Prawdopodobieństwo i statystyka
|
|
- Iwona Kania
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wykład VI: Metoda Mote Carlo 17 listopada 2014
2 Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Przybliżoe obliczaie całki ozaczoej Rozważmy całkowalą fukcję f : [0, 1] R. Chcemy zaleźć przybliżoą wartość liczbową całki 1 f (x) dx. 0 Jede ze sposobów może wyglądać astępująco. Niech U 1, U 2, U 3,... będzie ciągiem iezależych zmieych losowych o jedakowym rozkładzie U(0, 1) (jedostajym a odciku [0, 1]). Rozważmy ciąg średich f (U 1 ) f (U ). (1) Z mocego prawa wielkich liczb wyika, że P-prawie wszędzie, f (U 1 ) f (U ) Ef (U 1 ) = 1 0 f (x) dx.
3 Prosta metoda Mote Carlo Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Twierdzeie Niech f : [0, 1] k R 1 będzie fukcja całkowalą. Niech U 1,..., U k, U k+1,..., U 2k, U 2k+1,..., U 3k, U 3k+1,..., U k,..., będą iezależymi zmieymi losowymi o jedakowym rozkładzie U(0, 1). Wtedy f (U 1,..., U k ) + f (U k+1,..., U 2k ) f (U ( 1)k+1,..., U k ) f ( x) d x P-prawie wszędzie. [0,1] k Uwaga: W powyższym wzorze [0,1] k f ( x) d x = 1 0 dx dx 2... dx k f (x 1, x 2,..., x k ). 0
4 Dwa waże pytaia Prawo iterowaego logarytmu Cetrale twierdzeie graicze PYTANIE 1: Jak duże ależy wybrać, aby uzyskać odpowiedią dokładość przybliżeia. Iymi słowy: Jakie jest tempo zbieżości w prawie wielkich liczb? W praktyce metod Mote Carlo, do obliczeń wykorzystujemy ciąg liczbowy u 1, u 2,..., u,... uzyskay z geeratora liczb losowych, który a ogół fukcjouje w oparciu o algorytm determiistyczy. Taki ciąg jedyie aśladuje kokretą realizację X 1 (ω), X 2 (ω),..., X (ω),... ciągu iezależych zmieych losowych.
5 Dwa waże pytaia Prawo iterowaego logarytmu Cetrale twierdzeie graicze PYTANIE 2: Jakie własości powiie mieć geeroway ciąg, aby moża było uzać, że dobrze aśladuje ciąg iezależych zmieych losowych? Podamy dwie takie własości, stosukowo często iespełiae przez geeratory liczb losowych: Prawo iterowaego logarytmu. Cetrale twierdzeie graicze.
6 Prawo iterowaego logarytmu Prawo iterowaego logarytmu Cetrale twierdzeie graicze Twierdzeie (Hartma-Witer) Niech X 1, X 2,..., będzie ciągiem iezależych zmieych losowych o jedakowym rozkładzie. Jeśli EX1 2 < +, to lim sup lim if X 1 + X X EX 1 2 log log =D(X 1 ), P-prawie wszędzie, X 1 + X X EX 1 2 log log = D(X 1 ), P-prawie wszędzie. Iymi słowy, P-prawie wszędzie, lim sup 2 log log lim if 2 log log ( X1 + X X ) EX 1 =D(X 1 ), ( X1 + X X ) EX 1 = D(X 1 ).
7 Cetrale twierdzeie graicze Prawo iterowaego logarytmu Cetrale twierdzeie graicze Twierdzeie (P. Lévy) Niech X 1, X 2,..., będzie ciągiem iezależych zmieych losowych o jedakowym rozkładzie. Jeśli EX 2 1 < + oraz D2 (X 1 ) > 0, to dla wszystkich a < b ( P a < X 1 + X X EX 1 D 2 (X 1 ) W szczególości, dla każdego b > 0 ) < b Φ(b) Φ(a). ( X 1 + X X EX ) 1 P < b 2 ( ) Φ(b) 1/2. D 2 (X 1 )
8 Cetrale twierdzeie graicze Prawo iterowaego logarytmu Cetrale twierdzeie graicze Uwaga Zauważmy, że a mocy cetralego twierdzeia graiczego prawdopodobieństwo zdarzeia { X 1 + X X EX 1 D 2 (X 1 ) } < b = { X 1 + X X D = EX 2 (X 1 )} 1 < b ma dla dużych wartość bliską 2 ( Φ(b) 1/2 ).
