ĆWICZENIE 2. BADANIE WAHADEŁ SPRZĘŻONYCH.
|
|
- Andrzej Tomczyk
- 8 lat temu
- Przeglądów:
Transkrypt
1 ĆWICZENIE BADANIE WAHADEŁ SPRZĘŻONYCH Wahadło sprzężone Weźmy pod uwagę układ złożony z dwóch wahadeł o długościach połączonych sprężyną o współczynniku kierującym k Rys Na wahadło działa siła będąca składową siły ciężkości równoege do osi x, kórej warość (da małych wychyeń) jes proporcjonana do wychyenia F ~ x, ub w posaci równości F = x, oraz siła sprężysości pochodząca od sprężyny sprzęgającej oba wahadła F = k( y x) Na drugie wahadło działają odpowiednio siły F = y oraz F = k( x y) = k( y x) Różniczkowe równanie ruchu da pierwszego wahadła zapiszemy w posaci: m d x = x + k( y x ), // d a da drugiego w posaci m d y = y k( y x ) // d Orzymaiśmy układ dwóch iniowych, jednorodnych, zaeżnych równań różniczkowych Niech m = m = m, wówczas dodając sronami // i // dosaniemy m d x m d y + = ( x + y ), d d Wahadła sprzężone
2 ub m d ( x + y) = ( x + y ), d /3/ a odejmując sronami od równania // równanie // orzymamy: m d ( x y) = ( x y) k( x y ) d /4/ Wprowadźmy nowe oznaczenia: i V = ( x y ), U = ( x + y ) Wówczas równanie /3/ przejdzie w równanie m d U = U, d /5/ a równanie /4/ w równanie m d V = V kv d Po prosych przekszałceniach osani związek da się zapisać jako: d V g k = + d m V /6/ Niech g = ω g k, a + = ω, m /7/ wówczas d U + ω U = 0, d /8/ oraz d V + ω V = 0 d Są o różniczkowe równania oscyaorów harmonicznych prosych Rozwiązania ych równań możemy przedsawić związkami: U = A cos( ω + φ ), oraz /9/ V = A cos ω + φ, ( ) gdzie: A, A, φ, φ - sałe dowone, kóre możemy wyznaczyć z warunków począkowych, (A - ampiudy, φ - fazy począkowe) Funkcje przedsawione wyrażeniami /9/ opisują drgania własne wahadeł sprzężonych, a częsości ω i ω są częsościami własnymi Wracając do zmiennych wyjściowych orzymamy: x - y = A cos(ω + φ ), x + y = A cos(ω + φ ), sąd x = [ A cos( ω + φ ) + A cos( ω + φ )], /0/ Wahadła sprzężone
3 oraz y = [ A cos( ω + φ ) A cos( ω + φ )] // Ruch wahadeł sprzężonych przy małych wychyeniach jes superpozycją dwóch drgań normanych (własnych) o różnych częsościach własnych ω ω Układ aki jes układem niezdegenerowanym W przypadku układu zdegenerowanego ω = ω Niech w chwii począkowej A = 0, wówczas x = y = A cos ω + φ, // ( ) gdzie: ω = g Oba wahadła wykonują jednocześnie drgania o częsości własnej ω i fazie począkowej φ Jeżei w chwii począkowej A = 0, o x = y = A cos ω + φ, /3/ ( ) gdzie ω = g k + m Oba wahadła drgają z cząsością kołową ω i znajdują się w ej samej fazie φ Powyższe rozważania można uogónić Wahadło sprzężone sanowi układ o dwóch sopniach swobody, kórych ruch jes superpozycją dwóch, zachodzących równocześnie, niezaeżnych drgań harmonicznych Przypuśćmy, że częsości własne wahadeł sprzężonych nieco się różnią, a zaem jes spełniony warunek ω ω Możiwe jes o, gdy k g /3'/ m Da uproszczenia przyjmijmy, że ampiudy A = A = A, a fazy począkowe φ = φ = 0 Jak wcześniej pokazano ω = g a ω = g k + m Po prosych przekszałceniach g ω = + k, ae k + = k + Wahadła sprzężone 3
