dr inż. Paweł Szeptyński materiały pomocnicze do przedmiotu MECHANIKA TEORETYCZNA DYNAMIKA - ZADANIA

Wielkość: px
Rozpocząć pokaz od strony:

Download "dr inż. Paweł Szeptyński materiały pomocnicze do przedmiotu MECHANIKA TEORETYCZNA DYNAMIKA - ZADANIA"

Transkrypt

1 NAZEWNICTWO LINIOWE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE O STAŁYCH WSPÓŁCZYNNIKACH d n u a n d x + a d n 1 u n n 1 d x a d 2 u n 1 2 d x + a d u 2 1 d x + a u = b( x) Powyższe równanie o niewiadomej funkcji u(x) to równanie różniczkowe zwyczajne nie występują pochodne cząstkowe rzędu n liczba naturalna n to najwyższy rząd występującej pochodnej liniowe funkcja niewiadoma i jej pochodne występują w pierwszej potędze o stałych współczynnikach współczynniki a i (i=1,..,n) nie zależą od zmiennej x Gdy prawa strona równania jest równa b( x), wtedy równanie nazywamy jednorodnym. W przeciwnym razie równanie nazywamy niejednorodnym. WARUNKI BRZEGOWE Rozwiązanie takiego równania istnieje i jest jednoznaczne, jeśli określimy dodatkowo warunki brzegowe (jeśli określone są na krańcach interesującego nas obszaru zmienności zmiennej x) lub warunki początkowe (jeśli wszystkie warunki określone są na początku tego przedziału). Wiemy, że w wyniku różniczkowania, wyrażenia stałe występujące w różniczkowanej funkcji znikają. I tak, najprostsze równanie różniczkowe d u d x = b( x) u= b(x)d x + C ma nieskończenie wiele rozwiązań różniących się między sobą stałą liczbą, tj. stałą całkowania C. Aby określić rozwiązanie zagadnienia jednoznacznie, musimy podać dodatkowe warunki, które spełniać musi funkcja u w ten sposób będziemy mogli wyznaczyć nieznaną stałą. Oczywiście, warunki te muszą być określone dla samej funkcji, nie zaś dla jej pochodnej. Dla równania różniczkowego rzędu n potrzebnych jest n warunków. ROZWIĄZANIE OGÓLNE Rozwiązanie rozważanego równania różniczkowego będziemy konstruować w ogólności w dwóch etapach: wyznaczenie całki ogólnej równania jednorodnego (CORJ), tj. najogólniejszej funkcji u og ( x) spełniającej równanie różniczkowe z pominięciem członu niejednorodnego (przyjmując b( x) ). Całka ogólna nie może być jakimkolwiek rozwiązaniem. Dla równania rzędu n musi to być rozwiązanie zależące w ogólności od n stałych parametrów (stałych całkowania, niezależnych od x), które mogą przyjmować różne wartości. Dla każdej z przyjętych wartości funkcja ta nadal ma spełniać równanie jednorodne. Ostateczne wartości tych stałych wyznaczać będziemy z warunków brzegowych. wyznaczenie całki szczególnej równania niejednorodnego (CSRN) tj. jakiejkolwiek funkcji u sz ( x) spełniającą równanie niejednorodne. Ostatecznym rozwiązaniem będzie suma powyższych dwóch całek, tj. całka ogólna równania niejednorodnego (CORN) u(x) = u og ( x) + u sz ( x) 216 Paweł Szeptyński Creative Commons BY-NC-SA 3. PL 1

2 WYZNACZANIE CORJ W rozpatrywanym przypadku liniowego równania różniczkowego zwyczajnego o stałych współczynnikach znalezienie całki ogólnej równania jednorodnego jest bardzo proste. Przyjmijmy, że u(x) = e rx. Po zróżniczkowaniu i podstawieniu do równania jednorodnego otrzymujemy: (a n r n +a n 1 r n a 2 r 2 +a 1 r+a )e rx = Obie strony możemy podzielić przez e rx ponieważ funkcja ta jest zawsze różna od. Otrzymujemy w ten sposób równanie charakterystyczne: a n r n +a n 1 r n a 2 r 2 +a 1 r+a = Jest to równanie algebraiczne ze względu na zmienną r. Możemy je rozwiązać kolejnym pierwiastkom tego równania odpowiadają rozwiązania równania różniczkowego zgodnie z poniższym schematem: r jest pojedynczym pierwiastkiem rzeczywistym równania charakterystycznego rozwiązaniem jest funkcja u(x) = C 1 e rx r jest k-krotnym pierwiastkiem rzeczywistym równania charakterystycznego rozwiązaniem jest funkcja u(x) = (C 1 +C 2 r+...+c k r k 1 ) e rx r jest pierwiastkiem zespolonym równania charakterystycznego rozwiązaniem jest funkcja u (x) = e R (r) [C 1 sin (x I(r)) + C 2 cos( x I(r))] R( r) oznacza część rzeczywistą liczby r, zaś I(r) jej część urojoną. Całka ogólna jest sumą wszystkich rozwiązań uzyskanych zgodnie z powyższym schematem. Przykładowo: Równanie jednorodne: Równanie charakterystyczne: d u 7 d u6 d u5 d u4 d u3 d u d x d x d x d x d x 3+32 d x 33 d u 2 d x +1 = r 7 8r r 5 34 r 4 +7 r r 2 33 r+1 = {r 1 =2 r 2 = 1 r 3 =r 4 =r 5 =3 r 6 =2 i, r 7 = r 6 =2+i Całka ogólna równania jednorodnego: u og ( x) = C 1 e 2 x + C 2 e ( 1) x + (C 3 +C 4 x+c 5 x 2 )e 3 x + e 2 x [C 6 sin (1 x)+c 7 cos(1 x)] UWAGA: Pierwiastki zespolone zawsze występują parami, tj. jeden z nich zawsze jest sprzężeniem, któregoś z pozostałych. Sprzężone liczby zespolone różnią się jedynie znakiem części urojonej. Jest obojętne, którą z nich weźmiemy do wzoru funkcja cosinus jest parzysta, więc nie ma to znaczenia, sinus zaś jest nieparzysta i wtedy zamiast np. stałej C 6 wyznaczyć musimy stałą -C 6, co nie ma znaczenia dla dalszych rachunków. 216 Paweł Szeptyński Creative Commons BY-NC-SA 3. PL 2