9 Postawieie zagadieia Motywacje Rozkład wykładiczy Odwracaie ciągłych dystrybuat Motywacja Zamy rozkład ν zmieej losowej X, ale ie potrafimy aalityczie obliczyć Ef (X ) dla pewej fukcji f. Wtedy symulujemy ciąg X 1, X 2,..., iezależych zmieych losowych o rozkładzie ν i badamy asymptotykę ciągu f (X 1 ) + f (X 2 ) f (X ), o którym wiemy, z mocego prawa wielkich liczb, że zmierza do Ef (X 1 ). Motywacja Budujemy model systemu obsługi masowej. Aby oceić wybraą charakterystykę liczbową modelu potrzeby jest strumień daych o zadaym rozkładzie.
10 Przykład - rozkład wykładiczy Motywacje Rozkład wykładiczy Odwracaie ciągłych dystrybuat Niech F (x) = 1 e x, x > 0 (dystrybuata rozkładu wykładiczego). Jest to fukcja ciągła i ściśle rosąca a R +. Istieje więc F 1 : [0, 1) R +. Z relacji F ( F 1 (t) ) = t otrzymujemy a więc 1 t = e F 1 (t), F 1 (t) = log(1 t). Jaki jest rozkład fukcji F 1 : ( [0, 1], B [0,1), l ) R 1? Mamy {t [0, 1) ; F 1 (t) x } = { t [0, 1) ; t F (x) }. Stąd l { t [0, 1) ; F 1 (t) x } = F (x), x > 0.
11 Ciągłe dystrybuaty Motywacje Rozkład wykładiczy Odwracaie ciągłych dystrybuat Uwaga: Jeśli więc U U(0, 1), to F 1 (U) = log(1 U) ma rozkład wykładiczy. Zauważmy, że log(1 U) log(u), a więc rówież log U ma rozkład wykładiczy. Wiosek Jeżeli U 1, U 2,... jest ciągiem zmieych z geeratora U(0, 1), to jest ciągiem z geeratora Ex(1). Wiosek log U 1, log U 2, log U 3,... Jeżeli dystrybuata F : R 1 [0, 1] jest ściśle rosąca i ciągła a R 1, to ciąg F 1 (U 1 ), F 1 (U 2 ),... jest z geeratora rozkładu o dystrybuacie F.
12 Kometarze Prosta metoda Mote Carlo Motywacje Rozkład wykładiczy Odwracaie ciągłych dystrybuat Jak pokazuje przykład rozkładu wykładiczego, wzór F 1 (U) zadaje zmieą losową o rozkładzie F, jeśli tylko dystrybuata F jest ściśle rosąca i ciągła a zbiorze (F, F ), gdzie F = if{x R 1 ; F (x) > 0}, F = sup{x R 1 ; F (x) < 1}. W oparciu o tę metodę łatwo geerujemy zmiee losowe z rozkładów Pareto, logistyczego itp. Nie potrafimy podać zwartego wzoru a fukcję odwrotą do Φ (dystrybuaty rozkładu ormalego). W tej sytuacji zaskakująco użytecze bywają aproksymacje za pomocą fukcji wymierych (ilorazów wielomiaów). Dobrym źródłem wiedzy w tym zakresie jest książka R. Wieczorkowski i R. Zieliński, Komputerowe geeratory liczb losowych, Wydawictwo Naukowo- Techicze, Warszawa 1997
13 Metoda odwróceia dystrybuaty Metoda odwróceia dystrybuaty Symulacja rozkładów dyskretych Twierdzeie Niech X ma rozkład o dystrybuacie F. Defiiujemy lewostroie ciągłą odwrotą do F wzorem F (u) = if{x ; F (x) u}. Jeżeli U 1, U 2, U 3,... jest ciągiem zmieych z geeratora rozkładu U(0, 1), to F (U 1 ), F (U 2 ), F (U 3 ),... jest ciągiem z geeratora rozkładu o dystrybuacie F.
