Drgania. O. Harmoniczny
|
|
- Mateusz Szewczyk
- 6 lat temu
- Przeglądów:
Transkrypt
1 Dobrej fazy! Drgania O. Harmoniczny Położenie równowagi, 5 lipca 218 r. 1 Zadanie Zegar Małgorzata Berajter, update: , id: pl-ciepło-5, diff: 2 Pewien zegar, posiadający wahadło ze srebra, odmierza dokładnie czas w temperaturze 19 C. Temperatura spadła do 4 C. O ile więcej wahnięć w ciągu doby wykona zegar w niższej temperaturze? Przyjmij, że współczynnik rozszerzalności cieplnej srebra wynosi /K. Jeden koniec pręta ze srebra zamocowany jest w taki sposób, by mógł obracać się w płaszczyźnie pionowej. Do drugiego końca pręta przymocowany jest ciężarek. Długość pręta jest znacznie większa od rozmiarów ciężarka. Pręt ze srebra jest znacznie lżejszy niż przyczepiony do niego ciężarek. Wskazówka: Okres wahadła w temperaturze początkowej wynosi 1 s. Wskazówka: l P = 2π g P - okres drgań, l - długość wahadła, g - przyspieszenie ziemskie. Wskazówka: Zmiana długości pręta: l = α T l T - zmiana temeperatury, α - współczynnik rozszerzalności liniowej. Wskazówka: n = 1 (1 α T) 1 n - zmiana liczby wahnięć w trakcie 1 s. Odpowiedź: Zegar wykona o 11,7 więcej wahnięć na dobę. 2 Zadanie Sprężyna Magda Gładka, update: , id: pl-dynamika-815, diff: 2 Do wiszącej pionowo w polu grawitacyjnym sprężyny, podwieszono odważnik o masie,5 kg i zauważono, że wydłużyła się ona o,8 cm. a) Oblicz okres pionowych drgań wahadła sprężynowego, zbudowanego z opisanej sprężyny i podwieszonej kulki o masie kg. b) Sprężynę przecięto tak, że powstały dwie identyczne sprężyny i do jednej z nich podwieszono klocek o masie 2,25 kg. Oblicz okres drgań takiego wahadła sprężynowego. Wskazówka: Jakie siły działają na zawieszony odważnik na sprężynie? c Autorzy pakietu 1/1 Licencja CC BY-SA 4.
2 Wskazówka: Ciężarek zawieszony na sprężynie jest w równowadze, więc siła grawitacji F g równoważy siłę sprężystości sprężyny F s F g = F s m 1 g = k 1 x. Wskazówka: Okres drgań wahadła sprężynowego m2 T = 2π. k 1 Wskazówka: W momencie, gdy łączymy szeregowo dwie takie same sprężyny, to współczynnik sprężystości nowej sprężyny można obliczyć z czyli k 2 = 2k 1. 1 k 1 = 1 k k 2 = 2 k 2, Odpowiedź: a) Gdy podwieszono odważnik o masie m 1 to okres drgań wahadła wynosił T = 2π m 2 x m 1 g =,11 s, gdzie m 2 to masa kulki, a x to wydłużenie sprężyny. b) Okres drgań wahadła wynosi T = 2π m x 2m 1 g =,269 s, gdzie m to masa klocka. Zadanie Dwa ciężarki połączone sprężyną Piotr Nieżurawski, update: , id: pl-dynamika-82, diff: 1 Wyznacz okres drgań układu składającego się z dwóch ciężarków o masach m 1 i m 2 połączonych bardzo lekką sprężyną o współczynniku sprężystości k. Rozważ tylko drgania, przy których sprężyna nie wygina się na boki. Pomiń wpływ innych ciał. Uzyskaj również wynik liczbowy dla k = 9 N/m, m 1 = kg oraz m 2 = 4 kg. m 1 m 2 k Wskazówka: Opiszmy położenie ciężarków za pomocą współrzędnych x 1 oraz x 2, przyjmijmy zwrot osi X w prawo. Odstęp między nimi to u x 2 x 1. Wskazówka: Niech l będzie długością swobodną sprężyny. Siła sprężystości działająca na drugi ciężarek będzie równa: k(u l). Wskazówka: Równiania ruchu dla obu ciężarków: m 1 ẍ 1 = +k(u l) m 2 ẍ 2 = k(u l) c Autorzy pakietu 2/1 Licencja CC BY-SA 4.