4 ponieważ k (z założenia słabe sprzężenie), o osanie wyrażenie można rozwinąć w szereg poęgowy Newona k k 3 + = k + k k + = + Z uwagi na warunek /3'/ odrzuciiśmy w rozwinięciu wyrazy wyższe od drugiego rzędu g k Zaem ω + ω m Obecnie wzory /0/ i // możemy zapisać w posaci: A ω ω + ω x = ( cosω + cosω ) = A cos cos, /4'/ A ω ω + ω y = ( cosω cosω ) = A sin sin Wprowadzając oznaczenia ω ω + ω = ω oraz = ω, osanie zaeżności możemy zapisać x = A cos cos ω ω, /4/ y = A sin sin ω ω Wyrażenia A cos ω i A sin ω są odpowiednio ampiudami pierwszego i drugiego wahadła, jak widać ze wzoru /4/, zaeżnymi od czasu Przebieg drgań przedswiono na wykresach poniżej Rys Wahadła sprzężone 4
5 Porównując oba wykresy, ławo zauważyć, że gdy jedno wahadło wykonuje drgania maksymane, drugie w ym czasie znajduje się w położeniu równowagi i odwronie Zaem energia drgań periodycznie przechodzi od jednego wahadła do drugiego i na odwró Obserwowane zjawisko sanowi dudnienia o częsości ω + ω = ω = πν gdzie :ν = - jes częsoiwością dudnienia o okresie T T Aby obiczyć energię przenoszoną z jednego wahadła na drugie we wzorach /4'/ podsawiamyω = ω + ω mod, oraz ω = ω mod wówczas x = [ A cos( ω + ω mod ) + A cos( ω mod ) ] Amod ( ) cosω, /5/ y = [ A cos( ω + ω mod ) A cos( ω mod ) ] Bmod ( ) sinω Drgania opisane powyższymi równaniami mają cechy drgań quasiharmonicznych Energia całkowia jes sumą energii kineycznej i poencjanej wahadeł ( jeżei sprężyna jes słaba, o i sprzężenie słabe i energię przekazywaną pomiędzy sprężyną sanowiącą słabe sprzężenie z wahadłem możemy pominąć) Energia wahadła mv E = E k + E p = + mω x = mω A Wahadło możemy porakować w ciągu jednego cyku "szybkich oscyacji" (parz wykresy wyżej) jako oscyaor harmoniczny o częsości własnej ω śr i sałej ampiudzie A mod, zaem: E = mω Amod = ma ω cos ω mod Widać sąd, że energia a jes równa podwojonej warości jego średniej energii kineycznej (uśrednionej po czasie równym okresowi "szybkiego" cyku) Podobnie da drugiego wahadła Po zsumowaniu E = mω Bmod = ma ω sin ω mod E = E + E = ma ω Różnica ych energii wyraża się wzorem = ( ) E E E cos ω ω Z dwóch osanich równań ławo orzymać zaeżność E = E[ + cos( ω ) ], Wahadła sprzężone 5
6 oraz /6/ E = E[ cos( ω ) ] Energia całkowia obu wahadeł jes sała i przepływa z jednego wahadła do drugiego z częsością równą częsości dudnień Rys3 "Zegar amoniakany" Słabo sprzężone oscyaory spoykamy częso w mikroświecie Opis maemayczny wykazuje duże podobieńswo do opisu słabo sprzężonych wahadeł o dwu sopniach swobody Zamias przepływu energii z częsoiwościami dudnień jak o obserwujemy w układach mechanicznych mamy u do czynienie z przepływem prawdopodobieńswa, ponieważ kwadra ampiudy da poszczegónego sopnia swobody daje prawdopodopodobieńswo, że en sopień swobody ma cała energię (zosał pobudzony) Ponado energia w mechanice kwanowej jes skwanowana Przykładem akiego oscyaora sprzężonego może być zegar amoniakany Zasadniczą częścią zegara amoniakanego jes cząseczka amoniaku NH 3 Trzy aomy wodoru worzą rójką równoboczny a aom azou może przyjmować dwa położenia w odpowiednich wierzchołkach czworościanu, kórego podsawę wyznaczają aomy wodoru Aom azou mogący wykonywać drgania wokół położeń równowagi w kórymkowiek wierzchołku zachowuje się jak wahadło Oba położenia odpowiadają dwu wahadłom Przejście z jednego położenia do drugiego urudnione jes barierą poencjału odgradzającą jedno położenie od drugiego W mechanice kwanowej isnieje możiwość przenikania przez barierę poencjału Niech w chwii = 0 cząseczka NH 3 znajduje się Wahadła sprzężone 6