3 WYZNACZANIE CSRN Całkę szczególną możemy znaleźć na różne sposoby. W praktyce, w podstawowych zagadnieniach fizycznych znajduje się ją tzw. metodą przewidywania. Ponieważ chodzi nam o jakiekolwiek rozwiązanie szczególne, poszukujemy zatem rozwiązania tego samego typu, co niejednorodny człon równania b( x). Jeśli b( x) jest funkcją funkcją trygonometryczną, wykładniczą lub wielomianową, to u sz ( x) przewidywać będziemy w postaci funkcji odpowiednio trygonometrycznej (o tym samym okresie), wykładniczej (o tym samym wykładniku) lub wielomianowej (tego samego stopnia) ze stałymi współczynnikami. Przykład FUNKCJA TRYGONOMETRYCZNA: Równanie: 4 d u 5 u = 3 cos(2 x) d x Przewidujemy: u = Asin (2 x)+b cos(2 x) Podstawiamy: 4 [2 A cos(2 x) 2 Bsin (2 x)] 5[ A sin(2 x)+ B cos(2 x)] = 3cos(2 x) Porównujemy: ( 8 B 5 A)sin(2 x) + (8 A 5 B)cos(2 x) sin(2 x) + 3 cos(2 x) { 5 A 8 B = 8 A 5 B = 3 {A = B = u sz = 24 sin(2 x) 15 cos(2 x) Przykład FUNKCJA WYKŁADNICZA: Równanie: 2 d u x +u = 21 e 4 d x Przewidujemy: u = A e 4 x Podstawiamy: 2 [ 4 A e 4x ]+ Ae 4 x = 21e 4x Porównujemy: 7 Ae 4 x 21e 4x A = 3 u sz = 3e 4 x Przykład FUNKCJA WIELOMIANOWA: Równanie: Przewidujemy: Podstawiamy: Porównujemy: d u d x +2 u = 4 x2 2 u = A x 2 +B x+c [2 A x+ B]+2( A x 2 +B x+c) = 4 x 2 2 (2 A) x 2 +(B 2 A)x+(2C B) 4 x 2 2 { 2 A = 4 { A = 2 B 2A = B = 4 u sz = 2 x 2 +4 x 8 2C B = 2 C = Paweł Szeptyński Creative Commons BY-NC-SA 3. PL 3

4 DRGANIA HARMONICZNE NIETŁUMIONE Równanie ruchu: m ẍ+k x = P (t) m ẍ - pozorna siła bezwładności, k x - siła w sprężynie, zgodnie z prawem Hooke'a proporcjonalna do jej wydłużenia P (t) - zewnętrzna siła wymuszająca (zmienna w czasie) [P] = N x - wychylenie od położenia równowagi [x] = m m - masa drgająca [m] = kg k - sztywność układu [k] = N / m mẋ. kx Sztywność sprężyny określa nam wielkość wychylenia statycznego A st, gdy stała siła wymuszająca P st =const. przyłożona jest quasistatycznie (tak wolno, że nie zachodzą zjawiska bezwładnościowe i człon z przyspieszeniem może być pominięty): k x = P st A st = P st k P(t) DRGANIA SWOBODNE NIETŁUMIONE Równanie ruchu drgań swobodnych, tj. bez siły wymuszającej drgania spowodowane są zadaniem początkowego wychylenia lub początkowej prędkości: ω = k m ẍ+ω 2 x = - częstość drgań własnych [ω ] = rad s f = ω - częstotliwość drgań własnych [ f 2π ] = Hz = 1 s T = ν 1 = 2 π ω - okres drgań własnych [T ] = s Rozwiązanie: x(t) = A 1 sin(ω t ) + A 2 cos(ω t ) A 1 = v ω A 2 = x x wychylenie pczątkowe v prędkość początkowa lub po przekształceniach: ω = k m A = A A 2 2 x(t) = Asin(ω t+ϕ) - częstość drgań własnych [ω ] = rad s A = x 2 + v 2 - amplituda drgań [ A] = m 2 ω ϕ = arctg A 2 A 1 ϕ = arctg x ω v - kąt przesunięcia fazowego [ϕ] = rad 216 Paweł Szeptyński Creative Commons BY-NC-SA 3. PL 4