14 Metoda odwróceia dystrybuaty Symulacja rozkładów dyskretych Przykład - symulacja rozkładów dyskretych Niech X ma rozkład dyskrety skończoy, tz. istieją liczby p i > 0, x i R 1, i = 1, 2,..., m, takie, że m i=1 p i = 1, x i x j dla i j, oraz P ( X = x i ) = pi, i = 1, 2,..., m. Załóżmy dla ustaleia uwagi, że = x 0 < x 1 < x 2 <... < x m < x m+1 = +. Wtedy Dlatego F (x) = k p i = p i, jeśli x k x < x k+1. {i ; x i x} i=1 m 1 F (u) = x k+1 1I Ak+1 (u), k=0 gdzie A k+1 = ( k i=1 p i, k+1 i=1 p i].
15 Symulacja rozkładów dyskretych Metoda odwróceia dystrybuaty Symulacja rozkładów dyskretych Kometarz Powyższa metoda symulacji rozkładów dyskretych jest aiwa. Moża ją stosować w przypadku iewielkich m, rzędu kilkuset - kilkuastu tysięcy. W przypadku m rzędu taka metoda jest praktyczie iewykoala.
ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 8. ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE 1 Zbieżość ciągu zmieych losowych z prawdopodobieństwem 1 (prawie apewo) Ciąg zmieych losowych (X ) jest
Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja
Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej
1 Twierdzenia o granicznym przejściu pod znakiem całki
1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae
Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne
Wykład 4 Niezależość zmieych, fukcje i charakterystyki wektora losowego, cetrale twierdzeia graicze Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki
Prawdopodobieństwo i statystyka
Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze
STATYSTKA I ANALIZA DANYCH LAB II
STATYSTKA I ANALIZA DANYCH LAB II 1. Pla laboratorium II rozkłady prawdopodobieństwa Rozkłady prawdopodobieństwa dwupuktowy, dwumiaowy, jedostajy, ormaly. Związki pomiędzy rozkładami prawdopodobieństw.
Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe
Metody probabilistycze i statystyka Wykład 1 Zdarzeia losowe, defiicja prawdopodobieństwa, zmiee losowe Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki
Twierdzenia graniczne:
Twierdzeia graicze: Tw. ierówośd Markowa Jeżeli P(X > 0) = 1 oraz EX 0: P X k 1 k EX. Tw. ierówośd Czebyszewa Jeżeli EX = m i 0 < σ = D X 0: P( X m tσ) 1 t. 1. Z partii towaru o wadliwości
Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym
Lista 5 Zadaia a zastosowaie ierówosci Markowa i Czebyszewa. Zadaie 1. Niech zmiea losowa X ma rozkład jedostajy a odciku [0, 1]. Korzystając z ierówości Markowa oszacować od góry prawdopodobieństwo, że
Wykład 8: Zbieżność według rozkładu. Centralne twierdzenie graniczne.
Rachuek prawopoobieństwa MA5 Wyział Elektroiki, rok aka 20/2, sem leti Wykłaowca: r hab A Jurlewicz Wykła 8: Zbieżość weług rozkłau Cetrale twierzeie graicze Zbieżości ciągu zmieych losowych weług rozkłau
Wykład 13: Zbieżność według rozkładu. Centralne twierdzenie graniczne.
Rachuek prawopoobieństwa MA064 Wyział Elektroiki, rok aka 2008/09, sem leti Wykłaowca: r hab A Jurlewicz Wykła 3: Zbieżość weług rozkłau Cetrale twierzeie graicze Zbieżości ciągu zmieych losowych weług
WYKŁAD 1. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD Zdarzeia losowe i prawdopodobieństwo Zmiea losowa i jej rozkłady Metody statystycze metody opisu metody wioskowaia statystyczego sytetyczy liczbowy opis właściwości zbioru daych ocea charakterystyk
Lista 6. Estymacja punktowa
Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?
40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40.