7 Rys4 w akim sanie kwanowym, że aom azou wykonuje drgania wokół położenia równowagi // Począkowe prawdopodobieńswo Ψ =, a Ψ = 0 (w sanie // prawdopodobieńswo drgań aomu azou jes równe 0) Z rozwiązania równań Schrödingera wynika, że Ψ = [ ( ) ] + cos ω, Ψ = cos ω, [ ( ) ] gdzie: ω i ω - o częsości kołowe drgań normanych Ławo zauważyć, że całkowie prawdopodobieńswo (pobyu aomu N w sanie i ) Ψ = Ψ + Ψ = Jeżei ω > ω, o san cząseczki jes nierwały (odpowiada wzbudzeniu i cząseczka emiuje faę eekromagneyczną o częsoiwości równej częsoiwości dudnień ν= ν - ν przechodząc do sanu // (odpowiadającego sanowi podsawowemu) Przy czym ν 0 0 Hz co odpowiada długości fai λ,5 cm Przepuszczając przez gazowy amoniak wiązkę mikrofa o częsoiwości 0 0 Hz powodujemy wzbudzenia cząseczek do sanu // Nasępuje wymiana energii między wiązką mikrofa a gazowym amoniakiem i na odwró cząseczki amoniaku pozbywając się wzbudzeń przekazują foony do wiązki mikrofa Zbudowany na ej zasadzie zegar daje jeden z najdokładniejszych pomiarów czasu Układ obojęnych mezonów Κ Układ składa się mezonów Κ o i anyymezonów Κ o, posiada dwa sopnie swobody i zachowuje się podobnie do układu dwu słabo sprzężonych wahadeł Każdy z nich może oddziaływać z mezonami Π drogą słabego oddziaływania Wahadła sprzężone 7
8 Mezony Π sanowią u anaogię sprężyny Zaem mamy dwie posacie drgań o prosych mezon Κ i Κ o, przy czym en pierwszy podega sinemu łumieniu a en drugi jes słabo łumiony Jeżei prawdopodobieńswo w chwii = 0, że mezon Κ o jes sinie łumiony wynosi, o prawdopodobieńswo o zmniejsza się z czasem wykładniczo Ψ Κ o Ψ = e τ Tłumienie wynika z rozpadu mezonu na piony, a τ jes średnim czasem życia Κ o Jeżei w chwii = 0 = (prawdopodobieńswo znajdowania sie w sanie Κ o ) i jeżei nie było łumienia, o prawdopodobieńswo, że układ znaazł się w późniejszej chwii w ym samym sanie Κ o Ψ Κ o = + ( ) [ ] cos ω ω, a prawdopodobieńswo znaezienia się układu (bez łumienia) w sanie Κ o Ψ = Κ o [ ( ) ] cos ω Ponieważ wysępuje łumienie (rozpad mezonów Κ o i anyymezonów Κ o na piony - inne cząski eemenarne), o prawdopodobieńswo wyraża się wzorami: ( τ + τ τ ) τ Ψ Κ o = e + e + e ( ) 4 cos ω ω, ( τ + τ τ ) τ Ψ Κ o = e + e e ( ) 4 cos ω ω Wykonanie ćwiczenia Zesaw pomiarowy składa się dwu wahadeł, ekkiej sprężyny i ewenuanie częsościomierza (icznika) z fookomórką Rys5 Przebieg pomiarów Monujemy wahadło I o długości Mierzymy czas 00 wahnięć wahadła I i wyznaczamy częsość ω 0 Wahadła sprzężone 8
9 3 Monujemy wahadło II o długości 4 Mierzymy czas 00 wahnięć wahadła II i wyznaczamy częsość własną ω 0 5 Powarzamy pomiary z punku i 4 rzykronie Obiczamy średnią warość ω 0 i ω 0 6 Sporządzamy wahadło sprzężone i wyznaczamy czas 0 wahnięć wahadła II odchyając wahadło II o A przy ampiudzie wahadła I A = 0 Obiczamy częsość ω 7 Mierzymy czas 0 wahnięć wahadła I przy począkowym wychyeniu wahadła I o ampiudę A a wahadła II o A = 0 Obiczamy ω 8 Powarzamy pomiary z punku 6 i 7 dwukronie da akich samych