Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej).
|
|
- Sebastian Górski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy a połowę. Jest wartością środkową szeregu. Kwatyle dzielą szereg uporządkoway a części o jedakowej liczości. Q 1 Q 2 = M Q
2 Mediaa (Me) Dla szeregu statystyczego ieparzystego = środkowemu człoowi szeregu. Dla szeregu statystyczego parzystego = średiej arytmetyczej dwóch środkowych liczb. Mediaa jest ieczuła a wartości skraje. Stosuje się ją czasem do charakterystyki krótkich serii wyików (N<10), gdy pojedycze pomiary odbiegają od pozostałych. Moda (Mo) Wartość modala Miejsce a osi o ajwiększej liczebości. Moda jest ieczuła a wartości skraje. Jeśli pomiary są ciągłe to wyzaczamy przedział modaly.
3 Stosowae średie Średia arytmetycza; x= i=1 x i x i wyik i-tego pomiaru liczba pomiarów Średia ważoa (ogóla); X = k i=1 N x i i x i N średia i-tej grupy liczebość i-tej grupy suma liczebości wszystkich grup k N = i=1 i
4 Średia geometrycza; x g = i=1 x i 1/ = x 1 x 2... x x i wyik i-tego pomiaru liczba pomiarów Średia harmoicza; x h = k i=1 1 x i = 1 k i=1 1 x i 1 x i wyik i-tego pomiaru liczba pomiarów
5 Średia w szeregu rozdzielczym: k X = 1 N i=1 x i i gdzie: x i i - środek i-tej klasy - liczość i-tej klasy N = i Odchyleie stadardowe w szeregu rozdzielczym: k s= i=1 x i X 2 i N
6 Wskaźiki rozproszeia Rozstęp (x max - x mi ); Rozstęp międzykwartylowy (q = Q 3 - Q 1 ); Wariacja σ2 ; Odchyleie stadardowe (σ). 2 = N i=1 x i 2 N = 2
7 Parametry charakteryzujące populację: μ, σ. Statystyki charakteryzujące próbę: x, s. Średia (arytmetycza) próby: x= i=1 x i Wariacja i odchyleie stadardowe próby: s 2 = i=1 x i x 2 s= s 2
8 Oszacowaie iezaej wariacji populacji a podstawie wariacji z próby. s s 2 = 1 s2 = i=1 x i x s s = i=1 x i x 2 1
9 Oszacowaie iezaej wariacji populacji a podstawie wariacji z próby. s s 2 = 1 s2 = i=1 x i x S s jest ieobciążoym estymatorem odchyleia stadardowego w populacji. Tak aprawdę zawsze chodzi am o oszacowaie odchyleia stadardowego w populacji (czyli s s ) a podstawie próby, którą dyspoujemy. Wiele podręczików dokouje tu pewego skrótu (myślowego) rówoważąc odchyleie stadardowe próby z jego estymatorem ieobciążoym i używa wzoru a) dla małej próby lub wzoru b) dla dużej próby. MY TEŻ TAK BĘDZIEMY ROBIĆ. s 2 s = 1 s2 = x i x 2 a) i=1 b) 1 2 s= i=1 x i x 2 Odchyleie stadardowe dla małej próby (<30) Odchyleie stadardowe dla dużej próby (>30).
10 Oszacowaie iezaej średiej w populacji a podstawie średiej z próby: x Ale obliczoa średia jest obarczoa błędem. Oszacowaie błędu średiej z próby. Jeżeli pewa cecha posiada rozkład ormaly o parametrach μ i σ X N, to średia z elemetów posiada rozkład: X N, Zatem odchyleie stadardowe średiej z elemetów wyosi: s x= s = i=1 x i x 2 1
11 Zadaie Zmierzoo wysokość 10 przebiśiegów, które właśie rozkwitły a pewej polaie. Otrzymae wartości (w cm) to: 15, 13, 16, 14, 17, 15, 14, 12, 16, 15. Zajdź: a) rozstęp; b) mediaę; c) modę; d) wartość średią; e) wariację; f) odchyleie stadardowe. Odp: a) 5 b) 15 c) 15 d) 14,7 e) 2,2 f) 1,5
12 Zadaie Z populacji mężczyz, celem określeia ich masy, wybrao losowo próbę złożoą z 58 osób. Ich masę określoo z dokładością do 0.1 kg. Otrzymao astępujące dae liczbowe: 49,1 60,7 65,0 70,0 74,4 78,2 53,2 60,9 65,6 70,4 74,9 78,7 54,0 61,0 66,7 70,9 75,0 79,0 54,1 61,5 66,8 71,6 75,0 79,4 54,5 62,2 67,0 71,9 75,2 82,1 55,4 62,8 67,4 72,6 75,6 83,8 56,3 63,0 68,3 72,7 75,9 85,5 57,7 63,4 68,9 73,1 76,2 87,1 58,4 64,0 69,0 73,3 76,5 59,0 64,6 69,5 74,0 78,1 Oblicz średią masę ciała oraz odchyleie stadardowe. Następie, korzystając z daych uzyskaych a wcześiejszych zajęciach, oblicz średią w szeregu rozdzielczym oraz odchyleie stadardowe w szeregu rozdzielczym.