5 DRGANIA WYMUSZONE Najważniejszym przypadkiem są drgania wymuszone siłą harmonicznie zmienną: P (t) = P sin(λt) P - amplituda wymuszenia [P ]=N λ - częstość kołowa wymuszenia [λ]= rad s Równanie ruchu: ẍ+ω 2 x = P m sin(λt) Rozwiązanie szczególne: x(t) = P m(ω 2 λ 2 ) sin(λt) Pod wpływem harmonicznie zmiennej siły wymuszającej, układ drga z częstością równą częstości wymuszenia. Amplituda tych drgań jest zależna od stosunku częstości wymuszenia do częstości drgań własnych układu. Jeśli częstości te są równe, zachodzi zjawisko rezonansu mechanicznego, tj. niekontrolowanego wzrostu amplitudy drgań. W przypadku drgań nietłumionych amplituda rośnie do nieskończoności w rzeczywistości każdy układ ma przynajmniej minimalne tłumienie materiałowe lub konstrukcyjne. 216 Paweł Szeptyński Creative Commons BY-NC-SA 3. PL 5

6 DRGANIA HARMONICZNE TŁUMIONE Podstawowym modelem tłumienia jest tzw. tłumienie wiskotyczne (lepkie), w którym siła tłumiąca (opór stawiany przez ośrodek, w którym porusza się ciało) jest proporcjonalna do prędkości ciała. Równanie ruchu: m ẍ+c ẋ+k x = P (t) x - wychylenie od położenia równowagi [x] = m m - masa drgająca [m] = kg k - sztywność układu [k] = N / m c - współczynnik tłumienia układu [c] = N s / m P (t) - zewnętrzna siła wymuszająca (zmienna w czasie) [P] = N kx mẋ. P(t). cx Wprowadza się też inne miary tłumienia, niekiedy nazywane tak samo jak inne trzeba wtedy zwrócić uwagę na definicję.: β = c 2 m - współczynnik tłumienia [β] = kg s γ = c = c c kr 2 k m - bezwymiarowy współczynnik tłumienia [γ] = 1 ξ = 2 γ - bezwymiarowy współczynnik tłumienia [ξ] = 1 c kr = 2 km = 2 m ω = 2 ω k - współczynnik tłumienia krytycznego [c] = N s m Δ = ln A n = 2π γ A n+1 1 γ 2 - logarytmiczny dekrement tłumienia [Δ] = 1 Wartości logarytmicznego dekrementu tłumienia dla wybranych typów konstrukcji: Rodzaj konstrukcji Δ Rodzaj konstrukcji Δ Belki i ramy stalowe,4 Konstrukcje szkieletowe z wypełnieniem murowanym Kratownice stalowe,1 Konstrukcje murowe,25 Konstrukcje cienkościenne,2 Stropy i filary murowane,15 Belki i ramy żelbetowe,15 Budynki murowane (7 25m wys.),3 Stropy żelbetowe,25 Ściany kamienne na zaprawie cem.,3 Budynki żelbetowe,2 Belki drewniane, zwykłe i klejone,1,25 Elementy sprężone,5 Stropy i belki drewniane, Fundamenty,35 gwoździowane, Paweł Szeptyński Creative Commons BY-NC-SA 3. PL 6

7 DRGANIA SWOBODNE TŁUMIONE Równanie ruchu: ẍ + 2 γω ẋ + ω 2 x = TŁUMIENIE PODKRYTYCZNE (c < c kr γ < 1) x(t) = e γω t [ A 1 sin (ω 1 t) + A 2 cos(ω 1 t)] ω 1 = ω 1 γ 2 A 1 = v +γω x ω 1 A 2 = x Po przekształceniach, rozwiązanie można zapisać w odmiennej postaci: x(t) = e γω t A sin(ω 1 t + ϕ) ω 1 = ω 1 γ 2 - częstość drgań własnych tłumionych [ω 1 ] = rad s A = x 2 + (v +γ ω x ) 2 - amplituda drgań [ A] = m 2 ω 1 ϕ = arctg v +γω x ω 1 x - kąt przesunięcia fazowego [ϕ] = rad Logarytmiczny dekrement tłumienia jest równy logarytmowi stosunku dwóch kolejnych amplitud wychylenia ciała wykonującego drgania. Zakładając, że punkty maksymalnego wychylenia leżą w pobliżu obwiedni drgań zadanej funkcją wykładniczą, możemy wyznaczyć logarytmiczny dekrement tłumienia: e γω t Δ = ln A n e γω t = ln A n+1 e = γω T = γω 2 π γω (t +T 1 ) 1 ω 1 Δ = 2πγ 1 γ 2 TŁUMIENIE KRYTYCZNE (c = c kr γ = 1) x(t) = e ω t [ A 1 t+a 2 ] A 1 = v +ω x A 2 = x [ A 1 ] = m s [ A 2 ] = m TŁUMIENIE NADKRYTYCZNE (c > c kr γ > 1) A 1 = x ω [γ(γ+ γ 2 1) 1]+v γ 2 1 2ω (γ 2 1) A 2 = x ω [γ(γ γ 2 1) 1] v γ 2 1 2ω (γ 2 1) x(t) = A 1 e ω t ( γ γ 2 1) + A 2 e ω t (γ+ γ 2 1) [ A 1 ] = m [ A 2 ] = m 216 Paweł Szeptyński Creative Commons BY-NC-SA 3. PL 7