wychyeń 9 Powarzamy pomiary z punku 6, 7 i 8 da różnych ampiud począkowych (rzech) 0Powarzamy pomiary z punków - 9 da 4 rożnych długości wahadeł ( = ) Wychyamy wahadła I i II o akie same ampiudy Mierzymy częsość dudnień Wyznaczamy czas 0 dudnień a nasępnie obiczamy częsość dudnień (da każdego układu sprzężonego) Obiczamy częsość dudnień ω = ω (da każdego układu sprzężonego) 4π 3Obiczamy sałą sprzężenia sprężyny k = ( ω ) 4Obiczamy prawdopodobieńswo przenoszenia energii E /E i E /E da każdej serii pomiarów da chwi odpowiadających wieokroności /4 okresu dudnień 5Sporządzamy wykresy E /E = f () i E /E = f () 6Powarzamy pomiary i obiczenia da układu wahadeł sprzężonych o długościach = 7Przeprowadzamy rachunek i dyskusję błędów 8Wyciągamy wnioski i przeprowadzamy dyskusję wyników LITERATURA RFeynman, RLeighon, MSands - Feynmana wykłady z fizyki I ci FCCrawford - Fae 3 JGiner, OGzowski i inni - Fizyka czii 4 red SKaiski - Drgania i fae Wahadła sprzężone 9
ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie
ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
drgania h armoniczne harmoniczne
ver-8..7 drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne () An cos( nω + ϕ n ) N n Fig (...) analiza Fouriera małe drgania E p E E k E p ( ) jeden sopień swobody: -A A E p
ψ przedstawia zależność
Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi
ver b drgania harmoniczne
ver-28.10.11 b drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne N = n=1 A n cos nω n Fig (...) analiza Fouriera małe drgania E p E E k jeden sopień swobody: E p -A E p A 0
Metody Lagrange a i Hamiltona w Mechanice
Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /
WYKŁAD FIZYKAIIIB 2000 Drgania tłumione
YKŁD FIZYKIIIB Drgania łumione (gasnące, zanikające). F siła łumienia; r F r b& b współczynnik łumienia [ Nm s] m & F m & && & k m b m F r k b& opis różnych zjawisk izycznych Niech Ce p p p p 4 ± Trzy
Sformułowanie Schrödingera mechaniki kwantowej. Fizyka II, lato
Sformułowanie Schrödingera mechaniki kwanowej Fizyka II, lao 018 1 Wprowadzenie Posać funkcji falowej dla fali de Broglie a, sin sin k 1 Jes o przypadek jednowymiarowy Posać a zosała określona meodą zgadywania.
m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):
Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy
RUCH HARMONICZNY. sin. (r.j.o) sin
RUCH DRGJĄCY Ruch harmoniczny Rodzaje drgań Oscylaor harmoniczny Energia oscylaora harmonicznego Wahadło maemayczne i fizyczne Drgania łumione Drgania wymuszone i zjawisko rezonansu RUCH HRMONICZNY Ruch
2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)
Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza
XXII OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne
XXII OLIMPIADA FIZYCZNA EAP I Zadanie doświadczane ZADANIE D Nazwa zadania: Młoek w wannie Zmierz okres drań sosunkowo masywneo ciała żeazneo o kszałcie w miarę opływowym (np łówki młoka), zawieszoneo
C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:
Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
Podstawy fizyki sezon 1 VII. Ruch drgający
Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania
Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż.
