Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.
|
|
- Alicja Matysiak
- 9 lat temu
- Przeglądów:
Transkrypt
1 Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl
2 Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują cechy omiale, p. kolor, zawód, województwo, wyzaie Uporządkowae gdy badaa cecha może być opisaa przy użyciu wartości wyrażających poziom (stopień, kategorię) p. stopień opaowaia wiedzy: dst, db, bdb; albo miasto małe, średie, duże itp
3 Cechy atrybuty zmiee jakościowe i ich związek z ilościowymi Cechy omiale są cechami fudametalie jakościowymi awet gdy zakodujemy je jako liczby (etykiety liczbowe p stolarz: 1, malarz: 2) Cechy uporządkowae mają w pewym stopiu związek z cechami mierzalymi i wyrażaymi ilościowo W przypadku określeia stopia sympatii p. do osoby moża uzać, że zmieia się w sposób ciągły od ieawiści do bezkrytyczej miłości, moża te wartości skategoryzować i adać im wartości: ie lubi, toleruje, lubi.- to jest dyskretyzacja Miasto małe do mieszkańców, średie , duże powyżej ; ocey dst = 3, db = 4, bdb = 5, miary zastosowae w wyrażaiu kategorii wskazują kolejość i ie uwzględiają odległości
4 Iterpretacja daych jakościowych uporządkowaych Cechy uporządkowae mają w jakimś stopiu związek z cechami ilościowymi, p. system oce szkolych Polski: 1; 2; 3; 3,5; 4. Agielski F; E, D; C; Który z podaych systemów ocey jest bardziej odpowiedi i dlaczego Jak iterpretować średią oceę - krok arbitraly, dla którego trudo zaleźć ścisłe uzasadieie Jaka jest istota różica pomiędzy wartością ilościową, a kodem liczbowym wartości jakościowej Czy studet czwórkowy jest dwa razy lepszy od studeta dwójkowego
5 Iterpretacja wyików aalizy oce wyrażaych w różych skalach Ocea z przedmiotu jest wyrażoa w skali porządkowej. Jej iterpretacja w skali przedziałowej, a tym bardziej ilorazowej prowadzi do absurdalych wiosków. Ocea mierzoą w skali ilorazowej może być ocea puktowa, tz. studet za poprawa odpowiedź otrzymuje 1 pukt, a za błędą 0 puktów. Suma uzyskaych puktów jest podstawą ocey wiedzy studeta. Ocea procetowa jest wyrażoa w skali ilorazowej: (suma puktów uzyskaych/ liczba pytań )*100%. Studet, który uzyskał 80% odpowiedział a dwa razy więcej pytań iż te, który uzyskał 40 %
6 Skale stosowae dla zmieych ilościowych Ilorazowa wyiki pomiarów/obserwacji są wyrażoe w sposób jedozaczy z dokładością do zastosowaej jedostki pomiaru (ilość, długość, pojemość..) Przedziałowa daje możliwość wyboru jedostki pomiaru i położeia zera (puktu odiesieia) p. pomiar temperatury w skali bezwzględej, Celsjusza, Fareheita p. zero w tych dwóch skalach jest przesuięte o 32 o C. Ze względu a względość położeia zera w tych skalach, ie moża uzać, że temperatura 36 o C jest dwa razy wyższa od 18 o C, jest tylko wyższa o 18 o C. Temperatura w skali bezwzględej Kelvia, jest wyrażaa w skali ilorazowej, dlatego temperatura 300 K jest dwa razy większa od temperatury 150 K, a jedocześie jest od iej wyższa o 150K.