3 Wskazówka: Po wyznaczeniu przyśpieszeń i odjęciu równań stronami otrzymujemy: Ale Prowadzi to do równania oscylatora ( 1 ẍ 2 ẍ 1 = k + 1 ) (u l) m1 m2 ẍ 2 ẍ 1 = ü ( 1 ü = k + 1 ) (u l) m1 m2 Odpowiedź: Okres drgań będzie równy Wynik liczbowy T 1,2 s. m1 m 2 T = 2π k(m 1 + m 2 ) 4 Zadanie Oscylator harmoniczny Klaudia Dec, update: , id: pl-dynamika-drgania-2, diff: 1 Przyjrzyjmy się prostemu układowi drgającemu, którego równanie ruchu ma postać: x(t) = x m cos (ωt + φ) gdzie x m, ω i φ są stałymi. Na rysunku można dostrzec ekstremalne momenty ruchu kulki: 1 i 5 odpowiadają maksymalnemu wychyleniu kulki, minimalnemu. W momentach 2 i 4 kulka przechodzi przez położenie równowagi. x max a) Narysuj wykres przedstawiający zależność położenia kulki od czasu od momentu 1 do x min x,25,5,75 1 c Autorzy pakietu /1 Licencja CC BY-SA 4.
4 b) Narysuj wykres, na którym amplituda jest dwukrotnie mniejsza niż w podpunkcie a).,25,5,75 1 c) Narysuj wykres, na którym okres drgań jest dwukrotnie większy niż w podpunkcie a).,25,5,75 1 d) Narysuj wykres, na którym częstotliwość drgań jest dwukrotnie większa niż w podpunkcie a). c Autorzy pakietu 4/1 Licencja CC BY-SA 4.
5 ,25,5,75 1 e) Jaką postać ma równanie opisujące prędkość kulki? Narysuj wykres zależności prędkości kulki od czasu zgodny z wykresem z podpunktu a) v/(m/s) ,25,5,75 1 f) Jaką postać ma równanie opisujące przyspieszenie kulki? Narysuj wykres zależności przyspieszenia kulki od czasu zgodny z wykresem z podpunktu a). c Autorzy pakietu 5/1 Licencja CC BY-SA 4.
6 a/(m/s 2 ) ,25,5,75 1 Odpowiedź: a) Wykres przedstawiający zależność położenia kulki od czasu.,25,5,75 1 b) Wykres, na którym amplituda jest dwukrotnie mniejsza niż w podpunkcie a). c Autorzy pakietu 6/1 Licencja CC BY-SA 4.
7 ,25,5,75 1 c) Wykres, na którym okres drgań jest dwukrotnie większy niż w podpunkcie a).,25,5,75 1 d) Wykres, na którym częstotliwość drgań jest dwukrotnie większa niż w podpunkcie a).,25,5,75 1 c Autorzy pakietu 7/1 Licencja CC BY-SA 4.
8 e) Wykres przedstawiający zależność prędkości kulki od czasu. Równanie: v(t) = ωx m sin (ωt + φ) v/(m/s) ,25,5,75 1 f) Wykres przedstawiający zależność przyspieszenia kulki od czasu. Równanie: a(t) = ω 2 x m cos (ωt + φ) 12 8 a/(m/s 2 ) ,25,5, Zadanie Kulka na sprężynie Klaudia Dec, update: , id: pl-dynamika-drgania-21, diff: 1 Po idealnie gładkim stole porusza się kulka o masie 68 g, która umocowana jest na sprężynie o stałej sprężystości 6 N. Kulkę odciągnięto na odległość 1 cm od położenia równowagi, m a następnie puszczono swobodnie. Pomiń opory ruchu. a) Wyznacz amplitudę. b) Wyznacz okres drgań. c) Wyznacz częstotliwość d) Wyznacz częstość kołową. c Autorzy pakietu 8/1 Licencja CC BY-SA 4.