8 DRGANIA WYMUSZONE TŁUMIONE Ponownie rozpatrujemy drgania wymuszone siłą harmonicznie zmienną: Równanie ruchu: ẍ + 2 γω ẋ + ω 2 x = P sin (λ t) m Rozwiązanie szczególne: x(t) = Asin( λt + ϕ) P A = m (ω 2 λ 2 ) 2 +4 γ 2 ω 2 λ 2 - amplituda drgań [ A]=m ϕ = arctg( ω 2 λ λ) 2 2γ ω - kąt przesunięcia fazowego [ϕ]=rad Jeśli porównamy amplitudę ustalonych drgań wymuszonych układu tłumionego z wychyleniem statycznym, uzyskamy wielkość zwaną współczynnikiem dynamicznym lub współczynnikiem zwielokrotnienia drgań: ω 2 η = A = A st (ω 2 λ 2 ) 2 +4 γ 2 ω 2 λ 2 Jest to funkcja trzech parametrów: częstości drgań własnych układu nietłumionego, częstości wymuszenia oraz parametru tłumienia. Określa ona przyrost amplitudy drgań wywołanych siłą zmienną harmonicznie z częstością λ w porównaniu z wychyleniem jakie uzyskałoby się przy statycznym przyłożeniu maksymalnej wartości tej siły P. Maksymalny przyrost tej amplitudy znajdziemy wyznaczając ekstremum lokalne tej funkcji: d η d λ = 2ω 2 λ(ω 2 λ 2 2 γ 2 ω 2 ) [(ω 2 λ 2 ) 2 +4 γ 2 ω 2 λ 2 ] = λ =ω 3/ 2 max 1 2γ 2 η max = 1 2γ 1 γ 2 Dla układów o małym tłumieniu λ max ω oraz η max = 1/2 γ, w szczególności, gdy γ ekstremalny wzrost amplitudy drgań występuje dla λ=ω. Zachodzi wtedy zjawisko rezonansu układu nietłumionego omówione poprzednio. 216 Paweł Szeptyński Creative Commons BY-NC-SA 3. PL 8

9 216 Paweł Szeptyński Creative Commons BY-NC-SA 3. PL 9

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

Laboratorium Mechaniki Technicznej

Laboratorium Mechaniki Technicznej Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22

Bardziej szczegółowo

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE

Bardziej szczegółowo

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)

Bardziej szczegółowo

Fizyka 12. Janusz Andrzejewski

Fizyka 12. Janusz Andrzejewski Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające

Bardziej szczegółowo

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch

Bardziej szczegółowo

MECHANIKA II. Drgania wymuszone

MECHANIKA II. Drgania wymuszone MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny Daniel Lewandowski (I-19) MECHANIKA II. Drgania wymuszone 1 / 30 Układ drgajacy o jednym stopniu swobody

Bardziej szczegółowo

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie Wykład 14 i 15 Równania różniczkowe Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (x, y, y, y,..., y (n) ) = 0 (1) gdzie: y = y(x) niewiadoma funkcja zmiennej rzeczywistej

Bardziej szczegółowo

Drgania układu o wielu stopniach swobody

Drgania układu o wielu stopniach swobody Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

Równania różniczkowe cząstkowe drugiego rzędu

Równania różniczkowe cząstkowe drugiego rzędu Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Ruch drgający

Podstawy fizyki sezon 1 VII. Ruch drgający Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania

Bardziej szczegółowo

Fizyka 11. Janusz Andrzejewski

Fizyka 11. Janusz Andrzejewski Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna

Bardziej szczegółowo

= 0,05 m - wychylenie początkowe = 0 m/s - prędkość początkowa

= 0,05 m - wychylenie początkowe = 0 m/s - prędkość początkowa ZADANIE 1 Skomplikowana aparatura pomiarowa, która ma polecieć w kosmos ;) ma masę 1000 kg i spoczywa na czterech jednakowych sprężynach ułożonych obok siebie (równolegle). Sztywność sprężyn sprawdzono

Bardziej szczegółowo

3.DRGANIA SWOBODNE MODELU O JEDNYM STOPNIU SWOBODY(JSS)