7 Przypisywaie zmieym ilościowym wartości jakościowychzmiee skategoryzowae W wielu badaiach jest uzasadioe zastępowaie wartości liczbowych azwami ligwistyczymi, p. Zmiea ilościowa przyjmuje zaledwie kilka wartości Przedziały wiekowe: Należy pamiętać, że od chwili podjęcia decyzji o zmiaie typu zmieej z ilościowego a jakościowy pozbywamy się możliwości stosowaia metod dla daych liczbowych. Traktowaie zmieych ilościowych jako jakościowe może usprawiedliwiać cel badań badaie iezależości zmieych lub ich zależości, w tym celu ajczęściej posługujemy się tablicami kodygacyjymi
8 Tablice kodygacyje y 1 y 2. y m x m x m. x k k1 k2 km Czy musiało dojść do katastrofy Challegera w 1986r. Aaliza daych z wcześiejszych 24 startów brak usterek wystąpiła usterka (i) 65 o F 0 4 > 65 o F 17 3 brak usterek wystąpiła usterka (i) 65 o F 0% 17% > 65 o F 70% 13%
9 Wioskowaie o zmieych jakościowych. Testowaie zgodości Zmiea X ma m wartości (kategorii), P(X= x i )= p i prawdopodobieństwo wystąpieia x i wyosi p i. Rozkładem empiryczym zmieej X jest {p 1, p 2,.,p m } Day jest pewie teoretyczy (ustaloy ) rozkład prawdopodobieństwa {p 1 0, p 20,.,p m0 }, Sprawdzam, czy empiryczy rozkład jest taki sam jak zakładay teoretyczy H 0 : p j = p j 0 i =1,2,...,m; H 1 : H 0 jest fałszywa Fukcja testowa Q = m j = 1 ( p ) 0 j p ma w przybliżeiu rozkład chi kwadrat z m-1 stopiami swobody j 0 j 2
10 Przykład Wykoao 100 rzutów kostką do gry i otrzymao x i i Czy istieją podstawy do odrzuceia hipotezy, że rzuty wykoao uczciwą kostką? Jeśli jest uczciwa, to mamy rozkład jedostajy, gdzie p i0 =1/6, i=1,..,6 Wtedy p i = 100*1/6 = 16,66 Q=[ (16-16,66) 2 + (19-16,66) 2 +(9-16,66) 2 + (17-16,66) 2 + (25-16,66) 2 (14-16,66) 2 ]/16,66 = 8,48 Odczytae z tablic χ 2 dla α=0,05 i 5 stopi swobody wyosi 11,07 zatem ie ma podstaw do odrzuceia hipotezy zerowej
11 Uwagi do testu zgodości Nie wolo mylić istotości statystyczej z istotością praktyczą. Im większa liczość próby tym większa jest czułość testu, czyli skłoość do odrzuceia hipotezy zerowej, gdy prawdziwy rozkład jest tylko iezaczie ( ieistotie) róży postulowaego w hipotezie ( teoretyczego). Stosowaie tego testu zgodości z rozkładem ciągłym jest przedsięwzięciem kotrowersyjym, poieważ puktem wyjścia do kostrukcji testu jest utrata iformacji związaa z koieczością dyskretyzacji. Dlatego stosowaie tego testu jest zalecae dopiero wtedy gdy próba jest bardzo licza, a rozkład empiryczy przypomia gładki rozkład ciągły. Są też ie testy zgodości, p w pakiecie Statistica, które moża stosować w miej liczych próbkach.