13 Na podstawie próby: x=68,6 s=8,8 Na podstawie szeregu rozdzielczego: x=68,3 s=8,7
14 Momety cetrale M 1 = 1 N x x =0 M 2 = 1 N x x 2 =s 2 M 3 = 1 N x x 3 M 4 = 1 N x x 4 Momet II-rzędu to wariacja. Momet III-rzędu służy do aalizy asymetrii rozkładu. Momet IV-rzędu służy do aalizy kurtozy rozkładu.
15 Skośość Skośość jest miarą asymetrii rozkładu cechy. Współczyik skośości Współczyik asymetrii A= M 3 A= X i X 3 A= X Mo / s = 3 X i X s 3 N s 3 s 3 N N 1 N 2 Estymator obciążoy Estymator ieobciążoy Ze względu a wartość współczyików rozkłady prawdopodobieństwa możemy podzielić a: Symetrycze A = 0 Prawoskośe A > 0 Lewoskośe A < 0
16
17 Przekształceia pozwalające zmiejszyć skośość rozkładu Liczeie średiej ruchomej Śr.ruch. = (2 śr -tej.kat. + śr -tej.kat.poprzediej + śr -tej.kat. Następej )/4 Rozkład prawoskośy: logarytmowaie pomiarów jeżeli skośość ie jest zbyt duża to pierwiastkowaie Rozkład lewoskośy: atylogarytmowaie pomiarów (e X, 10 X ) jeżeli skośość ie jest zbyt duża to podoszeie do potęgi (X 2, X 3 )
18
19
20
21 Kurtoza Kurtoza jest miarą kocetracji ( wypiętrzeia ) rozkładu wartości cechy. Kurt= 4 / 4 3 Ze względu a wartość kurtozy rozkłady prawdopodobieństwa możemy podzielić a: Mezokurtycze: Kurt = 0 spłaszczeie rozkładu podobe, jak w rozkładzie ormalym) Leptokurtycze: Kurt > 0 rozkład wypiętrzoy Platykurtycze: Kurt < 0 rozkład spłaszczoy Kurtozę z próby liczymy ze wzoru: Kurt= M 4 s 4 4 X 3= i X 3 s 4 Kurt= X i X 4 s Estymator obciążoy Estymator ieobciążoy
22 Badaia prowadzoe przez pewego studeta pozwoliły stwierdzić, że średia wysokość przebiśiegów w okolicach Wrocławia wyosi 12 cm. Czy 10 przebiśiegów o wysokości 15, 13, 16, 14, 17, 15, 14, 12, 16, 15cm zostało zerwae w okolicach Wrocławia?
23 Stadaryzacja rozkładu średich z próby Średia z elemetów posiada rozkład: X N 0, X 0 N 0, X 0 / N 0,1 t= X 0 s/ T df = 1 Statystyka testu t-studeta dla jedej grupy. Liczba stopi swobody: df = 1
24 Test t-studeta test o średiej arytmetyczej Średia elemetów pobraych z populacji o parametrach N(μ,σ) posiada rozkład: X 0 / N 0,1 W praktyce σ ajczęściej ie jest zae. Zamy jedyie s uzyskae z wybraej próby. Po zamiaie otrzymujemy parametr, którego rozkład ma charakter rozkładu t-studeta. t= X 0 s/ T df = 1 Liczba stopi swobody: df = 1 Statystyka testu t-studeta dla jedej grupy. Hipoteza H 0 : μ = μ 0 Hipoteza H A : μ μ 0 Dla rozkład t-studeta zbliża się do rozkładu ormalego (coraz miejszy błąd związay z oszacowaiem odchyleia stadardowego s).
25 Badaia prowadzoe przez pewego studeta pozwoliły stwierdzić, że średia wysokość przebiśiegów w okolicach Wrocławia wyosi 12 cm. Czy 10 przebiśiegów z poprzediego zadaia (o wysokości 15, 13, 16, 14, 17, 15, 14, 12, 16, 15cm) zostało zerwae w okolicach Wrocławia? s=1,49 x=14,7 X t= s/ =14, ,49/ 10 = 2,70 0,47 =5,73 t =0,05 ;df =9 =2,262 Odp: Przebiśiegi ie zostały zerwae w okolicach Wrocławia (p < 0,001).
26 Pytaie: Kiedy do testowaia hipotezy stosujemy test t-studeta dla jedej próby? Gdy: badaa cecha jest mierzala; dyspoujemy jedą próbą; chcemy porówać, czy wartość średiej z próby jest zgoda z wartością przewidywaą dla całej populacji; potrafimy wskazać wartość µ (p. a podstawie wcześiejszych badań a dużą skalę); Ograiczeia: uzyskaa próba musi być losowa i reprezetatywa; próba musi mieć rozkład ormaly. Gdy próba ie ma charakteru rozkładu ormalego ależy stosować tzw. testy ieparametrycze.
