Pojęcia podstawowe 1
|
|
- Adam Kubiak
- 5 lat temu
- Przeglądów:
Transkrypt
1 Tomasz Lubera
2 Pojęcia podsawowe aa + bb + dd + pp + rr + ss + Kineyka chemiczna dział chemii fizycznej zajmujący się przebiegiem reakcji chemicznych w czasie, ich mechanizmami oraz wpływem różnych czynników na szybkość reakcji akich jak: sężenia reagenów (dla reakcji w fazie gazowej: ciśnienie) emperaura obecność kaalizaora warunki prowadzenia reakcji np.: mieszanie, ph, pole elekromagneyczne,.. Ćwiczenia rachunkowe z chemii fizycznej - Kineyka chemiczna podsawowe równania kineyczne 2
3 Pojęcia podsawowe 2 aa + bb + dd + pp + rr + ss + Szybkość reakcji r przy sałej objęości układu zmiana sężenia i-ego reagena (c i ) w czasie (): r = v i dc i d v i - współczynnik sechiomeryczny i-ego reagena (dla subsraów ujemny, dla produków dodani) Cząseczkowość liczba cząseczek uczesnicząca w elemenarnym akcie reakcji jes ściśle powiązana z mechanizmem reakcji może wynosić, 2 lub bardzo rzadko 3 może być rozumiana jako liczba cząseczek worzących kompleks akywny w elemenarnym akcie reakcji lub liczba cząseczek uczesniczących jednocześnie w zderzeniu Ćwiczenia rachunkowe z chemii fizycznej - Kineyka chemiczna podsawowe równania kineyczne 3
4 Pojęcia podsawowe 3 aa + bb + dd + pp + rr + ss + Równanie kineyczne empiryczna zależność szybkości reakcji od sężeń reagenów o ogólnej posaci r = kf(c) gdzie: k sała szybkości reakcji zazwyczaj: f c = α c B β c D δ c P π c R ρ c S σ np.: r = k α c B β c D δ c P π c R ρ c S σ Okres półrwania (czas połówkowy) τ czas po kórym połowa reagenów ulegnie przemianie: = τ gdy c = c 2 isnieje ylko dla reakcji w kórych sężenia począkowe reagenów z równania kineycznego są sobie równe lub w równaniu kineycznym jes ylko sężenie jednego reagena Ćwiczenia rachunkowe z chemii fizycznej - Kineyka chemiczna podsawowe równania kineyczne 4
5 Pojęcia podsawowe 4 aa + bb + dd + pp + rr + ss + Cząskowy rząd reakcji (rząd reakcji ze względu na reagen i) wykładnik poęgi do kórego podniesione jes sężenie i-ego reagena w równaniu kineycznym np.: α dla reagena A może być zerowy, dodani lub ujemny, całkowiy lub ułamkowy isnieją reakcje dla kórych nie da się zdefiniować rzędowości jes niezależny od sechiomerii reakcji sumarycznej (Całkowiy) rząd reakcji suma wykładników poęg do kórych podniesione są sężenie reagenów w równaniu kineycznym r = k α c B β c D δ c P π c R ρ c S σ Ćwiczenia rachunkowe z chemii fizycznej - Kineyka chemiczna podsawowe równania kineyczne 5
6 d = kd c A dc A = k k = Rząd r = k d d = k d = kd d = k k = Podsawiamy = τ, = 2 lub = 2 τ = 2k Ćwiczenia rachunkowe z chemii fizycznej - Kineyka chemiczna podsawowe równania kineyczne 6
7 d = k = kd d ln ( ) ln ( ) = k k = ln ( ) Rząd r = k d d = k d d y= c A dy y= y gdzie y = = kd ln ( ) ln ( ) = k k = ln ( ) Podsawiamy = τ, = 2 lub = 2 τ = ln (2) k Ćwiczenia rachunkowe z chemii fizycznej - Kineyka chemiczna podsawowe równania kineyczne 7
8 d = k 2 2 = kd 2 d Rząd 2 warian = k k = r = k 2 d d = k 2 y= ca y= 2 d d 2 = kd y 2 dy gdzie y = 2+ k k = n = ( ) Podsawiamy = τ, = 2 lub = 2 τ = k Ćwiczenia rachunkowe z chemii fizycznej - Kineyka chemiczna podsawowe równania kineyczne 8