12 Testowaie złożoej hipotezy o zgodości Jeśli postuloway (teoretyczy) rozkład prawdopodobieństwa {p 1 0, p 2 0,.,p m 0 } zależy od iezaych parametrów, p parametru Θ, czyli jest {p 1 0 (Θ), p 2 0 (Θ),.,p m 0 (Θ), }, który może być iy dla różych wartości parametru Θ. Wtedy ie iteresując się wartością parametru Θ, weryfikujemy hipotezę o zgodości rozkładu z rodzią rozkładów zdefiiowaych przez Θ, Hipoteza zerowa ma wtedy postać H 0 : p j = p j 0 (Θ), i =1,2,...,m;
13 Przykład Jeśli teoria Medla losowego tworzeia się geotypów potomstwa jest słusza i w populacji występują geotypy AA, Aa, aa, Ge A staowi ułamek Θ, wszystkich geów Ge a staowi ułamek 1-Θ, wszystkich geów to populacja o proporcji geotypów AA, Aa, aa, Θ 2 ; 2Θ(1- Θ); (1-Θ) 2 pozostaje w staie rówowagi (geeracja potomków staowi populację o tej samej proporcji geotypów). Formalizujemy zapis hipotezy H 0 : p 1 0 (Θ)= Θ 2 ; p 20 (Θ)= 2Θ(1- Θ); p 3 0 (Θ)= (1-Θ) 2 Należy pamiętać, że H 1, H 0 jest fałszywa. Jeśli H 0 jest prawdziwa to zmodyfikowaa statystyka Q ma w przybliżeiu rozkład χ 2 z k-2 stopiami swobody ( w tym przykładzie k=3)
14 Przykład cd Typ AA Aa aa i Fukcja wiarygodości ma postać (Θ 2 ) 1 * [2Θ(1- Θ)] 2 *[(1-Θ) 2 ] 3 Po logarytmowaiu fukcji wiarygodości obliczamy estymator Θ = ( )/2=0,455, gdzie = Q= ( ,51) 2 /103,51+. ( ,97) 2 /247,97+ ( ,51) 2 /147,51 = 1,369. Jeśli liczba iezaych parametrów rozkładu hipotetyczego jest 2, wtedy statystyka Q ma rozkład χ2 z k-1-m stopiami swobody
15 Aaliza studeckiej ocey kadry test jedorodości Pewa uczelia prowadzi oceę programów i kadry. Testujemy hipotezę, o rówości rozkładów A1,A2,A3 bzd zd mr db bdb A A A H 0 : p 1j = p 2j =.=p kj =p j H 1 : H 0 jest fałszywa Fukcja testowa zmierza do rozkładu χ 2 m k ij Q = i. i= 1 j= 1 i.. j. j 2 o (m-1)*(k-1) stopiach swobody
16 Testowaie iezależości H 0 ; p ij = p i. * p. j H 1 : hipoteza H 0 jest fałszywa Fukcja testowa Q = m k ij i. i= 1 j= 1 i.. j. j 2 zbliża się do rozkładu χ2 o (m-1)*(k-1) stopiach swobody, (które chociaż mają tę samą wartość jedak obliczoo je iaczej )
17 Aaliza zależości pomiędzy zmieymi jakościowymi
18
19
20
21 Korelacje ieparametrycze Współczyik Spearmaa r s Zmiee są mierzale w skali porządkowej (uporządkowaie według rag) r s = 6 i = ( d 2 i 1 ) d i ozaczają różice między ragami odpowiadających sobie wartości cech r s służy do opisu korelacji cech jakościowych, które moża uporządkować r s moża stosować dla zmieych mierzalych ie mających rozkładu ormalego
22 Korelacje ieparametrycze Współczyik Kedalla τ Współczyik τ opiera się a różicy między prawdopodobieństwem tego, że dwie zmiee układają się w tym samym porządku a prawdopodobieństwem, że ich uporządkowaie się różi. Współczyik τ przyjmuje wartości z przedziału [-1;1], 1 - ozacza pełą zgodość uporządkowaia, 0 - brak zgodości, a -1 - całkowitą ich przeciwstawość. τ jest doskoałym arzędziem do opisu podobieństwa uporządkowaia zbioru daych.
23 Statystyka gamma Ma podobą kostrukcję i wymaga podobych założeń jak współczyiki r s Spearmaa τ Kedalla Stosuje się go gdy dae zwierają wiele obserwacji powiązaych Liczy się go jako różice prawdopodobieństwa, że uporządkowaie aalizowaych zmieych jest zgode a prawdopobieństwem, że ie jest zgode, dzieloą przez 1 mius prawdopodobieństwo występowaia obserwacji powiązaych
24
25
26
27
28 Porówaie wartości współczyików korelacji obliczoych wg Kedalla i Spearmaa
Estymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
Bardziej szczegółowoKorelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12
Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu
Bardziej szczegółowoX i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.
Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,
Bardziej szczegółowo1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o
1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA. Wykład wstępy. Teoria prawdopodobieństwa i elemety kombiatoryki 3. Zmiee losowe 4. Populacje i próby daych 5. Testowaie hipotez i estymacja parametrów 6. Test t 7. Test 8. Test
Bardziej szczegółowoZeszyty naukowe nr 9
Zeszyty aukowe r 9 Wyższej Szkoły Ekoomiczej w Bochi 2011 Piotr Fijałkowski Model zależości otowań giełdowych a przykładzie otowań ołowiu i spółki Orzeł Biały S.A. Streszczeie Niiejsza praca opisuje próbę
Bardziej szczegółowo3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy
Bardziej szczegółowoZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością
Bardziej szczegółowoSTATYSTYKA OPISOWA WYKŁAD 1 i 2
STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest
Bardziej szczegółowoSTATYSTYKA I ANALIZA DANYCH
TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica
Bardziej szczegółowoStatystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407
Statystyka i Opracowaie Daych W7. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Estymacja parametrycza Podstawowym arzędziem szacowaia iezaego parametru jest estymator obliczoy a podstawie
Bardziej szczegółowoĆwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA
Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz
Bardziej szczegółowoL.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3
L.Kowalski zadaia ze statystyki matematyczej-zestaw 3 ZADANIA - ZESTAW 3 Zadaie 3. Cecha X populacji ma rozkład N m,. Z populacji tej pobrao próbę 7 elemetową i otrzymao wyiki x7 = 9, 3, s7 =, 5 a Na poziomie
Bardziej szczegółowoTESTY LOSOWOŚCI. Badanie losowości próby - test serii.
TESTY LOSOWOŚCI Badaie losowości próby - test serii. W wielu zagadieiach wioskowaia statystyczego istotym założeiem jest losowość próby. Prostym testem do weryfikacji tej własości jest test serii. 1 Dla
Bardziej szczegółowoMetrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
Bardziej szczegółowoPRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1).
TATYTYKA MATEMATYCZNA WYKŁAD 3 RZEDZIAŁY UFNOŚCI Niech θ - iezay parametr rozkład cechy. Niech będzie liczbą z przedział 0,. Jeśli istieją statystyki, U i U ; U U ; których rozkład zależy od θ oraz U θ
Bardziej szczegółowoElementy modelowania matematycznego
Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,
Bardziej szczegółowoZadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.
Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,
Bardziej szczegółowoĆwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny
TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości
Bardziej szczegółowoMiary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy.
MIARY POŁOŻENIA I ROZPROSZENIA WYNIKÓW SERII POMIAROWYCH Miary położeia (tedecji cetralej) to tzw. miary przecięte charakteryzujące średi lub typowy poziom wartości cechy. Średia arytmetycza: X i 1 X i,
Bardziej szczegółowoModele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017
STATYSTYKA OPISOWA Dr Alia Gleska Istytut Matematyki WE PP 18 listopada 2017 1 Metoda aalitycza Metoda aalitycza przyjmujemy założeie, że zmiay zjawiska w czasie moża przedstawić jako fukcję zmieej czasowej
Bardziej szczegółowoPrawdopodobieństwo i statystyka r.
Zadaie 1 Rzucamy 4 kości do gry (uczciwe). Prawdopodobieństwo zdarzeia iż ajmiejsza uzyskaa a pojedyczej kości liczba oczek wyiesie trzy (trzy oczka mogą wystąpić a więcej iż jedej kości) rówe jest: (A)
Bardziej szczegółowoParametryczne Testy Istotności
Parametrycze Testy Istotości Wzory Parametrycze testy istotości schemat postępowaia pukt po pukcie Formułujemy hipotezę główą H odośie jakiegoś parametru w populacji geeralej Hipoteza H ma ajczęściej postać
Bardziej szczegółowoRachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407
Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Weryfikacja hipotez dotyczących postaci nieznanego rozkładu -Testy zgodności.