27 Iy studet zerwał rówież 10 przebiśiegów. Ich zmierzoa wysokość to 16, 15, 17, 17, 14, 15, 19, 13, 16, 18 cm. Czy zostały oe zerwae z tej samej populacji, co poprzedie egzemplarze?
28 Test t-studeta dla dwóch grup iezależych Statystyką testu jest wyrażeie: gdzie: t d = x 1 x s 2 p s 2 p = s s 2 i=1 = x i1 x 1 2 i=1 2 x i2 x
29 Test t-studeta dla dwóch grup iezależych Zazwyczaj 1 = 2 = Daje to hipotezy w postaci: Hipoteza H 0 : μ 1 = μ 2 Hipoteza H A : μ 1 μ 2 I upraszcza statystykę testu do postaci: Liczba stopi swobody: t d = x 1 x 2 s p df = 1 2 2
30 H 0 : 1 = 2 x 1 =14,7 x 2 =16,0 H A : 1 2 s 1 2 =2,2 s 2 2 =3,3 s p 2 =2,78 t d = 14,7 16,0 2, = 1, t =0,05; df =18 = 2,10 Odp: Hipotezy H 0 ie moża odrzucić a poziomie istotości α = 0,05.
31 Pytaie: Kiedy do testowaia hipotezy stosujemy test t-studeta dla dwóch prób iezależych Gdy: badaa cecha mierzala; dyspoujemy dwoma próbami; chcemy porówać, czy wartości średich z dwóch prób różią się w sposób istoty od siebie; Ograiczeia: uzyskae próby muszą być losowe i reprezetatywe; obydwie próby muszą mieć rozkład ormaly. wariacje obydwu prób muszą być rówe (ie mogą różić się od siebie w sposób istoty statystyczie) Gdy drugi waruek ie jest spełioy ależy stosować tzw. testy ieparametrycze.
32 Test a rówość wariacji test F (Fishera-Sedecora) F d = s s 2 Obszar krytyczy dla H A : F 1 1, 2 1, Liczba stopi swobody: df 1 = 1 1 df 2 = 2 1 Obszar krytyczy dla H A : F /2 1 1, 2 1, Wartości krytycze spełiają waruek: F 1 1, 2 1 F 1 2 1, 1 1 =1
33 W aszym przypadku: F d = s 2 2 s = 3, ,23 =1,49 F /2 2 1, 1 1, =4,10 F d jest miejsze od wartości krytyczej, zatem hipotezy H 0 ie moża odrzucić a poziomie istotości α = 0,05. Wariacje ie różią się w sposób istoty statystyczie.
Statystyka opisowa. (n m n m 1 ) h (n m n m 1 ) + (n m n m+1 ) 2 +1), gdy n jest parzyste
Statystyka opisowa Miary statystycze: 1. miary położeia a) średia z próby x = 1 x = 1 x = 1 x i - szereg wyliczający x i i - szereg rozdzielczy puktowy x i i - szereg rozdzielczy przedziałowy, gdzie x
Bardziej szczegółowoMiary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy.
MIARY POŁOŻENIA I ROZPROSZENIA WYNIKÓW SERII POMIAROWYCH Miary położeia (tedecji cetralej) to tzw. miary przecięte charakteryzujące średi lub typowy poziom wartości cechy. Średia arytmetycza: X i 1 X i,
Bardziej szczegółowoStatystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407
Statystyka i Opracowaie Daych W7. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Estymacja parametrycza Podstawowym arzędziem szacowaia iezaego parametru jest estymator obliczoy a podstawie
Bardziej szczegółowo3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy
Bardziej szczegółowoStatystyczny opis danych - parametry
Statystyczy opis daych - parametry Ozaczeia żółty owe pojęcie czerwoy, podkreśleie uwaga * materiał adobowiązkowy Aa Rajfura, Matematyka i statystyka matematycza a kieruku Rolictwo SGGW Zagadieia. Idea
Bardziej szczegółowoX i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.
Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,
Bardziej szczegółowoPlan wykładu. Analiza danych Wykład 1: Statystyka opisowa. Literatura. Podstawowe pojęcia
Pla wykładu Aaliza daych Wykład : Statystyka opisowa. Małgorzata Krętowska Wydział Iformatyki Politechika Białostocka. Statystyka opisowa.. Estymacja puktowa. Własości estymatorów.. Rozkłady statystyk
Bardziej szczegółowoElementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)
Elemety statystyki opisowej Izolda Gorgol wyciąg z prezetacji (wykład I) Populacja statystycza, badaie statystycze Statystyka matematycza zajmuje się opisywaiem i aalizą zjawisk masowych za pomocą metod
Bardziej szczegółowoMiary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.
Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla
Bardziej szczegółowoPodstawowe pojęcia. Próba losowa. Badanie próby losowej
METODY PROBABILISTYCZNE I STATYSTYKA WYKŁAD 8: STATYSTYKA OPISOWA. ROZKŁADY PRAWDOPODOBIEŃSTWA WYSTĘPUJĄCE W STATYSTYCE. Małgorzata Krętowska Wydział Iforatyki Politechika Białostocka Podstawowe pojęcia
Bardziej szczegółowoMiary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.
Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla
Bardziej szczegółowoZadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.
Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,
Bardziej szczegółowoParametryczne Testy Istotności
Parametrycze Testy Istotości Wzory Parametrycze testy istotości schemat postępowaia pukt po pukcie Formułujemy hipotezę główą H odośie jakiegoś parametru w populacji geeralej Hipoteza H ma ajczęściej postać
Bardziej szczegółowoPODSTAWY BIOSTATYSTYKI ĆWICZENIA
PODSTAWY BIOSTATYSTYKI ĆWICZENIA FILIP RACIBORSKI FILIP.RACIBORSKI@WUM.EDU.PL ZAKŁAD PROFILAKTYKI ZAGROŻEŃ ŚRODOWISKOWYCH I ALERGOLOGII WUM ZADANIE 1 Z populacji wyborców pobrao próbkę 1000 osób i okazało
Bardziej szczegółowoSTATYSTYKA OPISOWA PODSTAWOWE WZORY
MIARY POŁOŻENIA Średia Dla daych idywidualych: x = 1 STATYSTYKA OPISOWA PODSTAWOWE WZORY x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału Domiata (moda Liczba ajczęściej
Bardziej szczegółowoStatystyka matematyczna dla leśników
Statystyka matematycza dla leśików Wydział Leśy Kieruek leśictwo Studia Stacjoare I Stopia Rok akademicki 0/0 Wykład 5 Testy statystycze Ogóle zasady testowaia hipotez statystyczych, rodzaje hipotez, rodzaje
Bardziej szczegółowoSTATYSTYKA OPISOWA PODSTAWOWE WZORY
MIARY POŁOŻENIA Średia Dla daych idywidualych: STATYSTYKA OPISOWA PODSTAWOWE WZORY Q i = x lmi + i mi 1 4 j h m i mi x = 1 x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału
Bardziej szczegółowoZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością
Bardziej szczegółowoWybrane litery alfabetu greckiego
Wybrae litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilo η eta Θ θ theta κ kappa Λ λ lambda µ mi ν i ξ ksi π pi ρ, ϱ ro σ sigma τ tau Φ φ, ϕ fi χ chi Ψ ψ psi Ω ω omega Ozaczeia a i
Bardziej szczegółowo1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o
1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady
Bardziej szczegółowoKURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1
KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę
Bardziej szczegółowoLista 6. Estymacja punktowa
Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?
Bardziej szczegółowo16 Przedziały ufności
16 Przedziały ufości zapis wyiku pomiaru: sugeruje, że rozkład błędów jest symetryczy; θ ± u(θ) iterpretacja statystycza przedziału [θ u(θ), θ + u(θ)] zależy od rozkładu błędów: P (Θ [θ u(θ), θ + u(θ)])
Bardziej szczegółowoPodstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja
Podstawowe ozaczeia i wzory stosowae a wykładzie i laboratorium Część I: estymacja 1 Ozaczeia Zmiee losowe (cechy) ozaczamy a wykładzie dużymi literami z końca alfabetu. Próby proste odpowiadającymi im
Bardziej szczegółowoĆwiczenie 2 ESTYMACJA STATYSTYCZNA
Ćwiczeie ETYMACJA TATYTYCZNA Jest to metoda wioskowaia statystyczego. Umożliwia oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej
Bardziej szczegółowoStatystyka powtórzenie (I semestr) Rafał M. Frąk
Statystyka powtórzeie (I semestr) Rafał M. Frąk TEORIA Statystyka Statystyka zajmuje się badaiem procesu zbieraia oraz iterpretacji daych liczbowych lub jakościowych. Przedmiotem statystyki są metody badaia
Bardziej szczegółowoSTATYSTYKA OPISOWA I PROJEKTOWANIE EKSPERYMENTU dr inż Krzysztof Bryś
1 STATYSTYKA OPISOWA I PROJEKTOWANIE EKSPERYMENTU dr iż Krzysztof Bryś Pojȩcia wstȩpe populacja - ca ly zbiór badaych przedmiotów lub wartości. próba - skończoy podzbiór populacji podlegaj acy badaiu.
