKA ZADAŃ O SZEREGACH Zbadać zbieżość i zbieżość bezwzgle da = a, jeśli a = a!! ; a + + ; c + ; ć! ; d +/ + 3 ; e! e 3 3+ ; f ; + g 000+ ; h ; + i! ; j k ; l 5 + l + 7 0 +3 6 0 + ; +3 ; ; m 3 + 3 ; +a

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa

Bardziej szczegółowo

7. Szeregi funkcyjne

7. Szeregi funkcyjne 7 Szeregi ukcyje Podstwowe deiicje i twierdzei Niech u,,,, X o wrtościch w przestrzei Y będą ukcjmi określoymi zbiorze X Mówimy, że szereg ukcyjy u jest zbieży puktowo do sumy, jeżeli ciąg sum częściowych

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

SZEREGI LICZBOWE. s n = a 1 + a a n = a k. k=1. aq n = 1 qn+1 1 q. a k = s n + a k, k=n+1. s n = 0. a k lim n

SZEREGI LICZBOWE. s n = a 1 + a a n = a k. k=1. aq n = 1 qn+1 1 q. a k = s n + a k, k=n+1. s n = 0. a k lim n SZEREGI LICZBOWE Z ciągu liczb a, a 2,... utwórzmy owy ciąg Przyjmijmy ozaczeia s = a + a 2 +... a = a k. k= k= a k = a + a 2 +... = s. Gdy graica k= a k jest liczbą, to mówimy, że szereg k= a k jest sumowaly

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I Siedmiu pasażerów przydzielono losowo do trzech wagonów. Jakie jest prawdopodobieństwo

Zadania z Rachunku Prawdopodobieństwa I Siedmiu pasażerów przydzielono losowo do trzech wagonów. Jakie jest prawdopodobieństwo Zadaia z Rachuku Prawdopodobieństwa I - 1 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie, b) Jacek, Placek i Agatka stoją koło

Bardziej szczegółowo