Bardziej szczegółowoLista 6. Estymacja punktowa
Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?
Bardziej szczegółowoModa (Mo, D) wartość cechy występującej najczęściej (najliczniej).
Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy
Bardziej szczegółowoPODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy
Bardziej szczegółowoMetoda łączona. Wykład 7 Dwie niezależne próby. Standardowy błąd dla różnicy dwóch średnich. Metoda zwykła (niełączona) n2 2
Wykład 7 Dwie iezależe próby Często porówujemy wartości pewej zmieej w dwóch populacjach. Przykłady: Grupa zabiegowa i kotrola Lekarstwo a placebo Pacjeci biorący dwa podobe lekarstwa Mężczyźi a kobiety
Bardziej szczegółowo1 Zmienne losowe. Własności dystrybuanty F (x) = P (X < x): F1. 0 F (x) 1 dla każdego x R, F2. lim F (x) = 0 oraz lim F (x) = 1,
1 Zmiee loowe Właości dytrybuaty F x = X < x: F1. 0 F x 1 dla każdego x R, F2. lim F x = 0 oraz lim F x = 1, x x + F3. F jet fukcją iemalejącą, F4. lim x x 0 F x = F x 0 dla każdego x R, F5. a X < b =
Bardziej szczegółowo0.1 ROZKŁADY WYBRANYCH STATYSTYK
0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.
Bardziej szczegółowod wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistyczna Definicja Odwzorowanie X: Ω R nazywamy 1-wymiarowym wektorem
d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistycza Defiicja Odwzorowaie X: Ω R d azywamy d-wymiarowym wektorem losowym jeśli dla każdego (x 1, x 2,,x d ) є R d zbiór Uwaga {ω є Ω: X(ω)
Bardziej szczegółowo16 Przedziały ufności
16 Przedziały ufości zapis wyiku pomiaru: sugeruje, że rozkład błędów jest symetryczy; θ ± u(θ) iterpretacja statystycza przedziału [θ u(θ), θ + u(θ)] zależy od rozkładu błędów: P (Θ [θ u(θ), θ + u(θ)])
Bardziej szczegółowoEstymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7
Metody probabilistycze i statystyka Estymacja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
Bardziej szczegółowoWokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych
Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b
Bardziej szczegółowoJak obliczać podstawowe wskaźniki statystyczne?
Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań
Bardziej szczegółowoCharakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja
Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej
Bardziej szczegółowoANALIZA DANYCH DYSKRETNYCH
ZJAZD ESTYMACJA Jest to metoda wioskowaia statystyczego. Umożliwia oa oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej estymatorem,
Bardziej szczegółowoSTATYSTYCZNA OCENA WYNIKÓW POMIARÓW.
Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,
Bardziej szczegółowoBADANIA DOCHODU I RYZYKA INWESTYCJI
StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;
Bardziej szczegółowoPorównanie dwu populacji
Porówaie dwu populacji Porówaie dwóch rozkładów ormalych Założeia:. X ~ N( m, σ ), X ~ N( m, σ ), σ σ. parametry rozkładów ie ą zae. X, X ą iezależe. Ocea różicy między średimi m m m m x x (,...) H 0 :
Bardziej szczegółowoPODSTAWY BIOSTATYSTYKI ĆWICZENIA
PODSTAWY BIOSTATYSTYKI ĆWICZENIA FILIP RACIBORSKI FILIP.RACIBORSKI@WUM.EDU.PL ZAKŁAD PROFILAKTYKI ZAGROŻEŃ ŚRODOWISKOWYCH I ALERGOLOGII WUM ZADANIE 1 Z populacji wyborców pobrao próbkę 1000 osób i okazało
Bardziej szczegółowoStatystyka matematyczna. Wykład II. Estymacja punktowa
Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych
Bardziej szczegółowoWydział Matematyki. Testy zgodności. Wykład 03
Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy
Bardziej szczegółowoMateriały do wykładu 4 ze Statystyki
Materiały do wykładu 4 ze Statytyki CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (dok.) 1. miary położeia - wykład 2 2. miary zmieości (dyperji, rozprozeia) - wykład 3 3. miary aymetrii (kośości) 4.
