Wykład 1. Wstęp. Rys historyczny. Rodzaje danych. Prezentacja danych. Zastosowania statystyki. Parametry opisowe
|
|
- Bronisław Kozieł
- 7 lat temu
- Przeglądów:
Transkrypt
1 Wstęp do probabilistyki i statystyki Wykład 1. Wstęp dr hab.inż. Katarzyna Zakrzewska, prof.agh Katedra Elektroniki, AGH zak@agh.edu.pl Wstęp do probabilistyki i statystyki. wykład 1 1 Literatura: D.C. Montgomery, G.C. Runger, Applied Statistics and robability for Engineers, J. Wiley and Sons, Inc. A. lucińska, E. luciński, robabilistyka, rachunek prawdopodobieństwa, statystyka matematyczna, procesy stochastyczne, WNT, 2000 J. Jakubowski, R. Sztencel, Wstęp do teorii prawdopodobieństwa, SCRIT, 2000 R. Leitner, W. Żakowski, Matematyka-kurs przygotowawczy na wyższe uczelnie techniczne Wstęp do probabilistyki i statystyki. wykład 1 2 lan: Rys historyczny Rodzaje danych rezentacja danych Zastosowania statystyki arametry opisowe Wstęp do probabilistyki i statystyki. wykład 1 3 1
2 Czy zajmuje się probabilistyka i statystyka? Teoria prawdopodobieństwa (także rachunek prawdopodobieństwa lub probabilistyka) dział matematyki zajmujący się zdarzeniami losowymi. Zdarzenie losowe to wynik doświadczenia losowego. Doświadczenie losowe może być powtarzane dowolnie wiele razy w warunkach identycznych lub bardzo zbliżonych a jego wynik nie daje się przewidzieć jednoznacznie. Ll oznacza ile razy zaszło dane zdarzenie gdy doświadczenie powtarzano n razy rawidłowość statystyczna przy coraz większej liczbie doświadczeń losowych częstość zdarzenia dąży do pewnej stałej liczby Wstęp do probabilistyki i statystyki. wykład 1 4 Czy zajmuje się probabilistyka i statystyka? Rachunek prawdopodobieństwa zajmuje się badaniem abstrakcyjnych pojęć matematycznych stworzonych do opisu zjawisk, które nie są deterministyczne: 1. zmiennych losowych w przypadku pojedynczych zdarzeń oraz 2. procesów stochastycznych w przypadku zdarzeń powtarzających się (w czasie). Jako matematyczny fundament statystyki, teoria prawdopodobieństwa odgrywa istotną rolę w sytuacjach, w których konieczna jest analiza dużych zbiorów danych. Jednym z największych osiągnięć fizyki dwudziestego wieku było odkrycie probabilistycznej natury zjawisk fizycznych w skali mikroskopowej, co zaowocowało powstaniem mechaniki kwantowej. Statystyka zajmuje się metodami zbierania informacji (liczbowych) oraz ich analizą i interpretacją. Wstęp do probabilistyki i statystyki. wykład 1 5 Rys historyczny Matematyczna teoria prawdopodobieństwa sięga swoimi korzeniami do analizy gier losowych podjętej w siedemnastym wieku przez ierre de Fermata oraz Blaise ascala. Z tego powodu, początkowo teoria prawdopodobieństwa zajmowała się niemal wyłącznie zjawiskami dyskretnymi i używała metod kombinatorycznych. Zmienne ciągłe zostały wprowadzone do teorii prawdopodobieństwa znacznie później. Za początek stworzenia współczesnej teorii prawdopodobieństwa powszechnie uważa się jej aksjomatyzację, której w 1933 dokonał Andriej Kołmogorow. Wstęp do probabilistyki i statystyki. wykład 1 6 2