3.DRGANIA SWOBODNE MODELU O JEDNYM STOPNIU SWOBODY(JSS) 3.DRGANIA SWOBODNE MODELU O JEDNYM STOPNIU SWOBODY(JSS) 3.1. DRGANIA TRANSLACYJNE I SKRĘTNE WYMUSZME SIŁOWO I KINEMATYCZNIE W poprzednim punkcie o modelowaniu doszliśmy do przekonania, że wielokrotnie

Bardziej szczegółowo

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej

Bardziej szczegółowo

MECHANIKA II. Drgania wymuszone

MECHANIKA II. Drgania wymuszone MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

RUCH HARMONICZNY. sin. (r.j.o) sin

RUCH HARMONICZNY. sin. (r.j.o) sin RUCH DRGAJĄCY Ruch harmoniczny Rodzaje drgań Oscylator harmoniczny Energia oscylatora harmonicznego Wahadło matematyczne i fizyczne Drgania tłumione Drgania wymuszone i zjawisko rezonansu Politechnika

Bardziej szczegółowo

VII. Drgania układów nieliniowych

VII. Drgania układów nieliniowych VII. Drgania układów nieliniowych 1. Drgania anharmoniczne spowodowane symetryczna siła zwrotna 1.1 Różniczkowe równanie ruchu Rozważamy teraz drgania swobodne masy m przytwierdzonej do sprężyny o współczynniku

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

Laboratorium Dynamiki Maszyn

Laboratorium Dynamiki Maszyn Laboratorium Dynamiki Maszyn Laboratorium nr 5 Temat: Badania eksperymentane drgań wzdłużnych i giętnych układów mechanicznych Ce ćwiczenia:. Zbudować mode o jednym stopniu swobody da zadanego układu mechanicznego.

Bardziej szczegółowo

Drgania i fale II rok Fizyk BC

Drgania i fale II rok Fizyk BC 00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem

Bardziej szczegółowo

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki): Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

Wykład 6 Drgania. Siła harmoniczna

Wykład 6 Drgania. Siła harmoniczna Wykład 6 Drgania Ruch, który powtarza się w regularnych odstępach czasu, nazywamy ruchem okresowym (periodycznym). Przemieszczenie cząstki w ruchu periodycznym można wyrazić za pomocą funkcji sinus albo

Bardziej szczegółowo

3 Podstawy teorii drgań układów o skupionych masach

3 Podstawy teorii drgań układów o skupionych masach 3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny

Bardziej szczegółowo

WYKAZ TEMATÓW Z LABORATORIUM DRGAŃ MECHANICZNYCH dla studentów semestru IV WM

WYKAZ TEMATÓW Z LABORATORIUM DRGAŃ MECHANICZNYCH dla studentów semestru IV WM WYKAZ TEMATÓW Z LABORATORIUM DRGAŃ MECHANICZNYCH dla studentów semestru IV WM 1. Wprowadzenie do zajęć. Równania Lagrange'a II rodzaju Ćwiczenie wykonywane na podstawie rozdziału 3 [1] 2. Drgania swobodne

Bardziej szczegółowo

DRGANIA MECHANICZNE. Poniższe materiały tylko dla studentów uczęszczających na zajęcia. Zakaz rozpowszechniania i powielania bez zgody autora.

DRGANIA MECHANICZNE. Poniższe materiały tylko dla studentów uczęszczających na zajęcia. Zakaz rozpowszechniania i powielania bez zgody autora. DRGANIA MECHANICZNE materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak część 3 drgania wymuszone siłą harmoniczną drgania

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 5

INSTRUKCJA DO ĆWICZENIA NR 5 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 5 PRZEDMIOT TEMAT OPRACOWAŁ MODELOWANIE UKŁADÓW MECHANICZNYCH Badania analityczne układu mechanicznego

Bardziej szczegółowo

26. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE DRUGIEGO RZĘDU

26. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE DRUGIEGO RZĘDU 6. RÓWNANIA RÓŻNIZKOWE ZWYZAJNE DRUGIEGO RZĘDU 6.. Własności ogólne Równaniem różniczkowym zwyczajnym rzęd drgiego nazywamy równanie, w którym niewiadomą jest fnkcja y jednej zmiennej i w którym występją

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż.

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż. Ruch drgajacy dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Ruch drgajacy Drgania harmoniczne Drgania oscylacje to cykliczna

Bardziej szczegółowo

Badania doświadczalne drgań własnych nietłumionych i tłumionych

Badania doświadczalne drgań własnych nietłumionych i tłumionych Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny Politechnika Śląska www.imio.polsl.pl fb.com/imiopolsl twitter.com/imiopolsl LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Badania

Bardziej szczegółowo

Drgania wymuszone - wahadło Pohla

Drgania wymuszone - wahadło Pohla Zagadnienia powiązane Częstość kołowa, częstotliwość charakterystyczna, częstotliwość rezonansowa, wahadło skrętne, drgania skrętne, moment siły, moment powrotny, drgania tłumione/nietłumione, drgania