Bardziej szczegółowoIdea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość
Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę
Bardziej szczegółowoPlan wykładu. Analiza danych Wykład 1: Statystyka opisowa. Literatura. Podstawowe pojęcia
Pla wykładu Aaliza daych Wykład : Statystyka opisowa. Małgorzata Krętowska Wydział Iformatyki Politechika Białostocka. Statystyka opisowa.. Estymacja puktowa. Własości estymatorów.. Rozkłady statystyk
Bardziej szczegółowoĆwiczenie 2 ESTYMACJA STATYSTYCZNA
Ćwiczeie ETYMACJA TATYTYCZNA Jest to metoda wioskowaia statystyczego. Umożliwia oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej
Bardziej szczegółowoWeryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Bardziej szczegółowoElementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)
Elemety statystyki opisowej Izolda Gorgol wyciąg z prezetacji (wykład I) Populacja statystycza, badaie statystycze Statystyka matematycza zajmuje się opisywaiem i aalizą zjawisk masowych za pomocą metod
Bardziej szczegółowoSTATYSTYKA OPISOWA I PROJEKTOWANIE EKSPERYMENTU dr inż Krzysztof Bryś
1 STATYSTYKA OPISOWA I PROJEKTOWANIE EKSPERYMENTU dr iż Krzysztof Bryś Pojȩcia wstȩpe populacja - ca ly zbiór badaych przedmiotów lub wartości. próba - skończoy podzbiór populacji podlegaj acy badaiu.
Bardziej szczegółowoPrawdopodobieństwo i statystyka r.
Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
TATYTYKA MATEMATYCZNA ROZKŁADY PODTAWOWYCH TATYTYK zmiea losowa odpowiedik badaej cechy, (,,..., ) próba losowa (zmiea losowa wymiarowa, i iezależe zmiee losowe o takim samym rozkładzie jak (taką próbę
Bardziej szczegółowoTestowanie hipotez statystycznych.
Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie
Bardziej szczegółowoSIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY
SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY Weryfikacja hipotez statystyczych WNIOSKOWANIE STATYSTYCZNE Wioskowaie statystycze, to proces uogóliaia wyików uzyskaych a podstawie próby a całą
Bardziej szczegółowoMiary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.
Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla
Bardziej szczegółowoPodstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja
Podstawowe ozaczeia i wzory stosowae a wykładzie i laboratorium Część I: estymacja 1 Ozaczeia Zmiee losowe (cechy) ozaczamy a wykładzie dużymi literami z końca alfabetu. Próby proste odpowiadającymi im
Bardziej szczegółowoStatystyka opisowa. (n m n m 1 ) h (n m n m 1 ) + (n m n m+1 ) 2 +1), gdy n jest parzyste
Statystyka opisowa Miary statystycze: 1. miary położeia a) średia z próby x = 1 x = 1 x = 1 x i - szereg wyliczający x i i - szereg rozdzielczy puktowy x i i - szereg rozdzielczy przedziałowy, gdzie x
Bardziej szczegółowoStatystyka opisowa. Wykład VI. Analiza danych jakośiowych
Statystyka opisowa. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści Rangowanie 1 Rangowanie 3 Rangowanie Badaniu statystycznemu czasami podlegają cechy niemierzalne jakościowe), np. kolor włosów, stopień
Bardziej szczegółowoMiary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.
Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla
Bardziej szczegółowoPorównanie modeli statystycznych. Monika Wawrzyniak Katarzyna Kociałkowska
Porównanie modeli statystycznych Monika Wawrzyniak Katarzyna Kociałkowska Jaka jest miara podobieństwa? Aby porównywać rozkłady prawdopodobieństwa dwóch modeli statystycznych możemy użyć: metryki dywergencji
Bardziej szczegółowoweryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) założenie: znany rozkład populacji (wykorzystuje się dystrybuantę)
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na
Bardziej szczegółowoKADD Metoda najmniejszych kwadratów
Metoda ajmiejszych kwadratów Pomiary bezpośredie o rówej dokładości o różej dokładości średia ważoa Pomiary pośredie Zapis macierzowy Dopasowaie prostej Dopasowaie wielomiau dowolego stopia Dopasowaie
Bardziej szczegółowoTemat: Badanie niezależności dwóch cech jakościowych test chi-kwadrat
Temat: Badanie niezależności dwóch cech jakościowych test chi-kwadrat Anna Rajfura 1 Przykład W celu porównania skuteczności wybranych herbicydów: A, B, C sprawdzano, czy masa chwastów na poletku zależy
Bardziej szczegółowoSTATYSTYKA OPISOWA PODSTAWOWE WZORY
MIARY POŁOŻENIA Średia Dla daych idywidualych: STATYSTYKA OPISOWA PODSTAWOWE WZORY Q i = x lmi + i mi 1 4 j h m i mi x = 1 x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału
Bardziej szczegółowoMetoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.
Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak
Bardziej szczegółowoKURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1
KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę
Bardziej szczegółowoTablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Bardziej szczegółowoEkonometria Mirosław Wójciak
Ekoometria Mirosław Wójciak Literatura obowiązkowa Barczak A, ST. Biolik J, Podstawy Ekoometrii, Wydawictwo AE Katowice, Katowice 1998 Dziechciarz J. Ekoometria Metody, przykłady, zadaia (wyd. ) Kukuła
Bardziej szczegółowoWeryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Bardziej szczegółowo166 Wstęp do statystyki matematycznej
166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej
Bardziej szczegółowoWykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2
Wykład 5 Przedziały ufości Zwykle ie zamy parametrów populacji, p. Chcemy określić a ile dokładie y estymuje Kostruujemy przedział o środku y, i taki, że mamy 95% pewości, że zawiera o Nazywamy go 95%
Bardziej szczegółowoma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y
Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:
Bardziej szczegółowoStatystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Bardziej szczegółowoBłędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa
Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie
Bardziej szczegółowoPodstawowe pojęcia statystyczne
Podstawowe pojęcia statystyczne Istnieją trzy rodzaje kłamstwa: przepowiadanie pogody, statystyka i komunikat dyplomatyczny Jean Rigaux Co to jest statystyka? Nauka o metodach ilościowych badania zjawisk
Bardziej szczegółowoTestowanie hipotez. H 1 : µ 15 lub H 1 : µ < 15 lub H 1 : µ > 15
Testowaie hipotez ZałoŜeia będące przedmiotem weryfikacji azywamy hipotezami statystyczymi. KaŜde przypuszczeie ma swoją alteratywę. Jeśli postawimy hipotezę, Ŝe średica pia jedoroczych drzew owej odmiay
Bardziej szczegółowoTrzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
Bardziej szczegółowoDoświadczalnictwo leśne. Wydział Leśny SGGW Studia II stopnia
Doświadczalnictwo leśne Wydział Leśny SGGW Studia II stopnia Treści i efekty kształcenia Treści: Statystyka matematyczna, planowanie eksperymentu Efekty kształcenia: student potrafi opisywać zjawiska za
Bardziej szczegółowoW2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne.