3 Rys historyczny Blaise ascal ( ) XVII w., aryż, Francja Unieśmiertelnił kawalera de Méré oraz jego paradoks hazardowy prawdopodobieństwa wyrzucenia szóstek na jednej i dwóch kościach. Trójkąt ascala wykorzystywany przy potędze sumy Wstęp do probabilistyki i statystyki. wykład 1 7 Rys historyczny oczątek XVII w., Touluse, Francja ierre de Fermat ( ) Badał właściwości liczb pierwszych, teorię liczb, równolegle opracował metodę współrzędnych w geometrii. Razem z ascalem stworzył podstawy pod współczesny rachunek prawdopodobieństwa. Wstęp do probabilistyki i statystyki. wykład 1 8 Rys historyczny XVIII-XIX w., aryż, Francja rzyjaciel Lagrange'a, uczeń Laplace'a na sławnej École olytechnique. Siméon-Denis oisson ( ) oza zagadnieniami mechaniczno -fizycznymi zajmował się teorią prawdopodobieństwa. roces stochastyczny (podobnie jak pr. Markowa), rozkład oissona - dystrybuanta! Wstęp do probabilistyki i statystyki. wykład 1 9 3
4 Rys historyczny Carl Frederich Gauss ( ) XVIII-XIX w., Getynga, Niemcy rofesor Universytetu w Getyndze Genialny matematyk, który już w dzieciństwie wyprzedzał umiejętnościami rówieśników (w szkole podstawowej jako jedyny rozwiązał zadanie nauczyciela - zsumowanie liczb 1 do 40 zauważając że jest to (40+1)*20) Rozkład normalny, zwany krzywą Gaussa Wstęp do probabilistyki i statystyki. wykład 1 10 aradoks kawalera de Méré De Méré, zapalony gracz w kości, dokonał obserwacji, że częściej wypada jedna szóstka przy 4 rzutach jedną kostką niż dwie szóstki przy 24 rzutach dwiema kostkami. Wg. (błędnej) logiki gracza: Na jednej kostce: 4 * 1/6 = 4/6 Na dwóch kostkach: 24 * 1/6 * 1/6 = 24/36 = 4/6 Zdarzenia wydają się mieć takie samo prawdopodobieństwo, dlaczego zatem hazardzista obserwował inny wynik? Wstęp do probabilistyki i statystyki. wykład 1 11 Rozwiązanie paradoksu de Méré rawidłowo obliczone prawdopodobieństwo owych zdarzeń: a) wyrzucenie co najmniej jednej szóstki przy 4 rzutach jedną kostką = 1 prawdopod. nie wyrzucenia żadnej szóstki przy 4 rzutach jedną kostką = = 0, b) wyrzucenie co najmniej raz dwóch szóstek przy 24 rzutach dwiema kostkami = 1- prawdopod. niewyrzucenia dwóch szóstek przy 24 rzutach 2 kostkami = ,4914 Wstęp do probabilistyki i statystyki. wykład
5 STATYSTYKA OISOWA ANALIZA DANYCH (DESCRITIVE STATISTICS) Organizacja danych odsumowanie danych rezentacja danych DEDUKCYJNA MODELOWANIE STOCHASTYCZNE ( STATISTICAL INFERENCE) odaje metody formułowania wniosków dotyczące obiektu badań (populacji generalnej) w oparciu o mniej liczny zbiór (próbę) GRAFICZNA NUMERYCZNA Wstęp do probabilistyki i statystyki. wykład 1 13 Typy danych ILOŚCIOWE (QUANTITATIVE, NUMERICAL) JAKOŚCIOWE (QUALITATIVE, CATEGORIAL) rzykłady: Zbiór ludzi Wiek Wzrost Wysokość zarobków Obliczenia pewnych parametrów, jak np. średnia arytmetryczna, mediana, ekstrema, mają sens rzykłady: łeć Stan cywilny Można przypisać różnym cechom arbitralne wartości liczbowe. Obliczenia parametrów nie mają sensu, można jedynie podawać np. udział procentowy Wstęp do probabilistyki i statystyki. wykład 1 14 Graficzna prezentacja danych x Ilość wystąpień Częstość względna 1 3 3/23 = 0, /23 = 0, /23 = 0,4348 Dane jakościowe można prezentować na wiele sposobów żeby zobrazować np. częstość występowania danej cechy 4 4 4/23 = 0, /23 = 0,0435 Razem: 23 1,0000 Wstęp do probabilistyki i statystyki. wykład
6 Graficzna prezentacja danych 1 0, Wykres kołowy , ,43 4 0, , % 4% 13% 22% 44% Wstęp do probabilistyki i statystyki. wykład 1 16 Graficzna prezentacja danych 1 0, , ,43 4 0, , ,45 0,4 0,35 0,3 Wykres kolumnowy 0,25 0,2 Serie1 0,15 0,1 0, Wstęp do probabilistyki i statystyki. wykład 1 17 Dane ilościowe Wyniki 34 pomiarów (np. wielkość ziaren w [nm], temperatura w kolejnych dniach o godz. 11:00 w [deg. C], czas rozmów telefonicznych w [min], itp. 3,6 13, ,8 13,5 15,2 4,8 12,3 9,1 16,6 15,3 11,7 6,2 9,4 6,2 6,2 15,3 8 8,2 6,2 6,3 12,1 8,4 14,5 16,6 19,3 15,3 19,2 6,5 10,4 11,2 7,2 6,2 2,3 Tak podane wartości są mało czytelne! Wstęp do probabilistyki i statystyki. wykład