Ruch drgajacy dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Ruch drgajacy Drgania harmoniczne Drgania oscylacje to cykliczna
Temat VIII. Drgania harmoniczne
Tema VIII Drgania harmoniczne Równanie ruchu F k Siła k m Równanie ruchu sin cos Położenie równowagi w ruchu drgającym Położenie równowagi o akie położenie, w kórym siły wymuszające ruch równoważą się
ĆWICZENIE 2. POMIAR NATĘŻENIA POLA GRAWITACYJNEGO W SIEDLCACH PRZY POMOCY MODELU WAHADŁA MATEMATYCZNEGO. Wprowadzenie
ĆWICZENIE. POMIAR NATĘŻENIA POLA GRAWITACYJNEGO W SIEDLCACH PRZY POMOCY MODELU WAHADŁA MATEMATYCZNEGO Wprowadzenie Punkt materiany zaczepiony na nierozciąiwej nici o dłuości tworzy układ zwany wahadłem
Lista nr Znaleźć rozwiązania ogólne następujących równań różniczkowych: a) y = y t,
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE B Lisa nr 1 1. Napisać równanie różniczkowe, jakie spełnia napięcie u = u() na okładkach kondensaora w obwodzie zawierającym połączone szeregowo oporność R i pojemność C,
gdzie ω jest częstością kołową. Rozwiązaniem powyższego równania różniczkowego II-go stopnia jest wyrażenie (2) lub ( )
RUCH HARMONICZNY I. Ce ćwiczenia: wyznaczenie wartości przyspieszenia zieskiego poiar współczynnika sprężystości sprężyny k, zaznajoienie się z podstawowyi wiekościai w ruchu haroniczny. II. Przyrządy:
Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.
Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych
Drgania i fale II rok Fizyk BC
00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem
Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.
Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać
Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim
Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Fizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =
ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:
WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera.
7. Całka Fouriera w posaci rzeczywisej. Wykład VII Przekszałcenie Fouriera. Doychczas rozparywaliśmy szeregi Fouriera funkcji w ograniczonym przedziale [ l, l] lub [ ] Teraz pokażemy analogicznie przedsawienie
PRACOWNIA FIZYCZNA DLA UCZNIÓW WAHADŁA SPRZĘŻONE
PRACOWNA FZYCZNA DLA UCZNÓW WAHADŁA SPRZĘŻONE W ćwiczeniu badać będziemy drgania dwóch wahadeł sprzężonych za pomocą sprężyny. Wahadła są jednakowe (mają ten sam moment bezwładności, tę samą masę m i tę
Podstawowe wyidealizowane elementy obwodu elektrycznego Rezystor ( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( τ ) i t i t u ( ) u t u t i ( ) i t. dowolny.
Tema. Opracował: esław Dereń Kaedra Teorii Sygnałów Insyu Telekomunikacji Teleinformayki i Akusyki Poliechnika Wrocławska Prawa auorskie zasrzeżone Podsawowe wyidealizowane elemeny obwodu elekrycznego
Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.
Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej
VII. ZAGADNIENIA DYNAMIKI
Konderla P. Meoda Elemenów Skończonych, eoria i zasosowania 47 VII. ZAGADNIENIA DYNAMIKI. Równanie ruchu dla zagadnienia dynamicznego Q, (7.) gdzie M NxN macierz mas, C NxN macierz łumienia, K NxN macierz
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH
POLIECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGEYKI INSYU MASZYN i URZĄDZEŃ ENERGEYCZNYCH IDENYFIKACJA PARAMERÓW RANSMIANCJI Laboraorium auomayki (A ) Opracował: Sprawdził: Zawierdził:
DYNAMIKA KONSTRUKCJI
10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej
Wykład 4 Metoda Klasyczna część III
Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)
O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,
cx siła z jaką element tłumiący działa na to ciało.
Drgania układu o jedny sopniu swobody Rozparzy układ składający się z ciała o asie połączonego z nierucoy podłoże za poocą eleenu sprężysego o współczynniku szywności k oraz eleenu łuiącego o współczynniku
WYDZIAŁ LABORATORIUM FIZYCZNE
1 W S E i Z W WARSZAWE WYDZAŁ LABORAORUM FZYCZNE Ćwiczenie Nr 1 emat: WYZNACZNE PRZYSPESZENA ZEMSKEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Warszawa 9 WYZNACZANE PRZYSPESZENA ZEMSKEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO
PODSTAWY CHEMII KWANTOWEJ. Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoretycznej Zespół Chemii Kwantowej Grupa Teorii Reaktywności Chemicznej
PODSTWY CHEMII KWTOWEJ Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoreycznej Zespół Chemii Kwanowej Grupa Teorii Reakywności Chemicznej LITERTUR R. F. alewajski, Podsawy i meody chemii kwanowej:
WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO
Ćwiczenie 0 WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO 0.1. Wiadomości oóne Wahadłem fizycznym nazywamy ciało sztywne, zawieszone na poziomej osi nie przechodzącej przez jeo środek
Związek między ruchem harmonicznym a ruchem jednostajnym po okręgu
Związek międz ruchem harmonicznm a ruchem jednosajnm po okręgu Rozważm rzu Q i R punku P na osie i : Q cos v r R sin R Q P δ Q cos ( δ ) R sin ( δ ) Jeżeli punk P porusza się ruchem jednosajnm po okręgu,
Stosując II zasadę dynamiki Newtona dla ruchu postępowego otrzymujemy
Zadania do rozdziału 6 Zad.6.. Wprowadzić równanie ruchu drgań wahadła matematcznego. Obicz okres wahadła matematcznego o długości =0 m. Wahadło matematczne jest to punkt materian (np. w postaci kuki K
Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera.