Bardziej szczegółowo

2. Kombinacja liniowa rozwiązań zeruje się w pewnym punkcie wtedy i tylko wtedy, gdy zeruje się w każdym punkcie.

2. Kombinacja liniowa rozwiązań zeruje się w pewnym punkcie wtedy i tylko wtedy, gdy zeruje się w każdym punkcie. Wniosek 1 Rozpatrzmy układ równań postaci: y 1 = a 11 (x)y 1 + + a 1n (x)y n y 2 = a 21 (x)y 1 + + a 2n (x)y n y n = a n1 (x)y 1 + + a nn (x)y n (1) o współczynnikach ciągłych w przedziale J 1 Rozwiązanie

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w

Bardziej szczegółowo

Procedura modelowania matematycznego

Procedura modelowania matematycznego Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

5. Równania różniczkowe zwyczajne pierwszego rzędu

5. Równania różniczkowe zwyczajne pierwszego rzędu 5. Równania różniczkowe zwyczajne pierwszego rzędu 5.1. Wstęp. Definicja 5.1. Niech V R 3 będzie obszarem oraz F : V R. Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci Równanie

Bardziej szczegółowo

WYKŁAD 3. Rozdział 2: Drgania układu liniowego o jednym stopniu swobody. Część 2 Drgania z wymuszeniem harmonicznym

WYKŁAD 3. Rozdział 2: Drgania układu liniowego o jednym stopniu swobody. Część 2 Drgania z wymuszeniem harmonicznym WYKŁAD 3 Rozdział : Drgania układu liniowego o jednym stopniu swobody Część Drgania z wymuszeniem harmonicznym.5. Istota i przykłady drgań wymuszonych Drgania wymuszone to drgania, których energia wynika

Bardziej szczegółowo

2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych 2. Równania o rozdzielonych zmiennych 2 1 2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równaniem różniczkowym zwyczajnym pierwszego rzędu o rozdzielonych zmiennych nazywamy równanie różniczkowe

Bardziej szczegółowo

Metoda rozdzielania zmiennych

Metoda rozdzielania zmiennych Rozdział 12 Metoda rozdzielania zmiennych W tym rozdziale zajmiemy się metodą rozdzielania zmiennych, którą można zastosować, aby wyrazić jawnymi wzorami rozwiązania pewnych konkretnych równań różniczkowych

Bardziej szczegółowo

TEORIA DRGAŃ Program wykładu 2016

TEORIA DRGAŃ Program wykładu 2016 TEORIA DRGAŃ Program wykładu 2016 I. KINEMATYKA RUCHU POSTE POWEGO 1. Ruch jednowymiarowy 1.1. Prędkość (a) Prędkość średnia (b) Prędkość chwilowa (prędkość) 1.2. Przyspieszenie (a) Przyspieszenie średnie

Bardziej szczegółowo

6. Całka nieoznaczona

6. Całka nieoznaczona 6. Całka nieoznaczona Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 6. Całka nieoznaczona 1 / 35 Całka nieoznaczona - motywacja Wiemy

Bardziej szczegółowo

Równania różniczkowe wyższych rzędów

Równania różniczkowe wyższych rzędów Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1. Rozwiązanie ogólne............................... 1.3 Obniżanie rzędu

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne

1 Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem

Bardziej szczegółowo

DRGANIA OSCYLATOR HARMONICZNY

DRGANIA OSCYLATOR HARMONICZNY DRGANIA OSCYLATOR HARMONICZNY wyklad8 2012/2013, zima 1 Własności sprężyste ciał stałych naprężenie rozciągające naprężenie ścinające naprężenie objętościowe Względne odkształcenie ciała zależy od naprężenia

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów

WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów LABORATORIUM DRGANIA I WIBROAUSTYA MASZYN Wydział Budowy Maszyn i Zarządzania Zakład Wibroakustyki i Bio-Dynamiki Systemów Ćwiczenie nr WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów

Bardziej szczegółowo

Sposoby modelowania układów dynamicznych. Pytania

Sposoby modelowania układów dynamicznych. Pytania Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,

Bardziej szczegółowo

Analiza matematyczna dla informatyków 3 Zajęcia 14

Analiza matematyczna dla informatyków 3 Zajęcia 14 Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C,

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C, Całki nieoznaczone Adam Gregosiewicz 7 maja 00 Własności a) Jeżeli F () = f(), to f()d = F () + C, dla dowolnej stałej C R. b) Jeżeli a R, to af()d = a f()d. c) Jeżeli f i g są funkcjami całkowalnymi,

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /

Bardziej szczegółowo

Plan wykładu. Ruch drgajacy. Drgania harmoniczne... Drgania harmoniczne. Oscylator harmoniczny Przykłady zastosowań. dr inż.