7 Histogram Sporządzenie wykresu (histogramu): 1. Uporządkować zbiór wg. rosnących (lub malejących) wartości program Excel ma taką opcję. 2. Wyniki próby (o liczebności n) stanowią zbiór n-liczb (niekoniecznie różniących się od siebie). Celem ich ilustracji dzieli się je na klasy, tworząc tzn. szereg rozdzielczy. 3. Szerokość poszczególnych klas nie musi być taka sama, choć zwykle stosuje się klasy o tej samej szerokości 4. Ilość klas nie może być zbyt mała ani też zbyt liczna. Najbardziej optymalną liczbę klas 'k' określa reguła Sturge'a. Wstęp do probabilistyki i statystyki. wykład 1 19 Histogram 3 klasy Częstość bezwględna x Wstęp do probabilistyki i statystyki. wykład 1 20 Histogram 12 klas Częstość bezwzględna ,5 5 6,5 8 9, , , ,5 20 x Wstęp do probabilistyki i statystyki. wykład
8 Histogram 35 klas Częstość bezwzględna ,5 3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9,5 1010,51111,51212,51313,51414,51515,51616,51717,51818,51919,5 x Wstęp do probabilistyki i statystyki. wykład 1 22 Reguła Sturge'a k=1+3,3log 10 n Dla naszego przykładu: n= 34 k= Liczebność próbki, n Liczba klas, k < < Wstęp do probabilistyki i statystyki. wykład 1 23 Histogram optymalny 6 klas (optymalnie) 0,3 0,25 0,2 Częstość względna 0,15 0,1 0, x Wstęp do probabilistyki i statystyki. wykład
9 Hazard Zdecydowana większość gier losowych opiera się na prawdopodobieństwie zdarzenia......najprostszy, jak rzut monetą,......złożony, jak rozdanie pokera......oraz może być pod tym kątem analizowana. rawdopodobieństwo trafienia oczka Ilość unikatowych rozdań w pokerze...całkowicie losowy jak ruletka... Wstęp do probabilistyki i statystyki. wykład 1 25 Definicja klasyczna prawdopodobieństwa Każdemu zdarzeniu losowemu A przypisujemy liczbę (A), zwaną prawdopodobieństwem tego zdarzenia, taką że 0 (A) 1.» (Kolmogorov, 1933) rawdopodobieństwem zdarzenia A nazywamy stosunek liczby n a zdarzeń sprzyjających zdarzeniu A do liczby wszystkich zdarzeń N n a ( A ) = N ( Ω ) = 1 rzy czym A jest podzbiorem tzw. zdarzenia pewnego Ω. A Ω Wstęp do probabilistyki i statystyki. wykład 1 26 Definicja klasyczna prawdopodobieństwa rawdopodobieństwo sumy wzajemnie wykluczających się zdarzeń losowych A i B jest równe sumie prawdopodobieństw tych zdarzeń» (Kolmogorov, 1933) czyli: ( A B) = ( A) + ( B),gdzie A B = A B Wstęp do probabilistyki i statystyki. wykład
10 rzykład zdarzenia losowego Rzucamy monetą dwa razy. Możliwe wyniki to: (o, o) wyrzucenie dwóch orłów (o, r) wyrzucenie orła, a potem reszki (r, o) wyrzucenie reszki, a potem orła (r, r) wyrzucenie dwóch reszek Zatem zbiór: E={(o, o); (o, r) ; (r, o); (r, r)} jest zbiorem zdarzeń elementarnych. Jeżeli zbiór zdarzeń elementarnych ma E ma n-elementów to zdarzeń losowych jest 2 n Wstęp do probabilistyki i statystyki. wykład 1 28 rzykład zdarzenia losowego W tej sytuacji możliwych jest 2 4 zdarzeń losowych. Niektóre zdarzenia losowe, np.: A = {(o,o); (o,r); (r,o)} wyrzucenie co najmniej 1 orła B = {(o,o); (o,r);} - orzeł w pierwszym rzucie G = {(o,o);} - wyrzucenie dwóch orłów H = {(o,r); (r,o)} wyrzucenie dokładnie jednej reszki Wstęp do probabilistyki i statystyki. wykład 1 29 Relacje zdarzeń Suma zdarzeń zachodzi co najmniej jedno ze zdarzeń A,B A B A B Iloczyn zdarzeń zachodzi zdarzenie A oraz zdarzenie B A B A A BB A B Wstęp do probabilistyki i statystyki. wykład