Bardziej szczegółowoSTATYSTYKA I ANALIZA DANYCH
TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica
Bardziej szczegółowoEstymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
Bardziej szczegółowo1 Testy statystyczne. 2 Rodzaje testów
1 Testy statystycze Podczas sprawdzaia hipotez statystyczych moga¾ wystapić ¾ dwa rodzaje b ¾edów. Prawdopodobieństwo b ¾edu polegajacego ¾ a odrzuceiu hipotezy zerowej (H 0 ), gdy jest oa prawdziwa, czyli
Bardziej szczegółowoTrzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
Bardziej szczegółowoL.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3
L.Kowalski zadaia ze statystyki matematyczej-zestaw 3 ZADANIA - ZESTAW 3 Zadaie 3. Cecha X populacji ma rozkład N m,. Z populacji tej pobrao próbę 7 elemetową i otrzymao wyiki x7 = 9, 3, s7 =, 5 a Na poziomie
Bardziej szczegółowoĆwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona
Ćwiczeie r 4 Porówaie doświadczalego rozkładu liczby zliczeń w zadaym przedziale czasu z rozkładem Poissoa Studeta obowiązuje zajomość: Podstawowych zagadień z rachuku prawdopodobieństwa, Zajomość rozkładów
Bardziej szczegółowoWykład 11 ( ). Przedziały ufności dla średniej
Wykład 11 (14.05.07). Przedziały ufości dla średiej Przykład Cea metra kwadratowego (w tys. zł) z dla 14 losowo wybraych mieszkań w mieście A: 3,75; 3,89; 5,09; 3,77; 3,53; 2,82; 3,16; 2,79; 4,34; 3,61;
Bardziej szczegółowoWykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2
Wykład 5 Przedziały ufości Zwykle ie zamy parametrów populacji, p. Chcemy określić a ile dokładie y estymuje Kostruujemy przedział o środku y, i taki, że mamy 95% pewości, że zawiera o Nazywamy go 95%
Bardziej szczegółowoWykład nr 2. Statystyka opisowa część 2. Plan wykładu
Wykład r 2 Statystyka opisowa część 2 Pla wykładu 1. Uwagi wstępe 2. Miary tedecji cetralej 2.1. Wartości średie 2.2. Miary pozycyje 2.3. Domiata 3. Miary rozproszeia 4. Miary asymetrii 5. Miary kocetracji
Bardziej szczegółowoPRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1).
TATYTYKA MATEMATYCZNA WYKŁAD 3 RZEDZIAŁY UFNOŚCI Niech θ - iezay parametr rozkład cechy. Niech będzie liczbą z przedział 0,. Jeśli istieją statystyki, U i U ; U U ; których rozkład zależy od θ oraz U θ
Bardziej szczegółowoHistogram: Dystrybuanta:
Zadaie. Szereg rozdzielczy (przyjmujemy przedziały klasowe o długości 0): x0 xi i środek i*środek i_sk częstości częstości skumulowae 5 5 8 0 60 8 0,6 0,6 5 5 9 0 70 7 0,8 0, 5 5 5 0 600 0, 0,6 5 55 8
Bardziej szczegółowoANALIZA DANYCH DYSKRETNYCH
ZJAZD ESTYMACJA Jest to metoda wioskowaia statystyczego. Umożliwia oa oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej estymatorem,
Bardziej szczegółowoStatystyka opisowa. () Statystyka opisowa 24 maja / 8
Część I Statystyka opisowa () Statystyka opisowa 24 maja 2010 1 / 8 Niech x 1, x 2,..., x będą wyikami pomiarów, p. temperatury, ciśieia, poziomu rzeki, wielkości ploów itp. Przykład 1: wyiki pomiarów
Bardziej szczegółowoStatystyka opisowa - dodatek
Statystyka opisowa - dodatek. *Jak obliczyć statystyki opisowe w dużych daych? Liczeie statystyk opisowych w dużych daych może sprawiać problemy. Dla przykładu zauważmy, że aiwa implemetacja średiej arytmetyczej
Bardziej szczegółowoTestowanie hipotez. H 1 : µ 15 lub H 1 : µ < 15 lub H 1 : µ > 15
Testowaie hipotez ZałoŜeia będące przedmiotem weryfikacji azywamy hipotezami statystyczymi. KaŜde przypuszczeie ma swoją alteratywę. Jeśli postawimy hipotezę, Ŝe średica pia jedoroczych drzew owej odmiay
Bardziej szczegółowoStatystyka matematyczna. Wykład II. Estymacja punktowa
Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych
Bardziej szczegółowoTESTY LOSOWOŚCI. Badanie losowości próby - test serii.
TESTY LOSOWOŚCI Badaie losowości próby - test serii. W wielu zagadieiach wioskowaia statystyczego istotym założeiem jest losowość próby. Prostym testem do weryfikacji tej własości jest test serii. 1 Dla
Bardziej szczegółowoEstymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności)
IV. Estymacja parametrów Estymacja: Puktowa (ocea, błędy szacuku Przedziałowa (przedział ufości Załóżmy, że rozkład zmieej losowej X w populacji geeralej jest opisay dystrybuatą F(x;α, gdzie α jest iezaym
Bardziej szczegółowo1 Dwuwymiarowa zmienna losowa
1 Dwuwymiarowa zmiea loowa 1.1 Dwuwymiarowa zmiea loowa kokowa X = x i, Y = y k = p ik przy czym i, k N oraz p ik = 1; i k p i = X = x i = p ik dla i N; p k = Y = y k = p ik dla k N; k i F 1 x = p i dla
Bardziej szczegółowoSTATYSTYKA OPISOWA WYKŁAD 1 i 2
STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest
Bardziej szczegółowoCOLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH. Kierunek: Finanse i rachunkowość. Robert Bąkowski Nr albumu: 9871
COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH Kieruek: Fiase i rachukowość Robert Bąkowski Nr albumu: 9871 Projekt: Badaie statystycze cey baryłki ropy aftowej i wartości dolara
Bardziej szczegółowoθx θ 1, dla 0 < x < 1, 0, poza tym,
Zadaie 1. Niech X 1,..., X 8 będzie próbą z rozkładu ormalego z wartością oczekiwaą θ i wariacją 1. Niezay parametr θ jest z kolei zmieą losową o rozkładzie ormalym z wartością oczekiwaą 0 i wariacją 1.