Plan wykładu. Ruch drgajacy. Drgania harmoniczne... Drgania harmoniczne. Oscylator harmoniczny Przykłady zastosowań. dr inż. Plan wykładu Ruch drgajacy 1 Przykłady zastosowań dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 01/13 Drgania wymuszone 3 Drgania zachodzace w tym samym kierunku

Bardziej szczegółowo

RÓWNANIE RÓśNICZKOWE LINIOWE

RÓWNANIE RÓśNICZKOWE LINIOWE Analiza stanów nieustalonych metodą klasyczną... 1 /18 ÓWNANIE ÓśNICZKOWE INIOWE Pod względem matematycznym szukana odpowiedź układu liniowego o znanych stałych parametrach k, k, C k w k - tej gałęzi przy

Bardziej szczegółowo

1.5 Badanie drgań modelu cząsteczki czteroatomowej(m20)

1.5 Badanie drgań modelu cząsteczki czteroatomowej(m20) Badanie drgań modelu cząsteczki czteroatomowej(m20) 37 1.5 Badanie drgań modelu cząsteczki czteroatomowej(m20) Celem ćwiczenia jest wyznaczenie widma drgań układu czterech wahadeł sprzężonych oraz wyznaczenie

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego Matematyka 2 Równania różniczkowe zwyczajne rzędu drugiego Równania różniczkowe liniowe rzędu II Równanie różniczkowe w postaci y + a 1 (x)y + a 0 (x)y = f(x) gdzie a 0 (x), a 1 (x) i f(x) są funkcjami

Bardziej szczegółowo

Równania różniczkowe. Analiza Matematyczna. Aleksander Denisiuk

Równania różniczkowe. Analiza Matematyczna. Aleksander Denisiuk Analiza Matematyczna Równania różniczkowe Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Analiza

Bardziej szczegółowo

Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory. Autorzy: Konrad Nosek

Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory. Autorzy: Konrad Nosek Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory Autorzy: Konrad Nosek 09 Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory Autor: Konrad Nosek DEFINICJA Definicja : Funkcja pierwotna Rozważmy

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

Podstawy fizyki wykład 7

Podstawy fizyki wykład 7 Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale

Bardziej szczegółowo

Matematyka A kolokwium: godz. 18:05 20:00, 24 maja 2017 r. rozwiązania. ) zachodzi równość: x (t) ( 1 + x(t) 2)

Matematyka A kolokwium: godz. 18:05 20:00, 24 maja 2017 r. rozwiązania. ) zachodzi równość: x (t) ( 1 + x(t) 2) Matematyka A kolokwium: godz. 18:05 0:00, 4 maja 017 r. rozwiązania 1. 7 p. Znaleźć wszystkie takie funkcje t xt, że dla każdego t π, π zachodzi równość: x t 1 + xt 1+4t 0. p. Wśród znalezionych w poprzedniej

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

5. Całka nieoznaczona

5. Całka nieoznaczona 5. Całka nieoznaczona Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Całka nieoznaczona zima 2017/2018 1 / 31 Całka nieoznaczona

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

I. DYNAMIKA PUNKTU MATERIALNEGO

I. DYNAMIKA PUNKTU MATERIALNEGO I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć

Bardziej szczegółowo

WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów

WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów LABORATORIUM WIBROAUSTYI MASZYN Wydział Budowy Maszyn i Zarządzania Instytut Mechaniki Stosowanej Zakład Wibroakustyki i Bio-Dynamiki Systemów Ćwiczenie nr WIBROIZOLACJA określanie właściwości wibroizolacyjnych

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci

Bardziej szczegółowo

DRGANIA ELEMENTÓW KONSTRUKCJI

DRGANIA ELEMENTÓW KONSTRUKCJI DRGANIA ELEMENTÓW KONSTRUKCJI (Wprowadzenie) Drgania elementów konstrukcji (prętów, wałów, belek) jak i całych konstrukcji należą do ważnych zagadnień dynamiki konstrukcji Przyczyna: nawet niewielkie drgania

Bardziej szczegółowo

Analiza Matematyczna część 5

Analiza Matematyczna część 5 [wersja z 14 V 6] Analiza Matematyczna część 5 Konspekt wykładu dla studentów fizyki/informatyki Akademia Świętokrzyska 5/6 Wojciech Broniowski 1 Równania różniczkowe Definicje, klasyfikacja Równanie różniczkowe

Bardziej szczegółowo

Równania różniczkowe wyższych rzędów

Równania różniczkowe wyższych rzędów Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1.2 Rozwiązanie ogólne............................... 2 1.3 Obniżanie rzędu

Bardziej szczegółowo

DRGANIA OSCYLATOR HARMONICZNY

DRGANIA OSCYLATOR HARMONICZNY DRGANIA OSCYLATOR HARMONICZNY wyklad 10 015/016, zima 1 Własności sprężyste ciał stałych Przedmiot: Fizyka naprężenie rozciągające naprężenie ścinające naprężenie objętościowe Względne odkształcenie ciała

Bardziej szczegółowo

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx 5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej F (x, y(x), y (1) (x), y () (x),..., y (n) (x)) = 0, gdzie y (k) (x) to k ta

Bardziej szczegółowo

III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE 1. Pojęcia wstępne Przykład 1.1. (Rozpad substancji promieniotwórczej ) Z doświadczeń wiadomo, że prędkość rozpa pierwiastka promieniotwórczego jest ujemna i proporcjonalna