ĆWICZENIE WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Opis ćwiczenia Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
RUCH HARMONICZNY. sin. (r.j.o) sin
RUCH DRGAJĄCY Ruch harmoniczny Rodzaje drgań Oscylator harmoniczny Energia oscylatora harmonicznego Wahadło matematyczne i fizyczne Drgania tłumione Drgania wymuszone i zjawisko rezonansu Politechnika
ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym
ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami
Pobieranie próby. Rozkład χ 2
Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie
Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego
Ćwiczenie nr Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego. Wymagania do ćwiczenia 1. ynamika ruchu obrotowego.. rgania harmoniczne Literatura:. Halliday, R. Resnick,
Podstawowe człony dynamiczne
Podsawowe człony dynamiczne charakerysyki czasowe. Człon proporcjonalny = 2. Człony całkujący idealny 3. Człon inercyjny = = + 4. Człony całkujący rzeczywisy () = + 5. Człon różniczkujący rzeczywisy ()
Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I. Kinemayka punku maerialnego Kaedra Opyki i Fooniki Wydział Podsawowych Problemów Techniki Poliechnika Wrocławska hp://www.if.pwr.wroc.pl/~wozniak/fizyka1.hml Miejsce konsulacji: pokój
Laboratorium Dynamiki Maszyn
Laboratorium Dynamiki Maszyn Laboratorium nr 5 Temat: Badania eksperymentane drgań wzdłużnych i giętnych układów mechanicznych Ce ćwiczenia:. Zbudować mode o jednym stopniu swobody da zadanego układu mechanicznego.
Gr.A, Zad.1. Gr.A, Zad.2 U CC R C1 R C2. U wy T 1 T 2. U we T 3 T 4 U EE
Niekóre z zadań dają się rozwiązać niemal w pamięci, pamięaj jednak, że warunkiem uzyskania różnej od zera liczby punków za każde zadanie, jes przedsawienie, oprócz samego wyniku, akże rozwiązania, wyjaśniającego
1.1 Wahadło anharmoniczne(m5)
10 Mechanika 1.1 Wahadło anharmoniczne(m5) Celem ćwiczenia jest zbadanie drgań anharmonicznych wahadła fizycznego(zależność okresu drgań wahadła od amplitudy jego drgań, bilans energetyczny wahadła). Zagadnienia
Plan wykładu. Ruch drgajacy. Drgania harmoniczne... Drgania harmoniczne. Oscylator harmoniczny Przykłady zastosowań. dr inż.
Plan wykładu Ruch drgajacy 1 Przykłady zastosowań dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 01/13 Drgania wymuszone 3 Drgania zachodzace w tym samym kierunku
Pojęcia podstawowe 1
Tomasz Lubera Pojęcia podsawowe aa + bb + dd + pp + rr + ss + Kineyka chemiczna dział chemii fizycznej zajmujący się przebiegiem reakcji chemicznych w czasie, ich mechanizmami oraz wpływem różnych czynników
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)
Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego
Ćwiczenie M6 Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego M6.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przyspieszenia ziemskiego poprzez analizę ruchu wahadła prostego. M6..