Bardziej szczegółowoStatystyka Wzory I. Analiza struktury
Uiwersytet Ekooiczy w Katowicach Wzory I. Aaliza struktury 1. Miary tedecji cetralej (średie, przecięte Średia arytetycza Dla sz. ważoego Dla sz. ważoego dla z. ciągłej Dla szeregu wyliczającego: dla zieej
Bardziej szczegółowoKorelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12
Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu
Bardziej szczegółowoRachunek prawdopodobieństwa i statystyka Wnioskowanie statystyczne. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407
Rachek rawdoodobieństwa i statystyka Wioskowaie statystycze. Estymacja i estymatory Dr Aa ADRIAN Paw B5, ok407 ada@agh.ed.l Estymacja arametrycza Podstawowym arzędziem szacowaia iezaego arametr jest estymator
Bardziej szczegółowoMetrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
Bardziej szczegółowo1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
Bardziej szczegółowoEstymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7
Metody probabilistycze i statystyka Estymacja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
Bardziej szczegółowo(X i X) 2. n 1. X m S
Wykład 8. Przedziały ufości i testowaie hipotez A gdy ie zamy wariacji σ 2? Załóżmy, że X ma rozkład ormaly, ale ie zamy wartości ai m ai σ 2. Jak wtedy szacować wartość średią m? Przypomijmy, że Wtedy
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
TATYTYKA MATEMATYCZNA ROZKŁADY PODTAWOWYCH TATYTYK zmiea losowa odpowiedik badaej cechy, (,,..., ) próba losowa (zmiea losowa wymiarowa, i iezależe zmiee losowe o takim samym rozkładzie jak (taką próbę
Bardziej szczegółowoSTATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uiwersytet Ekoomiczy w Katowicach 2015/16 ROND, Fiase i Rachukowość, rok 2 Rachuek prawdopodobieństwa Rzucamy 10 razy moetą, dla której prawdopodobieństwo wyrzuceia orła w pojedyczym
Bardziej szczegółowoPrawdopodobieństwo i statystyka r.
Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie
Bardziej szczegółowod wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistyczna Definicja Odwzorowanie X: Ω R nazywamy 1-wymiarowym wektorem
d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistycza Defiicja Odwzorowaie X: Ω R d azywamy d-wymiarowym wektorem losowym jeśli dla każdego (x 1, x 2,,x d ) є R d zbiór Uwaga {ω є Ω: X(ω)
Bardziej szczegółowoStatystyka i rachunek prawdopodobieństwa
Statystyka i rachuek prawdopodobieństwa Filip A. Wudarski 22 maja 2013 1 Wstęp Defiicja 1. Statystyka matematycza opisuje i aalizuje zjawiska masowe przy użyciu metod rachuku prawdopodobieństwa. Defiicja
Bardziej szczegółowoElementy modelowania matematycznego
Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA. Wykład wstępy. Teoria prawdopodobieństwa i elemety kombiatoryki 3. Zmiee losowe 4. Populacje i próby daych 5. Testowaie hipotez i estymacja parametrów 6. Test t 7. Test 8. Test
Bardziej szczegółowoINFORMATYKA W CHEMII Dr Piotr Szczepański
INFORMATYKA W CHEMII Dr Piotr Szczepański Katedra Chemii Fizyczej i Fizykochemii Polimerów WPROWADZENIE DO STATYSTYCZNEJ OCENY WYNIKÓW DOŚWIADCZEŃ 1. BŁĄD I STATYSTYKA błąd systematyczy, błąd przypadkowy,
Bardziej szczegółowobędą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,
Zadaie iech X, X,, X 6 będą iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), a Y, Y,, Y6 iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), gdzie, są iezaymi
Bardziej szczegółowoMetoda łączona. Wykład 7 Dwie niezależne próby. Standardowy błąd dla różnicy dwóch średnich. Metoda zwykła (niełączona) n2 2
Wykład 7 Dwie iezależe próby Często porówujemy wartości pewej zmieej w dwóch populacjach. Przykłady: Grupa zabiegowa i kotrola Lekarstwo a placebo Pacjeci biorący dwa podobe lekarstwa Mężczyźi a kobiety
Bardziej szczegółowoObserwacje odstające mają duży wpływ na średnią średnia nie jest odporna.
Wykład 8. Przedziały ufości dla średiej Średia a mediaa Mediaa dzieli powierzchię histogramu a połowy. Jest odpora ie mają a ią wpływu obserwacje odstające. Obserwacje odstające mają duży wpływ a średią
Bardziej szczegółowoCharakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja
Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej
Bardziej szczegółowoEstymacja parametrów populacji
Estymacja parametrów populacji Estymacja parametrów populacji Estymacja polega a szacowaiu wartości parametrów rozkładu lub postaci samego rozkładu zmieej losowej, a podstawie próby statystyczej. Estymacje
Bardziej szczegółowoPrawdopodobieństwo i statystyka r.