11 Relacje zdarzeń Zdarzenie przeciwne nie zachodzi zdarzenie A A' Zdarzenie A pociąga zdarzenie B (operator: zbiór A zawiera się w zbiorze B) A B Zdarzenia A i B wykluczające się A B = Wstęp do probabilistyki i statystyki. wykład 1 31 Rzut kostką Rzut kostką: wynik od 1 do 6 oczek. rawdopodobieństwo wyrzucenia czterech oczek: 1/6 (teoria) Wstęp do probabilistyki i statystyki. wykład 1 32 Rzut kością 3 rzuty: 4, 5, 4 10 rzutów: 4, 4, 5, 3, 2, 6, 1, 2, 2, rzutów: 4,5,4,3,1,5,1,2,1,3,2,2,6,6,5,4,... (wyrzucenie 4: 2/3 >> 1/6) (wyrzucenie 4: 3/10 > 1/6) (wyrzucenie 4: ~1/6) Częstość zdarzenia zmierza do wartości prawdopodobieństwa dopiero przy wielokrotnym powtórzeniu. Wstęp do probabilistyki i statystyki. wykład
12 Ogólna (aksjomatyczna) definicja prawdopodobieństwa. Zakładamy, że zdarzenia losowe A i B są podzbiorami tego samego zbioru zdarzeń elementarnych E. Def. Jeśli każdemu zdarzeniu losowemu A przyporządkowano liczbę rzeczywistą (A) zwaną prawdopodobieństwem zdarzenia A, w taki sposób, aby spełnione były następujące warunki: I 0 (A) 1 II prawdopodobieństwo zdarzenia pewnego jest równe 1 (E)=1 III prawdopodobieństwo sumy dwóch wykluczających się zdarzeń jest równe sumie prawdopodobieństw tych zdarzeń ( A B) = ( A) + ( B),gdzie A B = to określoną w ten sposób funkcję nazywamy prawdopodobieństwem Wstęp do probabilistyki i statystyki. wykład 1 34 rawdopodobieństwo warunkowe Ogólna definicja: ( ) ( A B ) A B = ( B ) (rzy czym (B) > 0 (tj. zdarzenie B musi być jakkolwiek prawdopodobne) Efektywnie, każde prawdopodobieństwo jest warunkowe: np. dla danych zdarzeń A i B: A B = A B B ( A) = ( A Ω) ( A B) = 0 ( ) ( A) A B = ( B) A ( A B) = 1 Wstęp do probabilistyki i statystyki. wykład 1 35 Kostka przykład 1 Rzucamy trzema kostkami 6-cio-ściennymi. Wiemy, że na każdej kostce wypadła inna liczba oczek. Jakie jest prawdopodobieństwo że na jednej kostce wypadło 5 pod warunkiem że na każdej kostce wypadła inna liczba? ( A B) ( A B) ( B) = = Ω = Ω ( A B) 5 4 3Ω = ( B) Ω Wstęp do probabilistyki i statystyki. wykład
13 Telekomunikacja Obciążenie sieci telekomunikacyjnej w ciągu dnia: przesyłanie danych w Internecie ilość wykonanych połączeń telefonicznych (Źródło: Wstęp do probabilistyki i statystyki. wykład 1 37 Epidemiologia Statystyka umożliwia analizę i modelowanie rozwoju chorób oraz pomaga zapobiegać epidemiom. Statystyka medyczna, np. średnia liczba zachorowań w regionie Statystyka społeczna, np. gęstość zaludnienia Statystyka gospodarcza, np. KB, wydatki na opiekę zdrowotną Liczba zachorowań na świńską grypę w roku 2009 w USA (Źródło: Wstęp do probabilistyki i statystyki. wykład 1 38 Meteorologia Modele pogodowe umożliwiające przewidywanie pogody oraz wykrywanie potencjalnych kataklizmów, np. huraganów (Źródło:stormdebris.net/Math_Forecasting.html) Wstęp do probabilistyki i statystyki. wykład
Wstęp do probabilistyki i statystyki. Wykład 1. Wstęp
Wstęp do probabilistyki i statystyki Wykład 1. Wstęp dr hab.inż. Katarzyna Zakrzewska, prof.agh Katedra Elektroniki, AGH e-mail: zak@agh.edu.pl http://home.agh.edu.pl/~zak Wstęp do probabilistyki i statystyki.