W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne. dr hab. Jerzy Nakielski Katedra Biofizyki i Morfogenezy Roślin Plan wykładu: 1. Etapy wnioskowania statystycznego 2. Hipotezy statystyczne,
Bardziej szczegółowoStatystyka w pracy badawczej nauczyciela
Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem
Bardziej szczegółowoStatystyka opisowa. () Statystyka opisowa 24 maja / 8
Część I Statystyka opisowa () Statystyka opisowa 24 maja 2010 1 / 8 Niech x 1, x 2,..., x będą wyikami pomiarów, p. temperatury, ciśieia, poziomu rzeki, wielkości ploów itp. Przykład 1: wyiki pomiarów
Bardziej szczegółowoAnaliza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora
Aaliza wyików symulacji i rzeczywistego pomiaru zmia apięcia ładowaego kodesatora Adrzej Skowroński Symulacja umożliwia am przeprowadzeie wirtualego eksperymetu. Nie kostruując jeszcze fizyczego urządzeia
Bardziej szczegółowoTemat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, że 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
Bardziej szczegółowoStatystyczny opis danych - parametry
Statystyczy opis daych - parametry Ozaczeia żółty owe pojęcie czerwoy, podkreśleie uwaga * materiał adobowiązkowy Aa Rajfura, Matematyka i statystyka matematycza a kieruku Rolictwo SGGW Zagadieia. Idea
Bardziej szczegółowoNiepewności pomiarowe
Niepewości pomiarowe Obserwacja, doświadczeie, pomiar Obserwacja zjawisk fizyczych polega a badaiu ych zjawisk w warukach auralych oraz a aalizie czyików i waruków, od kórych zjawiska e zależą. Waruki
Bardziej szczegółowoPopulacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu
Bardziej szczegółowoTemat: BADANIE NIEZALEśNOŚCI DWÓCH CECH JAKOŚCIOWYCH TEST CHI KWADRAT. Anna Rajfura 1
Temat: BADANIE NIEZALEśNOŚCI DWÓCH CECH JAKOŚCIOWYCH TEST CHI KWADRAT Anna Rajfura 1 Przykład W celu porównania skuteczności wybranych herbicydów: A, B, C sprawdzano, czy masa chwastów na poletku zaleŝy
Bardziej szczegółowoKorelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego
Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego Współczynnik korelacji opisuje siłę i kierunek związku. Jest miarą symetryczną. Im wyższa korelacja tym lepiej potrafimy
Bardziej szczegółowoZ poprzedniego wykładu
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne
Bardziej szczegółowoSTATYSTYKA OPISOWA PODSTAWOWE WZORY
MIARY POŁOŻENIA Średia Dla daych idywidualych: x = 1 STATYSTYKA OPISOWA PODSTAWOWE WZORY x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału Domiata (moda Liczba ajczęściej
Bardziej szczegółowoWprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
Bardziej szczegółowoStatystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.
Bardziej szczegółowoWykład 11 ( ). Przedziały ufności dla średniej
Wykład 11 (14.05.07). Przedziały ufości dla średiej Przykład Cea metra kwadratowego (w tys. zł) z dla 14 losowo wybraych mieszkań w mieście A: 3,75; 3,89; 5,09; 3,77; 3,53; 2,82; 3,16; 2,79; 4,34; 3,61;
Bardziej szczegółowoPOLITECHNIKA OPOLSKA
POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia
Bardziej szczegółowoH brak zgodności rozkładu z zakładanym
WSPÓŁZALEŻNOŚĆ PROCESÓW MASOWYCH Test zgodości H : rozład jest zgody z załadaym 0 : H bra zgodości rozładu z załadaym statystya: p emp i p obszar rytyczy: K ;, i gdzie liczba ategorii p Przyład: Wyoujemy
Bardziej szczegółowoStatystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.
Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde
Bardziej szczegółowoStatystyka matematyczna dla leśników
Statystyka matematycza dla leśików Wydział Leśy Kieruek leśictwo Studia Stacjoare I Stopia Rok akademicki 0/0 Wykład 5 Testy statystycze Ogóle zasady testowaia hipotez statystyczych, rodzaje hipotez, rodzaje
Bardziej szczegółowoWykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu
Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n
Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam
Bardziej szczegółowo