dr inż. Paweł Szeptyński materiały pomocnicze do przedmiotu MECHANIKA TEORETYCZNA DYNAMIKA - ZADANIA
NAZEWNICTWO LINIOWE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE O STAŁYCH WSPÓŁCZYNNIKACH d n u a n d x + a d n 1 u n n 1 d x +... + a d 2 u n 1 2 d x + a d u 2 1 d x + a u = b( x) Powyższe równanie o niewiadomej funkcji
Człowiek najlepsza inwestycja FENIKS
Człowiek najlepsza inwestycja FENIKS - długofalowy program odbudowy, popularyzacji i wspomagania fizyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i informatycznych
POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU
Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
ZADANIE 8 BADANIE WAHADEŁ SPRZĘŻONYCH
ZADANIE 8 BADANIE WAHADEŁ SPRZĘŻONYCH WYKAZ PRZYRZĄDÓW:. Wahadło sprzężone. Linia metrowa 3. Szalka wagi 4. Statyw 5. Odważniki 6. Ostrze pryzmatyczne do wyznaczania środka ciężkości WYKONANIE ZADANIA:.
Drgania elektromagnetyczne obwodu LCR
Ćwiczenie 61 Drgania elekromagneyczne obwodu LCR Cel ćwiczenia Obserwacja drgań łumionych i przebiegów aperiodycznych w obwodzie LCR. Pomiar i inerpreacja paramerów opisujących obserwowane przebiegi napięcia
Wykład 6 Drgania. Siła harmoniczna
Wykład 6 Drgania Ruch, który powtarza się w regularnych odstępach czasu, nazywamy ruchem okresowym (periodycznym). Przemieszczenie cząstki w ruchu periodycznym można wyrazić za pomocą funkcji sinus albo
Dynamiczne formy pełzania i relaksacji (odprężenia) górotworu
Henryk FILCEK Akademia Górniczo-Hunicza, Kraków Dynamiczne formy pełzania i relaksacji (odprężenia) góroworu Sreszczenie W pracy podano rozważania na ema możliwości wzbogacenia reologicznego równania konsyuywnego
Fizyka 12. Janusz Andrzejewski
Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające
E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO
E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
Ć W I C Z E N I E N R M-2
INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność
Zasada prac przygotowanych
1 Ćwiczenie 20 Zasada prac przygotowanych 20.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z praktycznym zastosowaniem zasady prac przygotowanych przy rozpatrywaniu równowagi układu o dwóch stopniach
Fale mechaniczne i akustyka
Fale mechaniczne i akustyka Wstęp: siła jako element decydujący o rodzaju ruchu Na pierwszym wykładzie, dynamiki Newtona omawiając II zasadę dr d r F r,, t = m dt dt powiedzieliśmy, że o tym, jakim ruchem
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
DRGANIA OSCYLATOR HARMONICZNY
DRGANIA OSCYLATOR HARMONICZNY wyklad8 2012/2013, zima 1 Własności sprężyste ciał stałych naprężenie rozciągające naprężenie ścinające naprężenie objętościowe Względne odkształcenie ciała zależy od naprężenia
Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony
Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch
Drgania. O. Harmoniczny
Dobrej fazy! Drgania O. Harmoniczny Położenie równowagi, 5 lipca 218 r. 1 Zadanie Zegar Małgorzata Berajter, update: 217-9-6, id: pl-ciepło-5, diff: 2 Pewien zegar, posiadający wahadło ze srebra, odmierza
VII. Drgania układów nieliniowych
VII. Drgania układów nieliniowych 1. Drgania anharmoniczne spowodowane symetryczna siła zwrotna 1.1 Różniczkowe równanie ruchu Rozważamy teraz drgania swobodne masy m przytwierdzonej do sprężyny o współczynniku
4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)
Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu
Badanie funktorów logicznych TTL - ćwiczenie 1
adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami
Zaawansowane metody numeryczne
Wykład 7 a szeregi Fouriera (zarówno w przypadku ciągłym, jak i dyskretnym) jest szczegónym przypadkiem aproksymacji funkcjami ortogonanymi. Anaitycznie rozwiązanie zadania aproksymacji trygonometrycznej
Komitet Główny Olimpiady Fizycznej, Andrzej Szymacha: Olimpiady Fizyczne XXI i XXII. WSiP, Warszawa Badanie drgań wahadła w wodzie.