9 e) Wyznacz maksymalną prędkość kulki i określ, w którym punkcie zostaje osiągnięta. f) Wyznacz maksymalne przyspieszenie kulki i określ, w którym punkcie zostaje osiągnięte. g) Wyznacz maksymalną energię potencjalną kulki i określ, w którym punkcie zostaje osiągnięta. h) Wyznacz maksymalną energię kinetyczną kulki i określ, w którym punkcie zostaje osiągnięta. Odpowiedź: a) Amplituda wynosi: x m = 1 cm. b) Okres drgań wynosi: T = 2π m,65 s, gdzie m to masa kulki, a k to stała sprężystości. k c) Częstotliwość wynosi: f = 1 Hz. T d) Częstość kołowa wynosi: ω = 2π T 9,6 1 s. e) Maksymalna prędkość kulki zostaje osiągnięta w punkcie równowagi i wynosi: v max = ωx m,96 m s. f) Maksymalne przyspieszenie kulki zostaje osiągnięte na krańcach toru i wynosi: a max = ω 2 x m 9,26 m s 2. g) Maksymalna energia potencjalna kulki zostaje osiągnięta na krańcach toru i wynosi: E pot = kxm2 2,15 J. h) Maksymalna energia kinetyczna kulki zostaje osiągnięta w punkcie równowagi i wynosi: E kin = mvm2 2,15 J. 6 Zadanie Drgająca ciecz Klaudia Dec, update: , id: pl-dynamika-drgania-2, diff: 2 Jaś nalał pewną ciecz o objętości 1 cm do pionowo ustawionej U-rurki, której przekrój poprzeczny wynosił,6 cm 2. Następnie dmuchnął do jednego z ramion tak mocno, że poziom wody podniósł się w drugim ramieniu. Zmiany poziomu cieczy zachodzą jedynie w prostych fragmentach ramion rurki. Pomiń opory ruchu cieczy. a) Wykaż, że siła, która dąży do przywrócenia stanu równowagi, to siła harmoniczna. b) Oblicz częstotliwość, z jaką będzie drgała ciecz. Wskazówka: a) Jaka siła powoduje ruch? Jak zmieni się poziom cieczy w pierwszym ramieniu, jeżeli w drugim ciecz podniesie się o x? b) Zauważ podobieństwo do ruchu ciężarka na sprężynie. Odpowiedź: a) Siła, która powoduje ruch to siła ciężkości: Q = mg, gdzie m to masa części cieczy, g to przyspieszenie ziemskie. Masę możemy wyrazić jako: m = ρv nad, gdzie ρ to gęstość cieczy, V nad to objętość części cieczy. Objętość natomiast to: V nad = 2xS, gdzie x to wychylenie cieczy ponad poziom równowagi, a S to przekrój poprzeczny. Zbierając wszystko razem otrzymujemy: Q = 2Sgρx = kx. Wartość siły ciężkości jest więc proporcjonalna do wychylenia cieczy z położenia równowagi i skierowana w stronę położenia równowagi, zatem spełnia cechy siły harmonicznej. b) Ciecz będzie drgała z częstotliwością: f = 1 2Sg 2π V 2 Hz. c Autorzy pakietu 9/1 Licencja CC BY-SA 4.