9 Rząd 2 warian 2 d d = k ( ) (c B ) = kd d ( ) (c B ) A + B d ( ) (c B ) A ( ) d y= c A + A + y= y dy r = k c B B (c B ) d z= c B z=c B gdzie y = i z = c B d ( ) (c B ) = kd = kd = kd B z dz = kd Ćwiczenia rachunkowe z chemii fizycznej - Kineyka chemiczna podsawowe równania kineyczne 9
10 Rząd 2 warian 2 A ln ln B ln c B ln c B = k Skoro = ( ) (c B ) A + ( ) A c B + B = dla = c B orzymujemy B = dla = orzymujemy A = B = A c B +B( ) (c B ) ( ) (c B ) ( c B ) = (c B ) (c B ) = o ( c B ) = B B ln ln B ln c B ln c B = k B ln ln ln c B + ln c B = k k = c B ln ( c B ( ) (c B ) ) Dla akich reakcji czas połowicznej przemiany nie isnieje!!! Ćwiczenia rachunkowe z chemii fizycznej - Kineyka chemiczna podsawowe równania kineyczne
11 Rząd n (n ) d = k n n = kd n+ n d k = n n+ n+ = k c n A c n A r = k n d d = k n y= ca y= n d y n dy gdzie y = n+ k = n d n = kd n+ n+ = k n n Podsawiamy = τ, = 2 lub = 2 τ = 2 n n k n Ćwiczenia rachunkowe z chemii fizycznej - Kineyka chemiczna podsawowe równania kineyczne
12 Podsumowanie Rząd reakcji 2 n (n ) Równanie kineyczne Scałkowane równanie kineyczne Zależność liniowa do wyznaczania sałej k Sała szybkości k Jednoska sałej k Czas połowicznej przemiany d d = k d d = k d d = k 2 = k = e k = + k = f ln = f k = k = ln ( ) mol s dm 3 s τ = 2k τ = ln (2) k k = = f d d = k n c n = A c n A n k = n dm 3 s mol τ = k τ = s + n k = f c n A c n A dm 3 mol n 2 n n k n Ćwiczenia rachunkowe z chemii fizycznej - Kineyka chemiczna podsawowe równania kineyczne 2
13
Kinetyka 19/10/2015. Czym zajmuje się kinetyka chemiczna: Kinetyka, szybkość reakcji. Szybkość reakcji chemicznych
Czym zajmuje się kineyka chemiczna: Szybkość reakcji chemicznych Kineyka Czynniki wpływające na szybkość reakcji Kineyka, szybkość reakcji Szybkość z jaką subsray znikają, a produky są worzone jes nazywana
Kinetyka 13/11/2017. Czym zajmuje się kinetyka chemiczna: Kinetyka, szybkość reakcji. Szybkość reakcji chemicznych
Czym zajmuje się kineyka chemiczna: Szybkość reakcji chemicznych Kineyka Czynniki wpływające na szybkość reakcji Kineyka, szybkość reakcji Podczas reakcji chemicznej sężenie subsraów i produków w czasie
Kinetyka. Kinetyka. Stawia dwa pytania: 1)Jak szybko biegną reakcje? 2) W jaki sposób przebiegają reakcje? energia swobodna, G. postęp reakcji.
Kinetyka energia swobodna, G termodynamika stan 1 kinetyka termodynamika stan 2 postęp reakcji 1 Kinetyka Stawia dwa pytania: 1)Jak szybko biegną reakcje? 2) W jaki sposób przebiegają reakcje? 2 Jak szybko
Kinetyka. energia swobodna, G. postęp reakcji. stan 1 stan 2. kinetyka
Kinetyka postęp reakcji energia swobodna, G termodynamika kinetyka termodynamika stan 1 stan 2 Kinetyka Stawia dwa pytania: 1) Jak szybko biegną reakcje? 2) W jaki sposób przebiegają reakcje? 1) Jak szybko
KI + Pb(NO 3 ) 2 PbI 2 + KNO 3. fermentacja alkoholowa
Kinetyka chemiczna KI + Pb(NO 3 ) 2 PbI 2 + KNO 3 fermentacja alkoholowa czynniki wpływaj ywające na szybkość reakcji chemicznych stęż ężenie reagentów w (lub ciśnienie gazów w jeżeli eli reakcja przebiega
KI + Pb(NO 3 ) 2 PbI 2 + KNO 3. fermentacja alkoholowa
Kinetyka chemiczna KI + Pb(NO 3 ) 2 PbI 2 + KNO 3 fermentacja alkoholowa czynniki wpływaj ywające na szybkość reakcji chemicznych stęż ężenie reagentów w (lub ciśnienie gazów w jeżeli eli reakcja przebiega
Terminy. Omówienie kolokwium I. Poprawa kolokwium I. Poprawa kolokwium II g. 15, s g. 15, s g. 15, s.