Wstęp do probabilistyki i statystyki
Wstęp do probabilistyki i statystyki Wykład dr inż. Barbara Swatowska Katedra Elektroniki, AGH e-mail: swatow@agh.edu.pl http://home.agh.edu.pl/~swatow Plan zajęć Zajęcia: Wykład 0 h oraz Ćwiczenia 0 h
Wykład 2. Prawdopodobieństwo i elementy kombinatoryki
Wstęp do probabilistyki i statystyki Wykład 2. Prawdopodobieństwo i elementy kombinatoryki dr hab.inż. Katarzyna Zakrzewska, prof.agh Katedra Elektroniki, AGH e-mail: zak@agh.edu.pl http://home.agh.edu.pl/~zak
WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena
Metody probabilistyczne
Metody probabilistyczne 1. Prawdopodobieństwo klasyczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 03.10.2017 1 / 19 Rys historyczny Francja, XVII w.: gry hazardowe
Rachunek prawdopodobieństwa- wykład 2
Rachunek prawdopodobieństwa- wykład 2 Pojęcie dyskretnej przestrzeni probabilistycznej i określenie prawdopodobieństwa w tej przestrzeni dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet
Zmienna losowa. Rozkład skokowy
Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia
Podstawy nauk przyrodniczych Matematyka
Podstawy nauk przyrodniczych Matematyka Elementy rachunku prawdopodobieństwa dr inż. Małgorzata Szeląg Zakład Genetyki Molekularnej Człowieka tel. 61 829 59 04 malgorzata.szelag@amu.edu.pl Pokój 1.118
Po co nam statystyka matematyczna? Żeby na podstawie próby wnioskować o całej populacji
ODSTWY STTYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. opulacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne 6.
Statystyka matematyczna
Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 25 lutego 2019 Magdalena Alama-Bućko Statystyka matematyczna 25 lutego 2019 1 / 18 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.
Statystyka Astronomiczna
Statystyka Astronomiczna czyli zastosowania statystyki w astronomii historycznie astronomowie mieli wkład w rozwój dyscypliny Rachunek prawdopodobieństwa - gałąź matematyki Statystyka - metoda oceny właściwości
Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń
Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń dr inż. Krystyna Schneider, Katedra Elektroniki, AGH e-mail: kryschna@agh.edu.pl http://home.agh.edu.pl/~kryschna 1 Plan:
Statystyka matematyczna
Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 26 lutego 2018 Magdalena Alama-Bućko Statystyka matematyczna 26 lutego 2018 1 / 16 Wykład : 10h (przez 10 tygodni po 45 minut) zaliczenie wykładu
Rachunek prawdopodobieństwa
Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry
(C. Gauss, P. Laplace, Bernoulli, R. Fisher, J. Spława-Neyman) Wikipedia 2008
STATYSTYKA MATEMATYCZNA - dział matematyki stosowanej oparty na rachunku prawdopodobieństwa; zajmuje się badaniem zbiorów na podstawie analizy ich części. Nauka, której przedmiotem zainteresowania są metody
Statystyka matematyczna
Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 20 lutego 2017 Magdalena Alama-Bućko Statystyka matematyczna 20 lutego 2017 1 / 21 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45
3. Podstawowe pojęcia statystyki matematycznej i rachunku prawdopodobieństwa wykład z Populacja i próba
3. Podstawowe pojęcia statystyki matematycznej i rachunku prawdopodobieństwa wykład z 12.03.2007 Populacja i próba Populacja- zbiorowość skończona lub nieskończona, w stosunku do której mają być formułowane
II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15
II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa
Statystyka opisowa. Wykład I. Elementy statystyki opisowej
Statystyka opisowa. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Elementy statystyku opisowej 1 Elementy statystyku opisowej 2 3 Elementy statystyku opisowej Definicja Statystyka jest to nauka o
Prawdopodobieństwo i statystyka Wykład I: Nieco historii
Prawdopodobieństwo i statystyka Wykład I: Nieco historii 6 października 2015 Prawdopodobieństwo i statystyka Wykład I: Nieco historii Zasady zaliczenia przedmiotu: Zaliczenie ćwiczeń rachunkowych. Zdanie
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2015/2016 Przedmiot: MATEMATYKA Klasa: III 2 godz/tyg 30 = 60 godzin Rozkład materiału nauczania Temat I. LOGARYTMY
Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka
Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład
Zdarzenia losowe i prawdopodobieństwo
Rozdział 1 Zdarzenia losowe i prawdopodobieństwo 1.1 Klasyfikacja zdarzeń Zdarzenie elementarne pojęcie aprioryczne, które nie może być zdefiniowane. Odpowiednik pojęcia punkt w geometrii. Zdarzenie elementarne
Wstęp. Kurs w skrócie
Mariola Zalewska Zakład Metod Matematycznych i Statystycznych Zarządzania Wydział Zarządzania Uniwersystet Warszawski I rok DSM Rachunek Prawdopodobieństwa Wstęp Kombinatoryka Niezależność zdarzeń, Twierdzenie
Rachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Przestrzeń probabilistyczna Niech Ω będzie dowolnym zbiorem, zwanym przestrzenią zdarzeń elementarnych. Elementy ω tej przestrzeni nazywamy zdarzeniami elementarnymi.
Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu
Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)
Statystyka w pracy badawczej nauczyciela
Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem
Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)
Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Twierdzenie (o mnożeniu) Podstawowe pojęcia i wzory kombinatoryczne. Niech,, będą zbiorami mającymi odpowiednio,,
RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA
Wydział: WiLiŚ, Transport, sem.2 dr Jolanta Dymkowska RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Przestrzeń probabilistyczna Modelem matematycznym (tj. teoretycznym, wyidealizowanym,
Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy
Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy
CZEŚĆ PIERWSZA. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III I. POTĘGI
Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III CZEŚĆ PIERWSZA I. POTĘGI Zamienia potęgi o wykładniku całkowitym ujemnym na odpowiednie potęgi o wykładniku naturalnym. Oblicza wartości
Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa
Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy, rok akademicki 2015 2016 Doświadczenie losowe Doświadczenie
STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych;
STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; - badanie skuteczności nowego leku; - badanie stopnia zanieczyszczenia gleb metalami
STATYSTYKA I DOŚWIADCZALNICTWO
STATYSTYKA I DOŚWIADCZALNICTWO dla studiów magisterskich kierunku ogrodnictwo Wykład 1 Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Słowo statystyka pochodzi
STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa
STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem
RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA
RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA Doświadczenia losowe Rachunek prawdopodobieństwa zajmuje się zdarzeniami jakie zachodzą, gdy przeprowadzamy doświadczenia losowe. Mówimy, że doświadczenie jest
Próba własności i parametry
Próba własności i parametry Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. Literatura: Marek Cieciura, Janusz Zacharski, Metody probabilistyczne w ujęciu praktycznym, L. Kowalski, Statystyka, 2005 R.Leitner, J.Zacharski, "Zarys matematyki
P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.
P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie,
W2 Podstawy rachunku prawdopodobieństwa (przypomnienie)
W2 Podstawy rachunku prawdopodobieństwa (przypomnienie) Henryk Maciejewski Jacek Jarnicki Marek Woda www.zsk.iiar.pwr.edu.pl Rachunek prawdopodobieństwa - przypomnienie 1. Zdarzenia 2. Prawdopodobieństwo
Rachunek Prawdopodobieństwa MAP1181 Wydział Matematyki, Matematyka Stosowana Projekt - Paradoks kawalera de Mere Opracowanie: Paulina Rygiel
1 Trochę historii na wstępie Rachunek Prawdopodobieństwa MAP1181 Wydział Matematyki, Matematyka Stosowana Projekt - Paradoks kawalera de Mere Opracowanie: Paulina Rygiel Antoine Gombaud, znany jako Chevalier
Rachunek Prawdopodobieństwa Anna Janicka
Rachunek Prawdopodobieństwa Anna Janicka wykład I, 2.10.2018 PODSTAWY RACHUNKU PRAWDOPODOBIEŃSTWA Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: wtorki, godz. 9:15 s. B006 strona z materiałami
POJĘCIA WSTĘPNE. STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych.
[1] POJĘCIA WSTĘPNE STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych. BADANIE STATYSTYCZNE - ogół prac mających na celu poznanie struktury określonej
Wykład 2. Zdarzenia niezależne i prawdopodobieństwo całkowite
Wstęp do probabilistyki i statystyki Wykład 2. Zdarzenia niezależne i prawdopodobieństwo całkowite dr hab.inż. Katarzyna Zakrzewska, prof.agh, Katedra lektroniki, WIT AGH Wstęp do probabilistyki i statystyki.
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.1. σ ciało (algebra) zdarzeń Katarzyna Rybarczyk-Krzywdzińska losowe Zdarzenie losowe to pewien podzbiór przestrzeni zdarzeń
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. opulacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Metody probabilistyczne
Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa
Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski
Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW STATYSTYKA to nauka, której przedmiotem
Metody Statystyczne. Metody Statystyczne.
gkrol@wz.uw.edu.pl #4 1 Sprawdzian! 5 listopada (ok. 45-60 minut): - Skale pomiarowe - Zmienne ciągłe i dyskretne - Rozkład teoretyczny i empiryczny - Miary tendencji centralnej i rozproszenia - Standaryzacja
Wykład: 20 godz., ćwiczenia: 20 godz. Zasady zaliczenia: zaliczenie ćwiczeń na ocenę, zaliczenie wykładu - egzamin (pisemne).
Tematy: Statystyka opisowa. rozproszenia. WSTĘP Miary tendencji centralnej i Doświadczenia losowe. Aksjomaty teorii prawdopodobieństwa. Własności prawdopodobieństwa. Klasyczna definicja prawdopodobieństwa.