Portfele polis Poieważ składka jest ustalaa jako wartość oczekiwaa rzeczywistego, losowego kosztu ubezpieczeia, więc jest tym bliższa średiej wydatków im większa jest liczba ubezpieczoych Polisy grupuje
Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223
Aaliza umerycza Kurs INP002009W Wykład Narzędzia matematycze Karol Tarowski karol.tarowski@pwr.wroc.pl A- p.223 Pla wykładu Czym jest aaliza umerycza? Podstawowe pojęcia Wzór Taylora Twierdzeie o wartości
Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.
Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,
θx θ 1, dla 0 < x < 1, 0, poza tym,
Zadaie 1. Niech X 1,..., X 8 będzie próbą z rozkładu ormalego z wartością oczekiwaą θ i wariacją 1. Niezay parametr θ jest z kolei zmieą losową o rozkładzie ormalym z wartością oczekiwaą 0 i wariacją 1.
O liczbach naturalnych, których suma równa się iloczynowi
O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą
X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.
Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,
Rozkłady statystyk z próby Twierdzenia graniczne
Rozkłady statystyk z róby Twierdzeia graicze PRÓBA LOSOWA Próbą losową rostą azyway ciąg -zieych losowych iezależych i osiadających jedakowe rozkłady takie jak rozkład zieej losowej w oulacji geeralej
Prawdopodobieństwo i statystyka r.
Zadaie 1 Rzucamy 4 kości do gry (uczciwe). Prawdopodobieństwo zdarzeia iż ajmiejsza uzyskaa a pojedyczej kości liczba oczek wyiesie trzy (trzy oczka mogą wystąpić a więcej iż jedej kości) rówe jest: (A)
Komputerowa analiza danych doświadczalnych
Komputerowa aaliza daych doświadczalych Wykład 6.04.06 dr iż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr leti 05/06 Własości rozkładu ormalego Cetrale twierdzeie graicze Fukcja charakterystycza
0.1 ROZKŁADY WYBRANYCH STATYSTYK
0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.
3. Funkcje elementarne
3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących
Podstawowe rozkłady zmiennych losowych typu dyskretnego
Podstawowe rozkłady zmieych losowych typu dyskretego. Zmiea losowa X ma rozkład jedopuktowy, skocetroway w pukcie x 0 (ozaczay przez δ(x 0 )), jeżeli P (X = x 0 ) =. EX = x 0, V arx = 0. e itx0.. Zmiea
Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.
Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako
Kurs Prawdopodobieństwo Wzory
Kurs Prawdoodobieństwo Wzory Elemety kombiatoryki Klasycza deiicja rawdoodobieństwa gdzie: A - liczba zdarzeń srzyjających A - liczba wszystkich zdarzeń P A Tel. 603 088 74 Prawdoodobieństwo deiicja Kołmogorowa
P ( i I A i) = i I P (A i) dla parami rozłącznych zbiorów A i. F ( ) = lim t F (t) = 0, F (+ ) = lim t + F (t) = 1.
Podstawy teorii miary probabilistyczej. Zbiory mierzale σ ciało zbiorów Załóżmy, że mamy jakiś zbiór Ω. Niech F będzie taką rodzią podzbiorów Ω, że: Ω F A F A F i I A i F i I A i F Wtedy rodzię F azywamy
będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,
Zadaie iech X, X,, X 6 będą iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), a Y, Y,, Y6 iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), gdzie, są iezaymi
16 Przedziały ufności
16 Przedziały ufości zapis wyiku pomiaru: sugeruje, że rozkład błędów jest symetryczy; θ ± u(θ) iterpretacja statystycza przedziału [θ u(θ), θ + u(θ)] zależy od rozkładu błędów: P (Θ [θ u(θ), θ + u(θ)])
Prawdopodobieństwo i statystyka r.
Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są
P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +
Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch
Rozkład normalny (Gaussa)
Rozład ormaly (Gaussa) Wyprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowych. Rozważmy pomiar wielości m, tóry jest zaburzay przez losowych efetów o wielości e ażdy, zarówo zaiżających ja i
ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y
Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:
3. Regresja liniowa Założenia dotyczące modelu regresji liniowej
3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi
Statystyka matematyczna. Wykład II. Estymacja punktowa
Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych
Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 11
Matematyka I Bezpieczeństwo jądrowe i ochroa radiologicza Semestr zimowy 2018/2019 Wykład 11 Całka ozaczoa podstawowe pojęcia Defiicja podziału odcika Podziałem P odcika < a, b > a części azywamy zbiór
RÓWNANIA RÓŻNICZKOWE WYKŁAD 11
RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest
z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X
Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie
ZADANIA NA ĆWICZENIA 3 I 4
Agata Boratyńska Statystyka aktuariala... 1 ZADANIA NA ĆWICZENIA 3 I 4 1. Wygeeruj szkody dla polis z kolejych lat wg rozkładu P (N = 1) = 0, 1 P (N = 0) = 0, 9, gdzie N jest liczbą szkód z jedej polisy.
Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R
Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą
Fraktale - ciąg g dalszy
Fraktale - ciąg g dalszy Koleja próba defiicji fraktala Jak Madelbrot zdefiiował fraktal? Co to jest wymiar fraktaly zbioru? Układy odwzorowań iterowaych (IFS Przykład kostrukcji pewego zbioru. Elemety
Funkcja generująca rozkład (p-two)
Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są
1 Przedziały ufności. ). Obliczamy. gdzie S pochodzi z rozkładu B(n, 1 2. P(2 S n 2) = 1 P(S 2) P(S n 2) = 1 2( 2 n +n2 n +2 n ) = 1 (n 2 +n+2)2 n.
Przedziały ufości W tym rozdziale będziemy zajmować się przede wszystkim zadaiami związaymi z przedziałami ufości Będą as rówież iteresować statystki pozycyje oraz estymatory ajwiększej wiarygodości (Eg
Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech
Wzór Taylora. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Wzór Taylora Szeregi potęgowe Matematyka Studium doktorackie KAE SGH Semestr leti 8/9 R. Łochowski Graica fukcji w pukcie Niech f: R D R, R oraz istieje ciąg puktów D, Fukcja f ma w pukcie graicę dowolego
STATYSTYKA MATEMATYCZNA. WYKŁAD 0 (powt. wiadomości z r. p-stwa)
STATYSTYKA MATEMATYCZNA WYKŁAD 0 (powt. wiadomości z r. p-stwa) Literatura M. Cieciura, J. Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 005 R.Leiter, J.Zacharski, "Zarys
a 1, a 2, a 3,..., a n,...
III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy
Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych
Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b
1 Dwuwymiarowa zmienna losowa
1 Dwuwymiarowa zmiea loowa 1.1 Dwuwymiarowa zmiea loowa kokowa X = x i, Y = y k = p ik przy czym i, k N oraz p ik = 1; i k p i = X = x i = p ik dla i N; p k = Y = y k = p ik dla k N; k i F 1 x = p i dla
Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011
Dwumia Newtoa Agiesza Dąbrowsa i Maciej Nieszporsi 8 styczia Wstęp Wzory srócoego możeia, tóre pozaliśmy w gimazjum (x + y x + y (x + y x + xy + y (x + y 3 x 3 + 3x y + 3xy + y 3 x 3 + y 3 + 3xy(x + y
Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.
Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe
Prawdopodobieństwo i statystyka
Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.
Ciągi liczbowe wykład 3
Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością
Zadania z rachunku prawdopodobieństwa I* Siedmiu pasażerów przydzielono losowo do trzech wagonów. Jakie jest prawdopodobieństwo
Zadaia z rachuku prawdopodobieństwa I* - 1 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie, b) Jacek, Placek i Agatka stoją koło
Komputerowa analiza danych doświadczalnych
Komputerowa aaliza daych doświadczalych Wykład 7 8.04.06 dr iż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr leti 05/06 Cetrale twierdzeie graicze - przypomieie Sploty Pobieraie próby, estymatory
Statystyka Matematyczna. Skrypt. Spis treści. SKN Matematyki Stosowanej. s k n. m s 23 kwietnia Oznaczenia i definicje 3
Spis treści Ozaczeia i defiicje 3 Wioskowaie statystycze 3. Statystyki dostatecze................................................. 3.. Rodzia rozkładów wykładiczych......................................
Trochę zadań kombinatorycznych. 1. na ile sposobów można siedmiu stojących na peronie pasażerów umieścić w trzech wagonach?