Tomasz Lubera Omówienie kolokwium I 14.05 g. 15, s. 402 Poprawa kolokwium I 21.05 g. 15, s. 402 Poprawa kolokwium II 28.05 g. 15, s. 402 Terminy Ćwiczenia rachunkowe z chemii fizycznej - Kolokwium II 2
Kinetyka 17/11/2018. Czym zajmuje się kinetyka chemiczna: Kinetyka, szybkość reakcji. Szybkość reakcji chemicznych
Czym zajmuje się kineyka chemiczna: Szybkość reakcji chemicznych Kineyka Czynniki wpływające na szybkość reakcji Kineyka, szybkość reakcji Podczas reakcji chemicznej sężenie subsraów i produków w czasie
fermentacja alkoholowa erozja skał lata dni KI + Pb(NO 3 ) 2 PbI 2 + KNO 3 min Karkonosze Pielgrzymy (1204 m n.p.m.)
Kinetyka chemiczna lata erozja skał Karkonosze Pielgrzymy (1204 m n.p.m.) fermentacja alkoholowa dni min KI + Pb(NO 3 ) 2 PbI 2 + KNO 3 s ms fs http://www2.warwick.ac.uk/fac/sci/chemistry/research/stavros/stavrosgroup/overview/
Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim
Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając
Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.
Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać
erozja skał lata KI + Pb(NO 3 ) 2 PbI 2 + KNO 3 min Karkonosze Pielgrzymy (1204 m n.p.m.)
Kinetyka chemiczna erozja skał Karkonosze Pielgrzymy (1204 m n.p.m.) fermentacja alkoholowa lata min KI + Pb(NO 3 ) 2 PbI 2 + KNO 3 s ms fs http://www2.warwick.ac.uk/fac/sci/chemistry/research/stavros/stavrosgroup/overview/
Definicja szybkości reakcji. Szybkości reakcji. Równanie kinetyczne reakcji ...
Definija szybkośi reakji Szybkość reakji definiuje się jako stosunek zmiany stężenia substratów lub produktów reakji do zasu potrzebnego do zajśia tej zmiany v zmiana stężenia zas potrzebny do zajśia dx
Definicja szybkości reakcji
Definija szybkośi reakji Szybkość reakji definiuje się jako stosunek zmiany stężenia substratów lub produktów reakji do zasu potrzebnego do zajśia tej zmiany. v zas zmiana stężenia potrzebny do zajśia
Właściwości koligatywne
Tomasz Lubera Właściwości koligatywne Grupa zjawisk naturalnych niezależnych od rodzaju substancji rozpuszczonej a jedynie od jej ilości. Należą do nich: obniżenie prężności pary, podwyższenie temperatury
WYKŁAD FIZYKAIIIB 2000 Drgania tłumione
YKŁD FIZYKIIIB Drgania łumione (gasnące, zanikające). F siła łumienia; r F r b& b współczynnik łumienia [ Nm s] m & F m & && & k m b m F r k b& opis różnych zjawisk izycznych Niech Ce p p p p 4 ± Trzy
Kinetyka chemiczna jest działem fizykochemii zajmującym się szybkością i mechanizmem reakcji chemicznych w różnych warunkach. a RT.