F_I_D Źródło: XXI LIMPIADA FIZYCZNA (97/97) Stopień I zadanie doświadczane D Nazwa zadania: Działy: Słowa kuczowe: Komitet Główny impiady Fizycznej Andrzej Szymacha: impiady Fizyczne XXI i XXII WSiP Warszawa
Siła sprężystości - przypomnienie
Siła sprężystości - przypomnienie Pomiary siły sprężystości wykonane kilka wykładów wcześniej (z uwzględnieniem kierunku siły). F = kx = 0.13x 0 F x cm mg Prawo Hooke a Ciało m na idealnie gładkiej powierzchni
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut
Wojewódzki Konkurs Maemayczny dla uczniów gimnazjów. Eap szkolny 5 lisopada 2013 Czas 90 minu ZADANIA ZAMKNIĘTE Zadanie 1. (1 punk) Liczby A = 0, 99, B = 0, 99 2, C = 0, 99 3, D = 0, 99, E=0, 99 1 usawiono
W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,
Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.
WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.
ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,
a, F Włodzimierz Wolczyński sin wychylenie cos cos prędkość sin sin przyspieszenie sin sin siła współczynnik sprężystości energia potencjalna
Włodzimierz Wolczyński 3 RUCH DRGAJĄCY. CZĘŚĆ 1 wychylenie sin prędkość cos cos przyspieszenie sin sin siła współczynnik sprężystości sin sin 4 3 1 - x. v ; a ; F v -1,5T,5 T,75 T T 8t x -3-4 a, F energia
D103. Wahadła fizyczne sprzężone (przybliżenie małego kąta).
D3. Wahadła fizyczne sprzężone (przybliżenie małego kąta). Cel: Zbadanie przebiegu drgań dwóch wahadeł sprzężonych: zbadanie zależności częstości drgań wahadła prostego od jego momentu bezwładności, wyznaczenie
MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak
MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak 2 Plan wykładu Zakłócenia w modelu DAD/DAS: Wzros produkcji poencjalnej; Zakłócenie podażowe o sile
BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO
ĆWICZENIE 36 BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO Cel ćwiczenia: Wyznaczenie podstawowych parametrów drgań tłumionych: okresu (T), częstotliwości (f), częstotliwości kołowej (ω), współczynnika tłumienia
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,
Wykład I Krzysztof Golec-Biernat Optyka 1 / 16
Optyka Wykład I Krzysztof Golec-Biernat Fale 1 Uniwersytet Rzeszowski, 4 października 2017 Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Uwagi wstępne 30 h wykładu wykład przy pomocy transparencji lub
y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =
Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
KONSPEKT ZAJĘĆ EDUKACYJNYCH
KONSPEKT ZAJĘĆ EDUKACYJNYCH Część organizacyjna: Przedmiot: fizyka Klasa: II technikum poziom rozszerzony Czas trwania: 45 min. Data: Część merytoryczna: Dział programowy: Ruch harmoniczny i fale mechaniczne
Państwowa Wyższa Szkoła Zawodowa w Kaliszu
Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 5 Wyznaczanie przyspieszenia grawitacyjnego g za pomocą wahadła balistycznego Kalisz, luty 2005 r. Opracował: Ryszard
1.5 Badanie drgań modelu cząsteczki czteroatomowej(m20)
Badanie drgań modelu cząsteczki czteroatomowej(m20) 37 1.5 Badanie drgań modelu cząsteczki czteroatomowej(m20) Celem ćwiczenia jest wyznaczenie widma drgań układu czterech wahadeł sprzężonych oraz wyznaczenie
WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ
ĆWICZENIE 12 WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ Cel ćwiczenia: Wyznaczanie modułu sztywności drutu metodą sprężystych drgań obrotowych. Zagadnienia: sprężystość, naprężenie ścinające, prawo
Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych
Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II
IX. MECHANIKA (FIZYKA) KWANTOWA
IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji
Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona
Całka nieoznaczona Andrzej Musielak Sr Całka nieoznaczona Całkowanie o operacja odwrona do liczenia pochodnych, zn.: f()d = F () F () = f() Z definicji oraz z abeli pochodnych funkcji elemenarnych od razu
CHEMIA KWANTOWA Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoretycznej Zespół Chemii Kwantowej Grupa Teorii Reaktywności Chemicznej
CHEMI KWTOW CHEMI KWTOW Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoreycznej Zespół Chemii Kwanowej Grupa Teorii Reakywności Chemicznej LITERTUR R. F. alewajski, Podsawy i meody chemii kwanowej:
Podstawy elektrotechniki
Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 71 320 3201