Zadaie 1 Rzucamy 4 kości do gry (uczciwe). Prawdopodobieństwo zdarzeia iż ajmiejsza uzyskaa a pojedyczej kości liczba oczek wyiesie trzy (trzy oczka mogą wystąpić a więcej iż jedej kości) rówe jest: (A)
Bardziej szczegółowo0.1 ROZKŁADY WYBRANYCH STATYSTYK
0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.
Bardziej szczegółowoStatystyka i opracowanie danych W3: Wprowadzenie do statystycznej analizy danych Podstawy wnioskowania statystycznego. Estymacja i estymatory
Statystyka i opracowaie daych W3: Wprowadzeie do statystyczej aalizy daych Podstawy wioskowaia statystyczego. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Wprowadzeie Podstawowe cele
Bardziej szczegółowoSTATYSTKA I ANALIZA DANYCH LAB II
STATYSTKA I ANALIZA DANYCH LAB II 1. Pla laboratorium II rozkłady prawdopodobieństwa Rozkłady prawdopodobieństwa dwupuktowy, dwumiaowy, jedostajy, ormaly. Związki pomiędzy rozkładami prawdopodobieństw.
Bardziej szczegółowon n X n = σ σ = n n n Ponieważ zmienna losowa standaryzowana ma rozkład normalny N(0, 1), więc
5.3. Zagadieia estymacji 87 Rozważmy teraz dokładiej zagadieie szacowaia wartości oczekiwaej m zmieej losowej X o rozkładzie ormalym N(m, F), w którym odchyleie stadardowe F jest zae. Niech X, X,..., X
Bardziej szczegółowoWokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych
Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b
Bardziej szczegółowo1 Zmienne losowe. Własności dystrybuanty F (x) = P (X < x): F1. 0 F (x) 1 dla każdego x R, F2. lim F (x) = 0 oraz lim F (x) = 1,
1 Zmiee loowe Właości dytrybuaty F x = X < x: F1. 0 F x 1 dla każdego x R, F2. lim F x = 0 oraz lim F x = 1, x x + F3. F jet fukcją iemalejącą, F4. lim x x 0 F x = F x 0 dla każdego x R, F5. a X < b =
Bardziej szczegółowoRozkład normalny (Gaussa)
Rozład ormaly (Gaussa) Wyprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowych. Rozważmy pomiar wielości m, tóry jest zaburzay przez losowych efetów o wielości e ażdy, zarówo zaiżających ja i
Bardziej szczegółowoRozkład χ 2 = + 2π 2. Niech zmienna losowa x ma rozkład normalnyn(x; µ,σ). Znajdziemy rozkład zmiennej:
Rozkład χ Niech ziea losowa a rozkład oralyn(; µ,). Zajdziey rozkład zieej: µ Stadaryzjąc zieą losową µ otrzyjey stadaryzoway rozkład Gassa: ( ;, ) ep N 0 π Rozkład zieej a więc postać: d ( X + ) N N ep
Bardziej szczegółowoRozkłady statystyk z próby Twierdzenia graniczne
Rozkłady statystyk z róby Twierdzeia graicze PRÓBA LOSOWA Próbą losową rostą azyway ciąg -zieych losowych iezależych i osiadających jedakowe rozkłady takie jak rozkład zieej losowej w oulacji geeralej
Bardziej szczegółowoKomputerowa analiza danych doświadczalnych
Komputerowa aaliza daych doświadczalych Wykład 7 8.04.06 dr iż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr leti 05/06 Cetrale twierdzeie graicze - przypomieie Sploty Pobieraie próby, estymatory
Bardziej szczegółowoEstymacja przedziałowa - przedziały ufności
Estymacja przedziałowa - przedziały ufości Próbę -elemetową charakteryzujemy jej parametrami (p. x, s, s ). Służą oe do ocey wartości iezaych parametrów populacji (m, σ, σ). Nazywamy je estymatorami puktowymi
Bardziej szczegółowoLista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym
Lista 5 Zadaia a zastosowaie ierówosci Markowa i Czebyszewa. Zadaie 1. Niech zmiea losowa X ma rozkład jedostajy a odciku [0, 1]. Korzystając z ierówości Markowa oszacować od góry prawdopodobieństwo, że
Bardziej szczegółowoStatystyka. Katarzyna Chudy Laskowska
Statystyka Katarzya Chudy Laskowska http://kc.sd.prz.edu.pl/ WNIOSKOWANIE STATYSTYCZNE Celem aalizy statystyczej ie jest zwykle tylko opisaie (prezetacja) posiadaych daych, czyli tzw. próby statystyczej.
Bardziej szczegółowoZMIENNA LOSOWA I JEJ PARAMETRY -powtórzenie
WNIOSKOWANIE STATYSTYCZNE ZMIENNA LOSOWA I JEJ PARAMETRY -powtórzeie,, S P przestrzeń probabilistycza (matematyczy model zjawiska losowego), zbiór wszystkich zdarzeń elemetarych, S zbiór zdarzeń, (podzbiory
Bardziej szczegółowoZestaw II Odpowiedź: Przeciętna masa ciała w grupie przebadanych szczurów wynosi 186,2 g.