Ćwiczenie 12, 13. Kinetyka chemiczna. Kinetyka chemiczna jest działem fizykochemii zajmującym się szybkością i mechanizmem reakcji chemicznych w różnych warunkach. Szybkość reakcji chemicznej jest związana
Definicja szybkości reakcji
Definija szybkośi reakji Szybkość reakji definiuje się jako stosunek zmiany stężenia substratów lub produktów reakji do zasu potrzebnego do zajśia tej zmiany. v zas zmiana stężenia potrzebny do zajśia
Ćwiczenie 8 Wyznaczanie stałej szybkości reakcji utleniania jonów tiosiarczanowych
CHEMI FIZYCZN Ćwiczenie 8 Wyznaczanie stałej szybkości reakcji utleniania jonów tiosiarczanowych W ćwiczeniu przeprowadzana jest reakcja utleniania jonów tiosiarczanowych za pomocą jonów żelaza(iii). Przebieg
( ) ( ) ( τ) ( t) = 0
Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany
Chemia fizyczna 2 - wykład
Chemia fizyczna 2 - wykład Dr hab. inż. Aneta Pobudkowska-Mirecka Konsultacje: środa 12.15 14.00 (p.149) Chemia Fizyczna 2 - wykład Chemia kwantowa (prof. dr hab. Andrzej Sporzyński) Procesy (dr hab. inż.
Podstawowe pojęcia 1
Tomasz Lubera Podstawowe pojęcia 1 Układ część przestrzeni wyodrębniona myślowo lub fizycznie z otoczenia Układ izolowany niewymieniający masy i energii z otoczeniem Układ zamknięty wymieniający tylko
Wrocław, DIALIZA 1. OPIS PROCESU
Wrocław, 24.11.15 DIALIZA 1. OPIS PROCESU Do procesów membranowych służących do rozdzielania układów ciekłych należy akże dializa. Jes o izobaryczny i izoermiczny proces membranowy, w kórym siłą napędową
( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =
ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:
Inżynieria Biomedyczna
1.Obliczyć przy jakim stężeniu kwasu octowego stopień dysocjacji osiągnie wartość 3.%, jeżeli wiadomo, że stopień dysocjacji 15.%-wego roztworu (d=1.2 g/cm 3 ) w 2. Do 1 cm 3 2% (d=1.2 g/cm 3 ) roztworu
Chemia Analityczna. Autor: prof. dr hab. inż Marek Biziuk
Cheia Analiyczna Auor: pro. dr hab. inż Marek Biziuk Kaedra Cheii Analiycznej Wydział Cheiczny Poliechnika Gdańska 21 ANALIZA MIARECZKOWA (dział analizy objęościowej - woluerii) Meody iareczkowe służą
Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ
Wprowadzenie Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ opracowanie: Barbara Stypuła Celem ćwiczenia jest poznanie roli katalizatora w procesach chemicznych oraz prostego sposobu wyznaczenia wpływu
Metody Lagrange a i Hamiltona w Mechanice
Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Skręcalność właściwa sacharozy. opiekun ćwiczenia: dr A. Pietrzak
Kaedra Chemii Fizycznej Uniwersyeu Łódzkiego Skręcalność właściwa sacharozy opiekun ćwiczenia: dr A. Pierzak ćwiczenie nr 19 Zakres zagadnień obowiązujących do ćwiczenia 1. Akywność opyczna a srukura cząseczki.
PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:
Prawo Hessa. Efekt cieplny reakcji chemicznej lub procesu fizykochemicznego
Tomasz Lubera Prawo Hessa Efekt cieplny reakcji chemicznej lub procesu fizykochemicznego prowadzonego: Izobarycznie Q p = ΔH Izochorycznie Q V = ΔU nie zależy od drogi przemiany a jedynie od stanu początkowego
ż Ą Ź Ą Ż ź ż ć Ą ż ź ć ź Ś ż ź ć ż ĄĄ ż ż ź ż ć ć Ę ć ż ć Ś ć ć ź ż ż ć ż ć Ę ć Ę Ę ż ż Ę ć Ś ż ć ż ć ż Ą ź ż źć ż ż ż ż ź ź ż ć ć ż ć ż ć ć ż Ę ć ź ć ć ż ć ć ż ć ć ć ć ż Źć ź ż ć ć Ę Ą Ę ć ź Ę Ę ż Ę
1 Kinetyka reakcji chemicznych
Podstawy obliczeń chemicznych 1 1 Kinetyka reakcji chemicznych Szybkość reakcji chemicznej definiuje się jako ubytek stężenia substratu lub wzrost stężenia produktu w jednostce czasu. ν = c [ ] 2 c 1 mol
ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie
ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna
C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:
Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili
Wykład 4. Anna Ptaszek. 27 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 4. Anna Ptaszek 1 / 31
Wykład 4 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 27 października 2015 1 / 31 Podstawy kinetyki chemicznej pochodna funkcji i jej interpretacja, pojęcie szybkości i prędkości, stechiometria
Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu
Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu Ćw. 4 Kinetyka reakcji chemicznych Zagadnienia do przygotowania: Szybkość reakcji chemicznej, zależność szybkości reakcji chemicznej
Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona
Całka nieoznaczona Andrzej Musielak Sr Całka nieoznaczona Całkowanie o operacja odwrona do liczenia pochodnych, zn.: f()d = F () F () = f() Z definicji oraz z abeli pochodnych funkcji elemenarnych od razu
Ćwiczenie XII: PRAWO PODZIAŁU NERNSTA
Ćwiczenie XII: PRAWO PODZIAŁU NERNSTA opracowanie: Wojciech Solarski Wprowadzenie Prawo podziału sformułowane przez Walera H. Nensa opisuje układ rójskładnikowy, z czego dwa składniki o rozpuszczalniki
DYNAMIKA KONSTRUKCJI
10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej
Wykład 4. Anna Ptaszek. 9 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 4. Anna Ptaszek 1 / 29
Wykład 4 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 9 października 2015 1 / 29 Podstawy kinetyki chemicznej pochodna funkcji i jej interpretacja, pojęcie szybkości i prędkości, stechiometria
Ćwiczenia 3 ( ) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki.