Trochę zadań kombiatoryczych 1. a ile sposobów moża siedmiu stojących a peroie pasażerów umieścić w trzech wagoach? 2. Na szachowicy o wymiarach umieszczamy 8 ierozróżialych wież szachowych tak aby żade
I kolokwium z Analizy Matematycznej
I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4
Estymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
Przykładowe zadania dla poziomu rozszerzonego
Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,
STATYSTYKA MATEMATYCZNA
TATYTYKA MATEMATYCZNA ROZKŁADY PODTAWOWYCH TATYTYK zmiea losowa odpowiedik badaej cechy, (,,..., ) próba losowa (zmiea losowa wymiarowa, i iezależe zmiee losowe o takim samym rozkładzie jak (taką próbę
Komputerowa analiza danych doświadczalnych
Komputerowa aaliza daych doświadczalych Wykład 7 7.04.07 dr iż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr leti 06/07 Cetrale twierdzeie graicze - przypomieie Sploty Pobieraie próby, estymatory
Komputerowa analiza danych doświadczalnych
Komputerowa aaliza daych doświadczalych Wykład 5 4.03.07 dr iż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr leti 06/07 Metody Mote Carlo Najważiejsze rozkłady prawdopodobieństwa Metoda akceptacji-odrzuceń
3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy
Wykład 11. a, b G a b = b a,
Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada
Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji
http://www.ii.ui.wroc.pl/ sle/teachig/a-apr.pdf Aaliza umerycza Staisław Lewaowicz Grudzień 007 r. Aproksymacja fukcji Pojęcia wstępe Defiicja. Przestrzeń liiową X (ad ciałem liczb rzeczywistych R) azywamy
Statystyka Matematyczna. Skrypt. Spis treści. SKN Matematyki Stosowanej. s k n. m s 11 czerwca Oznaczenia i definicje 4
Spis treści Ozaczeia i defiicje 4 Wioskowaie statystycze 4. Statystyki dostatecze................................................. 4.. Rodzia rozkładów wykładiczych......................................
Funkcja wykładnicza i logarytm
Rozdział 3 Fukcja wykładicza i logarytm Potrafimy już defiiować potęgi liczb dodatich o wykładiku wymierym: jeśli a > 0 i x = p/q Q dla p, q N, to aturalie jest przyjąć a x = a 1/q) p = a 1/q } {{... a
Wykład 11 ( ). Przedziały ufności dla średniej
Wykład 11 (14.05.07). Przedziały ufości dla średiej Przykład Cea metra kwadratowego (w tys. zł) z dla 14 losowo wybraych mieszkań w mieście A: 3,75; 3,89; 5,09; 3,77; 3,53; 2,82; 3,16; 2,79; 4,34; 3,61;
Wykład z Rachunku Prawdopodobieństwa II
Matematyka stosowaa Wykład z Rachuku Prawdopodobieństwa II Adam Osękowski ados@mimuw.edu.pl http://www.mimuw.edu.pl/~ados Uiwersytet Warszawski, 2011 Streszczeie. Celem iiejszego skryptu jest wprowadzeie
są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X
Prawdoodobieństwo i statystyka 5..008 r. Zadaie. Załóżmy że 3 są iezależymi zmieymi losowymi o jedakowym rozkładzie Poissoa z wartością oczekiwaą λ rówą 0. Obliczyć v = var( 3 + + + 3 = 9). (A) v = 0 (B)
Twierdzenia o funkcjach ciągłych
Automatya i Robotya Aaliza Wyład 5 dr Adam Ćmiel cmiel@aghedupl Twierdzeia o ucjach ciągłych Tw (Weierstrassa Jeżeli ucja : R [ R jest ciągła a [, to ograiczoa i : ( sup ( i ( i ( [, Dowód Ograiczoość
Statystyka i rachunek prawdopodobieństwa
Statystyka i rachuek prawdopodobieństwa Filip A. Wudarski 22 maja 2013 1 Wstęp Defiicja 1. Statystyka matematycza opisuje i aalizuje zjawiska masowe przy użyciu metod rachuku prawdopodobieństwa. Defiicja
Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).
Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic
Szeregi liczbowe. 15 stycznia 2012
Szeregi liczbowe 5 styczia 0 Szeregi o wyrazach dodatich. Waruek koieczy zbieżości szeregu Defiicja.Abyszereg a < byłzbieżyciąga musizbiegaćdo0. Jest to waruek koieczy ale ie dostateczy. Jak wiecie z wykładu(i
Zmienna losowa N ma rozkład ujemny dwumianowy z parametrami (, q) = 7,
Matematyka ubezpieczeń majątkowych.0.008 r. Zadaie. r, Zmiea losowa N ma rozkład ujemy dwumiaowy z parametrami (, q), tz.: Pr( N k) (.5 + k) (.5) k! Γ Γ * Niech k ozacza taką liczbę aturalą, że: * k if{
Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne.
Wykłd Pojęcie fukcji, ieskończoe ciągi liczbowe, dziedzi fukcji, wykres fukcji, fukcje elemetre, fukcje złożoe, fukcje odwrote.. Fukcje Defiicj.. Mówimy, że w zbiorze liczb X jest określo pew fukcj f,
Statystyka i eksploracja danych
Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,
Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona
Ćwiczeie r 4 Porówaie doświadczalego rozkładu liczby zliczeń w zadaym przedziale czasu z rozkładem Poissoa Studeta obowiązuje zajomość: Podstawowych zagadień z rachuku prawdopodobieństwa, Zajomość rozkładów
CAŁKA NIEOZNACZONA. F (x) = f(x) dx.
CAŁKA NIEOZNACZONA Mówimy, że fukcja F () jest fukcją pierwotą dla fukcji f() w pewym ustaloym przedziale - gdy w kadym pukcie zachodzi F () = f(). Fukcję pierwotą często azywamy całką ieozaczoą i zapisujemy
Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!
Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,
MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU
Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów
1 Układy równań liniowych
Katarzya Borkowska, Wykłady dla EIT, UTP Układy rówań liiowych Defiicja.. Układem U m rówań liiowych o iewiadomych azywamy układ postaci: U: a x + a 2 x 2 +... + a x =b, a 2 x + a 22 x 2 +... + a 2 x =b
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uiwersytet Ekoomiczy w Katowicach 2015/16 ROND, Fiase i Rachukowość, rok 2 Rachuek prawdopodobieństwa Rzucamy 10 razy moetą, dla której prawdopodobieństwo wyrzuceia orła w pojedyczym
Metody badania zbieżności/rozbieżności ciągów liczbowych
Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu
Prawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
Komputerowa analiza danych doświadczalnych
Komputerowa aaliza daych doświadczalych Wykład 5 3.03.08 dr iż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr leti 07/08 Metody Mote Carlo Najważiejsze rozkłady prawdopodobieństwa Metoda akceptacji-odrzuceń
Analiza matematyczna. Robert Rałowski
Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................
Plan wykładu. Analiza danych Wykład 1: Statystyka opisowa. Literatura. Podstawowe pojęcia
Pla wykładu Aaliza daych Wykład : Statystyka opisowa. Małgorzata Krętowska Wydział Iformatyki Politechika Białostocka. Statystyka opisowa.. Estymacja puktowa. Własości estymatorów.. Rozkłady statystyk
Komputerowa analiza danych doświadczalnych
Komputerowa aaliza daych doświadczalych Wykład 5.03.09 dr iż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr leti 08/09 Trasformacje liiowe Propagacja iepewości Trasformacje liiowe Najczęściej,
Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy
Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej
Zadania z analizy matematycznej - sem. I Szeregi liczbowe
Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych
Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Wektory Fukcje rzeczywiste wielu zmieych rzeczywistych Matematyka Studium doktorackie KAE SGH Semestr leti 2008/2009 R. Łochowski Wektory pukty w przestrzei R Przestrzeń R to zbiór uporządkowaych -ek liczb
Model ciągły wyceny opcji Blacka Scholesa - Mertona. Wzór Blacka - Scholesa na wycenę opcji europejskiej.
Model ciągły wycey opcji Blacka Scholesa - Mertoa Wzór Blacka - Scholesa a wyceę opcji europejskiej. Model Blacka Scholesa- Mertoa Przełomowe prace z zakresu wycey opcji: Fischer Black, Myro Scholes The