10 7 Zadanie Wahadło na planecie Klaudia Dec, update: , id: pl-dynamika-drgania-25, diff: 1 Na pewnej planecie mała kulka o masie 5 g została zawieszona na nitce o długości 18 cm. Kulka waha się z okresem wynoszącym,6 s oraz amplitudą znacznie mniejszą od długości nici. Opory ruchu można pominąć. a) Czy na podstawie tych danych jesteśmy w stanie wyznaczyć przyspieszenie grawitacyjne tej planety? Jeśli tak, to ile ono wynosi? b) Jak zmieni się okres wahań kulki, jeżeli zwiększymy jej masę trzykrotnie? c) Jaka musi być długość nici, aby ta sama kulka wahała się z okresem równym 1,2 s? Wskazówka: a) Jak zależy okres wahań od przyspieszenia grawitacyjnego planety? b) Od czego zależy okres wahań? c) Jak zależy okres wahań od długości wahadła? Odpowiedź: a) Tak, przyspieszenie grawitacyjne wynosi: g = 4π2 l 19,7 m, gdzie l to długość nici, a T to T 2 s 2 okres drgań. b) Okres wahań nie zależy od masy kulki, więc okres wahań się nie zmieni. c) Długość nici musi wynosić: L = 4l = 72 cm. 8 Zadanie Rezonans mechaniczny Klaudia Dec, update: , id: pl-dynamika-drgania-26, diff: 2 Na rozciągniętej poziomo lince zawieszamy cztery wahadła. W poniższej tabeli zestawiono wartości ich długości oraz mas zawieszonych ciężarków, gdzie l i m są jednostkami odpowiednio długości i masy numer wahadła długość l,5l 2l l masa m 2m m m Pierwsze wahadło wprawiono w ruch. Po pewnym czasie zaobserwowano ruch pozostałych wahadeł. Które z nich miało największe wychylenie? Drugie, ponieważ znajduje się najbliżej? Trzecie, ponieważ ma taką samą masę? Czy może czwarte, ponieważ ma taką samą długość nici? Wskazówka: Od czego zależy okres drgań wahadła matematycznego? Odpowiedź: Najbardziej w ruch zostanie wprawione wahadło czwarte, ponieważ jego okres drgań jest równy okresowi drgań wahadła pierwszego. c Autorzy pakietu 1/1 Licencja CC BY-SA 4.
a, F Włodzimierz Wolczyński sin wychylenie cos cos prędkość sin sin przyspieszenie sin sin siła współczynnik sprężystości energia potencjalna
Włodzimierz Wolczyński 3 RUCH DRGAJĄCY. CZĘŚĆ 1 wychylenie sin prędkość cos cos przyspieszenie sin sin siła współczynnik sprężystości sin sin 4 3 1 - x. v ; a ; F v -1,5T,5 T,75 T T 8t x -3-4 a, F energia
Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem.
Przykładowy zestaw zadań z fizyki i astronomii Poziom podstawowy 11 Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem. 18.1
Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała,
Zadania do przeliczenia na lekcji. Drgania - zadanka 1. Ciało o masie m = 0.5kg zawieszono na nieważkiej nitce o długości l = 1m a następne wychylono o 2cm z położenia równowagi (g = 10 m s 2), (a) oblicz
Fizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
POWTÓRKA PRZED KONKURSEM CZĘŚĆ C ZADANIA ZAMKNIĘTE
POWTÓRKA PRZED KONKURSEM CZĘŚĆ C DO ZDOBYCIA PUNKTÓW 55 Jest to powtórka przed etapem szkolnym z materiałem obejmującym dynamikę oraz drgania i fale. ZADANIA ZAMKNIĘTE łącznie pkt. zamknięte (na 10) otwarte
1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s.
1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s. 2. Dwie kulki, zawieszone na niciach o jednakowej długości, wychylono o niewielkie kąty tak, jak pokazuje
Sprawdzian dla chętnych, wakacyjny
Giżycko, 017-08- Sprawdzian dla chętnych, wakacyjny Nauczyciel Twojego ulubionego przedmiotu może niedługo skorzysta z tej maszynki... Prześlij nam informację, jesli znalazłeś błąd w Gezmat... ;-) 1 (3)
Podstawy fizyki sezon 1 VII. Ruch drgający
Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania
Ruch drgający i falowy
Ruch drgający i falowy 1. Ruch harmoniczny 1.1. Pojęcie ruchu harmonicznego Jednym z najbardziej rozpowszechnionych ruchów w mechanice jest ruch ciała drgającego. Przykładem takiego ruchu może być ruch
m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):
Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Siła sprężystości - przypomnienie
Siła sprężystości - przypomnienie Pomiary siły sprężystości wykonane kilka wykładów wcześniej (z uwzględnieniem kierunku siły). F = kx = 0.13x 0 F x cm mg Prawo Hooke a Ciało m na idealnie gładkiej powierzchni
Imię i nazwisko ucznia Data... Klasa...
Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Częstotliwość
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.
Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej
Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego
Ćwiczenie nr Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego. Wymagania do ćwiczenia 1. ynamika ruchu obrotowego.. rgania harmoniczne Literatura:. Halliday, R. Resnick,
Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony
Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
Na wykresie przedstawiono zależność drogi od czasu trwania ruchu dla ciał A i B.