Ćwiczenia 3 (22.04.2013) Współczynnik przyrosu nauralnego. Koncepcja ludności zasojowej i usabilizowanej. Prawo Loki. Współczynnik przyrosu nauralnego r = U Z L gdzie: U - urodzenia w roku Z - zgony w
Prowadzący. http://luberski.w.interia.pl telefon PK: 126282746 Pokój 210A (Katedra Biotechnologii i Chemii Fizycznej C-5)
Tomasz Lubera dr Tomasz Lubera mail: luberski@interia.pl Prowadzący http://luberski.w.interia.pl telefon PK: 126282746 Pokój 210A (Katedra Biotechnologii i Chemii Fizycznej C-5) Konsultacje: we wtorki
KATALITYCZNE ODWODORNIENIE HEPTANU
Zakład Technologii Chemicznej Pracownia z Technologii Chemicznej Ćwiczenie 12 KATALITYCZNE ODWODORNIENIE HEPTANU WARSZAWA 2012 Prowadzi dr inż. Jadwiga Skupińska Ćwiczenie 12 KATALITYCZNE ODWODORNIENIE
Rozdział 5. Detekcja ciężkich jonów
Rozdział 5 Deekcja i idenyfikacja jonów 63 Deekcja ciężkich jonów Do rejesracji jonów sosuje się klasyczne meody deekcji cząsek naładowanych. Najczęściej spoykane rodzaje deekorów o : Scynylaory (plasik)
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Odwracalność przemiany chemicznej
Odwracalność przemiany chemicznej Na ogół wszystkie reakcje chemiczne są odwracalne, tzn. z danych substratów tworzą się produkty, a jednocześnie produkty reakcji ulegają rozkładowi na substraty. Fakt
Silniki cieplne i rekurencje
6 FOTO 33, Lao 6 Silniki cieplne i rekurencje Jakub Mielczarek Insyu Fizyki UJ Chciałbym Pańswu zaprezenować zagadnienie, kóre pozwala, rozważając emaykę sprawności układu silników cieplnych, zapoznać
Inżynieria Biomedyczna
1.Obliczyć przy jakim stężeniu kwasu octowego stopień dysocjacji osiągnie wartość 3.%, jeżeli wiadomo, że stopień dysocjacji 15.%-wego roztworu (d=1.2 g/cm 3 ) w 2. Do 1 cm 3 2% (d=1.2 g/cm 3 ) roztworu
Kinetyka i równowaga reakcji chemicznej
Kinetyka i równowaga reakcji chemicznej W przebiegu reakcji chemicznych interesujące są dwa aspekty zachodzących przemian: 1. rodzaj substratów i otrzymanych z nich produktów, 2. szybkość, z jaką substraty
Wykład 3 Równania rózniczkowe cd
7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy
Sformułowanie Schrödingera mechaniki kwantowej. Fizyka II, lato
Sformułowanie Schrödingera mechaniki kwanowej Fizyka II, lao 018 1 Wprowadzenie Posać funkcji falowej dla fali de Broglie a, sin sin k 1 Jes o przypadek jednowymiarowy Posać a zosała określona meodą zgadywania.