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI BUDOWLANYCH

DYNAMIKA KONSTRUKCJI BUDOWLANYCH DYNAMIKA KONSTRUKCJI BUDOWLANYCH Roman Lewandowski Wydawnictwo Politechniki Poznańskiej, Poznań 2006 Książka jest przeznaczona dla studentów wydziałów budownictwa oraz inżynierów budowlanych zainteresowanych

Bardziej szczegółowo

BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO

BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO ĆWICZENIE 36 BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO Cel ćwiczenia: Wyznaczenie podstawowych parametrów drgań tłumionych: okresu (T), częstotliwości (f), częstotliwości kołowej (ω), współczynnika tłumienia

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą

Bardziej szczegółowo

REZONANS ELEKTRYCZNY Ćwiczenie nr 25

REZONANS ELEKTRYCZNY Ćwiczenie nr 25 REZONANS ELEKTRYCZNY Ćwiczenie nr 5 Michał Urbański. WPROWADZENIE Celem ćwiczenia jest badanie zjawiska rezonansu elektrycznego. Eksperyment polegać będzie na pomiarze prądu w szeregowym układzie LRC (indukcyjność,

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

ROZWIĄZANIA I ODPOWIEDZI

ROZWIĄZANIA I ODPOWIEDZI ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. =1+cos a) = =2cos( sin) = = sin2 = ln += =sin2 = ln 1+cos +. b) sin(+3)= =+3 = 3 =( 3) = sin= =( 6+9) sin= sin 6 sin+9sin. Obliczamy teraz pierwszą całkę: sin= ()=

Bardziej szczegółowo

DRGANIA OSCYLATOR HARMONICZNY

DRGANIA OSCYLATOR HARMONICZNY DRGANIA OSCYLATOR HARMONICZNY wyklad 8 017/018, zima 1 Własności sprężyste ciał stałych Przedmiot: Fizyka naprężenie rozciągające naprężenie ścinające naprężenie objętościowe Względne odkształcenie ciała

Bardziej szczegółowo

Rozwiązanie równania oscylatora harmonicznego

Rozwiązanie równania oscylatora harmonicznego Rozwiązanie równania oscylatora harmonicznego Motywacją do zebrania różnych sposobów rozwiązania równania oscylatora harmonicznego: m d2 x(t) dt 2 = kx(t) (1) jest notorycznie zadawane przez studentów

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z izyki -Zestaw 13 -eoria Drgania i ale. Ruch drgający harmoniczny, równanie ali płaskiej, eekt Dopplera, ale stojące. Siła harmoniczna, ruch drgający harmoniczny Siłą harmoniczną (sprężystości)

Bardziej szczegółowo

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07) Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością

Bardziej szczegółowo

Drgania. O. Harmoniczny

Drgania. O. Harmoniczny Dobrej fazy! Drgania O. Harmoniczny Położenie równowagi, 5 lipca 218 r. 1 Zadanie Zegar Małgorzata Berajter, update: 217-9-6, id: pl-ciepło-5, diff: 2 Pewien zegar, posiadający wahadło ze srebra, odmierza

Bardziej szczegółowo

drgania h armoniczne harmoniczne

drgania h armoniczne harmoniczne ver-8..7 drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne () An cos( nω + ϕ n ) N n Fig (...) analiza Fouriera małe drgania E p E E k E p ( ) jeden sopień swobody: -A A E p

Bardziej szczegółowo

Fale mechaniczne i akustyka

Fale mechaniczne i akustyka Fale mechaniczne i akustyka Wstęp: siła jako element decydujący o rodzaju ruchu Na pierwszym wykładzie, dynamiki Newtona omawiając II zasadę dr d r F r,, t = m dt dt powiedzieliśmy, że o tym, jakim ruchem

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 5

RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 Równania różniczkowe rzędu drugiego Równania rzędu drugiego sprowadzalne do równań rzędu pierwszego Równanie różniczkowe rzędu drugiego postaci F ( x, ', ") 0 ( nie wstępuje

Bardziej szczegółowo

Projekt nr 4. Dynamika ujęcie klasyczne

Projekt nr 4. Dynamika ujęcie klasyczne Projekt nr 4 Dynamika POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 4 Dynamika ujęcie klasyczne Konrad Kaczmarek

Bardziej szczegółowo

Siła sprężystości - przypomnienie

Siła sprężystości - przypomnienie Siła sprężystości - przypomnienie Pomiary siły sprężystości wykonane kilka wykładów wcześniej (z uwzględnieniem kierunku siły). F = kx = 0.13x 0 F x cm mg Prawo Hooke a Ciało m na idealnie gładkiej powierzchni

Bardziej szczegółowo

Numeryczne rozwiązywanie równań różniczkowych ( )

Numeryczne rozwiązywanie równań różniczkowych ( ) Numeryczne rozwiązywanie równań różniczkowych Równanie różniczkowe jest to równanie, w którym występuje pochodna (czyli różniczka). Przykładem najprostszego równania różniczkowego może być: y ' = 2x które

Bardziej szczegółowo