Zadaia przykładowe z rozwiązaiami Zadaie Dokoao pomiaru masy ciała 8 szczurów laboratoryjych. Uzyskao astępujące wyiki w gramach: 70, 80, 60, 90, 0, 00, 85, 95. Wyzaczyć przeciętą masę ciała wśród zbadaych
Bardziej szczegółowoEstymacja przedziałowa:
Estymacja przedziałowa: Zamiast szukad ajlepszego estymatora, tak jak w estymacji puktowej będziemy poszukiwad przedziału, do którego będzie ależał szukay parametr z odpowiedio dużym prawdopodobieostwem.
Bardziej szczegółowoRachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.
Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują
Bardziej szczegółowoZDARZENIE ELEMENTARNE to możliwy wynik doświadczenia losowego. Wszystkie takie możliwe wyniki tworzą zbiór zdarzeń elementarnych.
STATYSTYKA to auka, której przedmiotem zaiteresowaia są metody pozyskiwaia i prezetacji, a przede wszystkim aalizy daych opisujących zjawiska masowe. Metody statystycze oparte są a rachuku prawdopodobieństwa.
Bardziej szczegółowoProjekt ze statystyki
Projekt ze statystyki Opracowaie: - - Spis treści Treść zaia... Problem I. Obliczeia i wioski... 4 Samochó I... 4 Miary położeia... 4 Miary zmieości... 5 Miary asymetrii... 6 Samochó II... 8 Miary położeia:...
Bardziej szczegółowoOpracowanie danych pomiarowych. dla studentów realizujących program Pracowni Fizycznej
Opracowaie daych pomiarowych dla studetów realizujących program Pracowi Fizyczej Pomiar Działaie mające a celu wyzaczeie wielkości mierzoej.. Do pomiarów stosuje się przyrządy pomiarowe proste lub złożoe.
Bardziej szczegółowoZADANIA NA ĆWICZENIA 3 I 4
Agata Boratyńska Statystyka aktuariala... 1 ZADANIA NA ĆWICZENIA 3 I 4 1. Wygeeruj szkody dla polis z kolejych lat wg rozkładu P (N = 1) = 0, 1 P (N = 0) = 0, 9, gdzie N jest liczbą szkód z jedej polisy.
Bardziej szczegółowoInternetowe Kółko Matematyczne 2004/2005
Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,
Bardziej szczegółowoKomputerowa analiza danych doświadczalnych
Komputerowa aaliza daych doświadczalych Wykład 7 7.04.07 dr iż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr leti 06/07 Cetrale twierdzeie graicze - przypomieie Sploty Pobieraie próby, estymatory
Bardziej szczegółowot - kwantyl rozkładu t-studenta rzędu p o f stopniach swobody
ZJAZD ANALIZA DANYCH CIĄGŁYCH ramach zajęć będą badae próbki pochodzące z poplacji w kórych badaa cecha ma rozkład ormaly N(μ σ). Na zajęciach będą: - wyzaczae przedziały fości dla warości średiej i wariacji
Bardziej szczegółowoKADD Metoda najmniejszych kwadratów
Metoda ajmiejszych kwadratów Pomiary bezpośredie o rówej dokładości o różej dokładości średia ważoa Pomiary pośredie Zapis macierzowy Dopasowaie prostej Dopasowaie wielomiau dowolego stopia Dopasowaie
Bardziej szczegółowoStatystyka Opisowa. w2: podstawowe miary. Jerzy Stefanowski Instytut Informatyki Politechnika Poznańska. Poznań, 2015/16 aktualizacja 2017
Statystyka Opisowa w2: podstawowe miary Jerzy Stefaowski Istytut Iformatyki Politechika Pozańska Pozań, 205/6 aktualizacja 207 STATYSTYKA OPISOWA Techiki wstępej aalizy daych i ich prezetacji: gromadzeie,
Bardziej szczegółowoKurs Prawdopodobieństwo Wzory
Kurs Prawdoodobieństwo Wzory Elemety kombiatoryki Klasycza deiicja rawdoodobieństwa gdzie: A - liczba zdarzeń srzyjających A - liczba wszystkich zdarzeń P A Tel. 603 088 74 Prawdoodobieństwo deiicja Kołmogorowa
Bardziej szczegółowo2.1. Studium przypadku 1
Uogóliaie wyików Filip Chybalski.. Studium przypadku Opis problemu Przedsiębiorstwo ŚRUBEX zajmuje się produkcją wyrobów metalowych i w jego szerokim asortymecie domiują różego rodzaju śrubki i wkręty.
Bardziej szczegółowoWYKŁAD 1. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD Zdarzeia losowe i prawdopodobieństwo Zmiea losowa i jej rozkłady Metody statystycze metody opisu metody wioskowaia statystyczego sytetyczy liczbowy opis właściwości zbioru daych ocea charakterystyk
Bardziej szczegółowo