Podstawowe pojęcia 1
Tomasz Lubera Półogniwo Podstawowe pojęcia 1 układ złożony z min. dwóch faz pozostających ze sobą w kontakcie, w którym w wyniku zachodzących procesów utleniania lub redukcji ustala się stan równowagi,
2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)
Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wpływ stężenia kwasu na szybkość hydrolizy estru
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wpływ stężenia kwasu na szybkość hydrolizy estru ćwiczenie nr 25 opracowała dr B. Nowicka, aktualizacja D. Waliszewski Zakres zagadnień obowiązujących do
drgania h armoniczne harmoniczne
ver-8..7 drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne () An cos( nω + ϕ n ) N n Fig (...) analiza Fouriera małe drgania E p E E k E p ( ) jeden sopień swobody: -A A E p
Zapomniane twierdzenie Nyquista
Zapomniane wierdzenie Nyquisa Bogdan Cichocki, IFT UW KMMF 01.03.1 A A Flukuacje od łac. flucuaio drgania, falowanie, nazwa wprowadzona przez Mariana Smoluchowskiego Harry Nyquis (1889-1976) inżynier elekryk,
Lista nr Znaleźć rozwiązania ogólne następujących równań różniczkowych: a) y = y t,
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE B Lisa nr 1 1. Napisać równanie różniczkowe, jakie spełnia napięcie u = u() na okładkach kondensaora w obwodzie zawierającym połączone szeregowo oporność R i pojemność C,
PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1
PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,
Gr.A, Zad.1. Gr.A, Zad.2 U CC R C1 R C2. U wy T 1 T 2. U we T 3 T 4 U EE
Niekóre z zadań dają się rozwiązać niemal w pamięci, pamięaj jednak, że warunkiem uzyskania różnej od zera liczby punków za każde zadanie, jes przedsawienie, oprócz samego wyniku, akże rozwiązania, wyjaśniającego
LABORATORIUM Z KATALIZY HOMOGENICZNEJ I HETEROGENICZNEJ WYZNACZANIE STAŁEJ SZYBKOŚCI REAKCJI UTLENIANIA POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW WYZNACZANIE STAŁEJ SZYBKOŚCI REAKCJI UTLENIANIA JONÓW TIOSIARCZANOWYCH Miejsce ćwiczenia: Zakład Chemii Fizycznej, sala
MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II
MDEL DPWIEDZI I SEMAT ENIANIA ARKUSZA II. Zdający otrzymuje punkty tylko za całkowicie prawidłową odpowiedź.. Gdy do jednego polecenia są dwie odpowiedzi (jedna prawidłowa, druga nieprawidłowa), to zdający
E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO
E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy
Kontakt,informacja i konsultacje
Kontakt,informacja i konsultacje Chemia A ; pokój 307 elefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl tablica ogłoszeń Katedry Chemii Fizycznej http://www.pg.gda.pl/chem/dydaktyka/ lub http://www.pg.gda.pl/chem/katedry/fizyczna
Chemia - laboratorium
Chemia - laboratorium Wydział Geologii, Geofizyki i Ochrony Środowiska Studia stacjonarne, Rok I, Semestr zimowy 013/14 Dr hab. inż. Tomasz Brylewski e-mail: brylew@agh.edu.pl tel. 1-617-59 Katedra Fizykochemii
WENTYLACJA i KLIMATYZACJA 2. Ćwiczenia nr 1
Insyu Inżynierii Cieplnej i Ochrony Powierza Poliechniki Krakowskiej Zakład Wenylacji Klimayzacji i Chłodnicwa WENTYLACJA i KLIMATYZACJA 2 Ćwiczenia nr 1 Urządzenia do uzdania powierza w klimayzacji Dr
relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach
1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach
ψ przedstawia zależność
Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi
20. Wyznaczanie ciepła właściwego lodu c pl i ciepła topnienia lodu L
20. Wyznaczanie ciepła właściwego lodu c pl i ciepła opnienia lodu L I. Wprowadzenie 1. Ciepło właściwe lodu i ciepło opnienia lodu wyznaczymy meodą kalorymeryczną sporządzając odpowiedni bilans cieplny.