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa
Statystyka. Wykład 2. Magdalena Alama-Bućko. 27 lutego Magdalena Alama-Bućko Statystyka 27 lutego / 39
Statystyka Wykład 2 Magdalena Alama-Bućko 27 lutego 2017 Magdalena Alama-Bućko Statystyka 27 lutego 2017 1 / 39 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: https://bdl.stat.gov.pl/
WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH. Sposoby sprawdzania wiedzy i umiejętności uczniów
WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH Sposoby sprawdzania wiedzy i umiejętności uczniów 1. Odpowiedzi ustne. 2. Sprawdziany pisemne. 3. Kartkówki. 4. Testy.
51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń.
Matematyka lekcja 5 5. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. I. rzypomnij sobie:. Jak rysujemy drzewo stochastyczne i przy jego pomocy obliczamy prawdopodobieństwo
III. ZMIENNE LOSOWE JEDNOWYMIAROWE
III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta
zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.
Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie
Sposoby prezentacji problemów w statystyce
S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki
Prawdopodobieństwo i statystyka Wykład I: Przestrzeń probabilistyczna
9 października 2018 Zasady zaliczenia przedmiotu: Zaliczenie ćwiczeń rachunkowych. Zdanie egzaminu ustnego z treści wykładu. Literatura J. Jakubowski i R. Sztencel, Wstęp do teorii prawdopodobieństwa.
Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl
Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.
I WYKŁAD STATYSTYKA. 5/03/2014 B8 sala 0.10B Godz. 15:15
I WYKŁAD STATYSTYKA 5/03/2014 B8 sala 0.10B Godz. 15:15 STATYSTYKA WYKŁAD I 1. Organizacja zajęć 2. Wstęp do statystyki Prowadzący: Wykłady: 1.prof. Mieczysław Rękas - A-3 IV p. p. 404; rekas@agh.edu.pl
Rachunku prawdopodobieństwa: rys historyczny, aksjomatyka, prawdopodobieństwo warunkowe,
Rachunku prawdopodobieństwa: rys historyczny, aksjomatyka, prawdopodobieństwo warunkowe, niezależność zdarzeń dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu Semestr letni
RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub
RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę
Rachunek Prawdopodobieństwa Anna Janicka
Rachunek Prawdopodobieństwa Anna Janicka wykład I, 3.10.2017 PODSTAWY RACHUNKU PRAWDOPODOBIEŃSTWA Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: wtorki, godz. 9:15 s.?? strona z materiałami
Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki
Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);
Statystyka i analiza danych pomiarowych Podstawowe pojęcia statystyki cz. 2. Tadeusz M. Molenda Instytut Fizyki, Uniwersytet Szczeciński
Statystyka i analiza danych pomiarowych Podstawowe pojęcia statystyki cz. 2. Tadeusz M. Molenda Instytut Fizyki, Uniwersytet Szczeciński Opracowanie materiału statystycznego Szereg rozdzielczy częstości
Biostatystyka, # 2 /Weterynaria I/
Biostatystyka, # 2 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl
Statystyka z elementami rachunku prawdopodobieństwa
Statystyka z elementami rachunku prawdopodobieństwa dr hab. Tomasz Górecki tomasz.gorecki@amu.edu.pl Zakład Rachunku Prawdopodobieństwa i Statystyki Matematycznej Wydział Matematyki i Informatyki Uniwersytet
Z poprzedniego wykładu
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne
Matematyczne Podstawy Kognitywistyki
Matematyczne Podstawy Kognitywistyki Dorota Leszczyńska-Jasion Kombinatoryka, ci agi liczbowe, skończone przestrzenie probabilistyczne Przykłady zagadnień kombinatorycznych Rozważmy układ n miast o bardzo
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
STATYSTYKA OPISOWA. Przykłady problemów: - badanie opinii publicznej na temat preferencji wyborczych;
STATYSTYKA OPISOWA Przykłady problemów: - badanie opinii publicznej na temat preferencji wyborczych; - badanie stanu zdrowia w pewnej miejscowości; - badanie stopnia zanieczyszczenia gleb metalami ciężkimi
Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska
Probabilistyczne podstawy statystyki matematycznej Dr inż. Małgorzata Michalcewicz-Kaniowska 1 Zdarzenia losowe, algebra zdarzeń Do podstawowych pojęć w rachunku prawdopodobieństwa zaliczamy: doświadczenie
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
2. Lesław Gajek, Marek Kałuszka, Wnioskowanie statystyczne. Modele i metody. Dla studentów.
Literatura:. Jerzy Greń, Statystyka matematyczna. Modele i zadania.. Lesław Gajek, Marek Kałuszka, Wnioskowanie statystyczne. Modele i metody. Dla studentów.. J. Koronacki, J. Mielniczuk, Statystyka dla
Matematyka z el. statystyki, # 2 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 2 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl
ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.
Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej
Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2016/2017
Rachunek prawdopodobieństwa i statystyka matematyczna Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2016/2017 1 1 Wstęp Rachunek prawdopodobieństwa i statystyka to: działy matematyki
Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej
Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie
Rozkłady prawdopodobieństwa zmiennych losowych
Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.
TERMODYNAMIKA I FIZYKA STATYSTYCZNA
TERMODYNAMIKA I FIZYKA STATYSTYCZNA Lech Longa pok. D.2.49, II piętro, sektor D Zakład Fizyki Statystycznej e-mail: lech.longa@uj.edu.pl Dyżury: poniedziałki 13-14 można się umówić wysyłając e-maila 1
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 3
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 3 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Zmienna losowa i jej
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.0. Wstęp Katarzyna Rybarczyk-Krzywdzińska Wstęp Dlaczego prawdopodobieństwo klasyczne nie wystarcza? Jak opisać grę w ruletkę,
Zadania o numerze 4 z zestawów licencjat 2014.
Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...
Literatura. Podgórski J., Statystyka dla studiów licencjackich, PWE, Warszawa 2010.
Metody statystyczne Literatura Podgórski J., Statystyka dla studiów licencjackich, PWE, Warszawa 2010. Stąpor K. Wykłady z metod statystycznych dla informatyków z przykładami w języku R. Wydawnictwo Politechniki
Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU
Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Jakubowski, Sztencel:
Doświadczenie i zdarzenie losowe
Doświadczenie i zdarzenie losowe Doświadczenie losowe jest to takie doświadczenie, które jest powtarzalne w takich samych warunkach lub zbliżonych, a którego wyniku nie można przewidzieć jednoznacznie.
Podstawowe pojęcia. Własności próby. Cechy statystyczne dzielimy na
Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony zbiór jednostek, które
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH)
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH) Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 1 1 / 24 Warunki zaliczenia 1 Do egzaminu dopuszczeni wszyscy, którzy uczęszczali na
Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej
Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
zbieranie porządkowanie i prezentacja (tabele, wykresy) analiza interpretacja (wnioskowanie statystyczne)
STATYSTYKA zbieranie porządkowanie i prezentacja (tabele, wykresy) analiza interpretacja (wnioskowanie statystyczne) DANYCH STATYSTYKA MATEMATYCZNA analiza i interpretacja danych przy wykorzystaniu metod
Katalog wymagań na poszczególne stopnie szkolne klasa 3
Katalog wymagań na poszczególne stopnie szkolne klasa 3 I. GRANIASTOSŁUPY I OSTROSŁUPY 6 5 4 3 2 Wskazuje wśród wielościanów graniastosłupy proste i pochyłe. Wskazuje na modelu lub rysunku krawędzie, wierzchołki,
KURS PRAWDOPODOBIEŃSTWO
KURS PRAWDOPODOBIEŃSTWO Lekcja 3 Definicja prawdopodobieństwa Kołmogorowa. Prawdopodobieństwa warunkowe i niezależne. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko
= A. A - liczba elementów zbioru A. Lucjan Kowalski
Lucjan Kowalski ZADANIA, PROBLEMY I PARADOKSY W PROBABILISTYCE Przypomnienie. Ω - zbiór zdarzeń elementarnych. A zdarzenie (podzbiór Ω). A - liczba elementów zbioru A Jeśli zdarzeń elementarnych jest skończenie
Statystyka matematyczna
Statystyka matematyczna Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka matematyczna 5 marca 2018 1 / 14 Prawdopodobieństwo klasyczne Ω - zbiór wszystkich zdarzeń elementarnych
Zagadnienia: wprowadzenie podstawowe pojęcia. Doświadczalnictwo. Anna Rajfura
Zagadnienia: wprowadzenie podstawowe pojęcia Doświadczalnictwo 1 Termin doświadczalnictwo Doświadczalnictwo planowanie doświadczeń oraz analiza danych doświadczalnych z użyciem metod statystycznych. Doświadczalnictwo
Przedmiot statystyki. Graficzne przedstawienie danych.
Przedmiot statystyki. Graficzne przedstawienie danych. dr Mariusz Grządziel 23 lutego 2009 Przedmiot statystyki Statystyka dzieli się na trzy części: -zbieranie danych; -opracowanie i kondensacja danych
Rachunek prawdopodobieństwa dla informatyków
Rachunek prawdopodobieństwa dla informatyków Adam Roman Instytut Informatyki UJ Wykład 1 rys historyczny zdarzenia i ich prawdopodobieństwa aksjomaty i reguły prawdopodobieństwa prawdopodobieństwo warunkowe