KATALITYCZNY ROZKŁAD WODY UTLENIONEJ
Dorota Warmińska, Maciej Śmiechowski Katedra Chemii Fizycznej, Wydział Chemiczny, Politechnika Gdańska KATALITYCZNY ROZKŁAD WODY UTLENIONEJ Wstęp teoretyczny Kataliza homo- i heterogeniczna Zwiększenie
Dysocjacja kwasów i zasad. ponieważ stężenie wody w rozcieńczonym roztworze jest stałe to:
Stała równowagi dysocjacji: Dysocjacja kwasów i zasad HX H 2 O H 3 O X - K a [ H 3O [ X [ HX [ H O 2 ponieważ stężenie wody w rozcieńczonym roztworze jest stałe to: K a [ H 3 O [ X [ HX Dla słabych kwasów
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,
Chemia fizyczna (2013/2014) kinetyka chemiczna
Chemia fizyczna (01/014) kinetyka chemiczna Zadanie 1. Dla reakcji rozkładu N O 5 4NO +O w roztworze CCl 4, w warunkach T,V=const w temperaturze 45 o C otrzymano następującą zależność stężenia N O 5 (A)
Zadanie 1. Zadanie: Odpowiedź: ΔU = 2,8663 10 4 J
Tomasz Lubera Zadanie: Zadanie 1 Autoklaw zawiera 30 dm 3 azotu o temperaturze 15 o C pod ciśnieniem 1,48 atm. Podczas ogrzewania autoklawu ciśnienie wzrosło do 3800,64 mmhg. Oblicz zmianę energii wewnętrznej
Podstawowe wyidealizowane elementy obwodu elektrycznego Rezystor ( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( τ ) i t i t u ( ) u t u t i ( ) i t. dowolny.
Tema. Opracował: esław Dereń Kaedra Teorii Sygnałów Insyu Telekomunikacji Teleinformayki i Akusyki Poliechnika Wrocławska Prawa auorskie zasrzeżone Podsawowe wyidealizowane elemeny obwodu elekrycznego
Kinetyka reakcji chemicznych
Kinetya reacji chemicznych Metody doświadczalne Reacje powolne (> s) do analizy Reacje szybie ( -3 s) detetor v x x t tx/v Reacje b. szybie ( -4-4 s) (fotochemiczne) wzbudzenie analiza Szybość reacji aa
Dobór przekroju żyły powrotnej w kablach elektroenergetycznych
Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego
ARKUSZ EGZAMINACYJNY Z CHEMII
(Wypełnia kandydat przed rozpoczęciem pracy) KOD KANDYDATA ARKUSZ EGZAMINACYJNY Z CEMII Instrukcja dla zdającego Czas pracy 120 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 12 stron. Ewentualny brak
Krzywe na płaszczyźnie.
Krzwe na płaszczźnie. Współrzędne paramerczne i biegunowe. Współrzędne biegunowe. Dan jes punk O, zwan biegunem, kór sanowi począek półprosej, zwanej półosią. Dowoln punk P na płaszczźnie można opisać
2. Wprowadzenie. Obiekt
POLITECHNIKA WARSZAWSKA Insyu Elekroenergeyki, Zakład Elekrowni i Gospodarki Elekroenergeycznej Bezpieczeńswo elekroenergeyczne i niezawodność zasilania laoraorium opracował: prof. dr ha. inż. Józef Paska,
Podstawy elektrotechniki
Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 7 320 320
PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny
POLITECHNIKA BIAŁOSTOCKA
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 4 POMIARY REFRAKTOMETRYCZNE Autorzy: dr
v = v i e i v 1 ] T v =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq
Karta modułu/przedmiotu
Karta modułu/przedmiotu Informacje ogólne o module/przedmiocie 1. Kierunek studiów: Analityka Medyczna 2. Poziom kształcenia: jednolite studia magisterskie 3. Forma studiów: stacjonarne 4. Rok: II 5. Semestr:
Zadanie 1. Zadanie: Odpowiedź: ΔU = 2, J
Tomasz Lubera Zadanie: Zadanie 1 Autoklaw zawiera 30 dm 3 azotu o temperaturze 15 o C pod ciśnieniem 1,48 atm. Podczas ogrzewania autoklawu ciśnienie wzrosło do 3800,64 mmhg. Oblicz zmianę energii wewnętrznej
ś Ę ś Ę ź ś Ó ś ś Ś ć ś ź Ź ść ć ś Ż ś ś Ż Ż Ż ś Ż ź ś ś ć Ż ś ś Ż ś ś ś ś Ó ś Ż ź ś ź ś ć ź ś ś ś ć ć Ń ś ś ś ź ś ś ś ś Ń ś Ż ś ś ś Ź Ó ć Ę ś ś ś Ń Ż Ś Ż ś ś ź ź ć Ó Ó ś ś ź Ś ć Ż Ń ś ź Ą ś ś Ż ć ć ść
Doświadczenie B O Y L E
Wprowadzenie teoretyczne Doświadczenie Równanie Clapeyrona opisuje gaz doskonały. Z dobrym przybliżeniem opisuje także gazy rzeczywiste rozrzedzone. p V = n R T Z równania Clapeyrona wynika prawo Boyle'a-Mario
ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY
Próbny egzamin maturalny z chemii 0r. ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Zdający otrzymuje punkty tylko za poprawne rozwiązania, precyzyjnie odpowiadające poleceniom zawartym w zadaniach.
POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU
Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów
Praca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Zad Stoisz na brzegu oceanu, pogoda jest idealna,
Praca domowa nr. Meodologia Fizyki. Grupa. Szacowanie warości wielkości fizycznych Zad... Soisz na brzegu oceanu, pogoda jes idealna, powierze przeźroczyse; proszę oszacować jak daleko od Ciebie znajduje
Chemia ogólna nieorganiczna Wykład XII Kinetyka i statyka chemiczna
Chemia ogólna nieorganiczna Wykład 10 14 XII 2016 Kinetyka i statyka chemiczna Elementy kinetyki i statyki chemicznej bada drogi przemiany substratów w produkty szybkość(v) reakcji chem. i zależność od
Destylacja z parą wodną
Destylacja z parą wodną 1. prowadzenie iele związków chemicznych podczas destylacji przy ciśnieniu normalnym ulega rozkładowi lub polimeryzacji. by możliwe było ich oddestylowanie należy wykonywać ten
Badanie kinetyki katalitycznego rozkładu H 2 O 2
Badanie kinetyki katalitycznego rozkładu H 2 O 2 (opracowanie: Barbara Krajewska) Celem ćwiczenia jest zapoznanie się z prawami kinetyki chemicznej, sposobem wyznaczenia stałej szybkości i rzędu reakcji
Przepływy laminarne - zadania
Zadanie 1 Warstwa cieczy o wysokości = 3mm i lepkości v = 1,5 10 m /s płynie równomiernie pod działaniem siły ciężkości po płaszczyźnie nachylonej do poziomu pod kątem α = 15. Wyznaczyć: a) Rozkład prędkości.
FUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D)
FUNKCJA LINIOWA 1. Funkcja jest rosnąca, gdy 2. Wskaż, dla którego funkcja liniowa jest rosnąca Wskaż, dla którego funkcja liniowa określona wzorem jest stała. 3. Funkcja liniowa A) jest malejąca i jej
MAŁOPOLSKI KONKURS CHEMICZNY DLA GIMNAZJALISTÓW
Kraków, 08.12.2016 r. MAŁOPOLSKI KONKURS CHEMICZNY DLA GIMNAZJALISTÓW Etap II (rejonowy) Uwagi ogólne: Materiały dla nauczycieli Rozwiązania zadań wraz z punktacją - Za prawidłowe rozwiązanie zadań rachunkowych
Ćwiczenie nr 5. Pomiar górnej granicy widma energetycznego Promieniowania beta metodą absorpcji.
Ćwiczenie nr 5 Pomiar górnej granicy widma energetycznego Promieniowania beta metodą absorpcji. 1. 2. 3. 1. Ołowiany domek pomiarowy z licznikiem kielichowym G-M oraz wielopoziomowymi wspornikami. 2. Zasilacz
KINETYKA INWERSJI SACHAROZY
Dorota Warmińska, Maciej Śmiechowski Katedra Chemii Fizycznej, Wydział Chemiczny, Politechnika Gdańska KINETYKA INWERSJI SACHAROZY Wstęp teoretyczny Kataliza kwasowo-zasadowa Kataliza kwasowo-zasadowa
Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH
Ćwiczenie 14 aria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYATYCZNYCH Zagadnienia: Podstawowe pojęcia kinetyki chemicznej (szybkość reakcji, reakcje elementarne, rząd reakcji). Równania kinetyczne prostych