Imię i nazwisko Pytanie 1/ Na wykresie przedstawiono zależność drogi od czasu trwania ruchu dla ciał A i Wskaż poprawną odpowiedź Które stwierdzenie jest prawdziwe? Prędkości obu ciał są takie same Ciało
Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2015/2016 ETAP OKRĘGOWY
Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2015/2016 KOD UCZNIA ETAP OKRĘGOWY Instrukcja dla ucznia 1. Arkusz zawiera 7 zadań. 2. Przed rozpoczęciem
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania PYTANIA ZAMKNIĘTE Zadanie
Wyznaczanie współczynnika sprężystości sprężyn i ich układów
Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
Równania różniczkowe opisujące ruch fotela z pilotem:
. Katapultowanie pilota z samolotu Równania różniczkowe opisujące ruch fotela z pilotem: gdzie D - siłą ciągu, Cd współczynnik aerodynamiczny ciągu, m - masa pilota i fotela, g przys. ziemskie, ρ - gęstość
5. Ruch harmoniczny i równanie falowe
5. Ruch harmoniczny i równanie falowe 5.1. Mamy dwie nieważkie sprężyny o współczynnikach sprężystości, odpowiednio, k 1 i k 2. Wyznaczyć współczynnik sprężystości układu tych dwóch sprężyn w przypadku,
Zadanie domowe z drgań harmonicznych - rozwiązanie trzech wybranych zadań
- rozwiązanie trzech wybranych zadań Ireneusz Mańkowski I LO im. Stefana Żeromskiego w Lęborku ul. Dygasińskiego 14 28 kwietnia 2016 Wybrane zadania domowe 1 Zadanie 5.4.4 Rozwiązanie zadania 5.4.4 2 Zadanie
TEORIA DRGAŃ Program wykładu 2016
TEORIA DRGAŃ Program wykładu 2016 I. KINEMATYKA RUCHU POSTE POWEGO 1. Ruch jednowymiarowy 1.1. Prędkość (a) Prędkość średnia (b) Prędkość chwilowa (prędkość) 1.2. Przyspieszenie (a) Przyspieszenie średnie
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
Zadanie 2. Oceń prawdziwość poniższych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F, jeśli zdanie jest fałszywe.
Zadanie 1. W pewnej odległości od siebie umieszczono dwie identyczne kulki o metalizowanych powierzchniach. Ładunek elektryczny zgromadzony na pierwszej kulce wynosił +6q, a na drugiej -4q (gdzie q oznacza
Prawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Dynamika ruchu po okręgu siła dośrodkowa Prawa ruchu w układzie nieinercjalnym siły bezwładności Prawa ruchu w układzie obracajacym się siła odśrodkowa siła
Konkurs fizyczny szkoła podstawowa. 2018/2019. Etap rejonowy
UWAGA: W zadaniach o numerach od 1 do 8 spośród podanych propozycji odpowiedzi wybierz i zaznacz tą, która stanowi prawidłowe zakończenie ostatniego zdania w zadaniu. Zadanie 1. (0 1pkt.) odczas testów
RUCH HARMONICZNY. sin. (r.j.o) sin
RUCH DRGAJĄCY Ruch harmoniczny Rodzaje drgań Oscylator harmoniczny Energia oscylatora harmonicznego Wahadło matematyczne i fizyczne Drgania tłumione Drgania wymuszone i zjawisko rezonansu Politechnika
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)
Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności
Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności Zadanie 1 (7 pkt) Cząstka o masie m i prędkości v skierowanej horyzontalnie wpada przez bocznąściankę
Egzamin z fizyki Informatyka Stosowana
Egzamin z fizyki Informatyka Stosowana 1) Dwie kulki odległe od siebie o d=8m wystrzelono w tym samym momencie czasu z prędkościami v 1 =4m/s i v 2 =8m/s, jak pokazano na rysunku. v 1 8 m v 2 α a) kulka
Kołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt)
Kołowrót -11pkt. Kołowrót w kształcie walca, którego masa wynosi 10 kg, zamocowany jest nad studnią (rys.). Na kołowrocie nawinięta jest nieważka i nierozciągliwa linka, której górny koniec przymocowany
Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2
Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2 1 Zadania wstępne (dla wszystkich) Zadanie 1. Pewne ciało znajduje się na równi, której kąt nachylenia względem poziomu można regulować.
Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2
1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej
1. Wahadło fizyczne o regulowanej płaszczyźnie. drgań. kilkukrotnie sprawdzając z jaką niepewnością statystyczną możemy mieć do czynienia. pomiarze.
. Wahadło fizyczne o regulowanej płaszczyźnie drgań.. Cel ćwiczenia Cel ćwiczenia: Analiza drgań harmonicznych na przykładzie wahadła fizycznego. Sprawdzenie relacji między okresem drgań obliczonym a okresem
LIGA klasa 2 - styczeń 2017
LIGA klasa 2 - styczeń 2017 MAŁGORZATA IECUCH IMIĘ I NAZWISKO: KLASA: GRUA A 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Głośność dźwięku jest zależna od
Drania i fale. Przykład drgań. Drgająca linijka, ciało zawieszone na sprężynie, wahadło matematyczne.
Drania i fale 1. Drgania W ruchu drgającym ciało wychyla się okresowo w jedną i w drugą stronę od położenia równowagi (cykliczna zmiana). W położeniu równowagi siły działające na ciało równoważą się. Przykład
Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
Fizyka Elementarna rozwiązania zadań. Część 20, 21 i 22 Przygotowanie: Grzegorz Brona,
Fizyka Elementarna rozwiązania zadań. Część 0, 1 i Przygotowanie: Grzegorz Brona, 0.1.008 Seria 0 Zadanie 1 Punkt Q porusza się w płaszczyźnie XOY po okręgu o promieniu A ze stałą prędkością kątową ω.
Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż.
Ruch drgajacy dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Ruch drgajacy Drgania harmoniczne Drgania oscylacje to cykliczna
I. DYNAMIKA PUNKTU MATERIALNEGO
I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć
BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO
ĆWICZENIE 36 BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO Cel ćwiczenia: Wyznaczenie podstawowych parametrów drgań tłumionych: okresu (T), częstotliwości (f), częstotliwości kołowej (ω), współczynnika tłumienia
Wykład 6 Drgania. Siła harmoniczna
Wykład 6 Drgania Ruch, który powtarza się w regularnych odstępach czasu, nazywamy ruchem okresowym (periodycznym). Przemieszczenie cząstki w ruchu periodycznym można wyrazić za pomocą funkcji sinus albo
Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej
14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do grawitacji)
Włodzimierz Wolczyński 14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią
DRGANIA OSCYLATOR HARMONICZNY
DRGANIA OSCYLATOR HARMONICZNY wyklad8 2012/2013, zima 1 Własności sprężyste ciał stałych naprężenie rozciągające naprężenie ścinające naprężenie objętościowe Względne odkształcenie ciała zależy od naprężenia
(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu.
1 1 x (m/s) 4 0 4 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 t (s) a) Narysuj wykres a x (t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka
Drgania. W Y K Ł A D X Ruch harmoniczny prosty. k m
Wykład z fizyki Piotr Posmykiewicz 119 W Y K Ł A D X Drgania. Drgania pojawiają się wtedy, gdy układ zostanie wytrącony ze stanu równowagi stabilnej. MoŜna przytoczyć szereg znanych przykładów: kołysząca
Testy Która kombinacja jednostek odpowiada paskalowi? N/m, N/m s 2, kg/m s 2,N/s, kg m/s 2
Testy 3 40. Która kombinacja jednostek odpowiada paskalowi? N/m, N/m s 2, kg/m s 2,N/s, kg m/s 2 41. Balonik o masie 10 g spada ze stałą prędkością w powietrzu. Jaka jest siła wyporu? Jaka jest średnica
Wykład 1: Fale wstęp. Drgania Katarzyna Weron. WPPT, Matematyka Stosowana
Wykład 1: Fale wstęp. Drgania Katarzyna Weron WPPT, Matematyka Stosowana Sposoby komunikacji Chcesz się skontaktować z przyjacielem Wysyłasz list? Wykorzystujesz cząstki Telefonujesz? Wykorzystujesz fale
Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera.
ĆWICZENIE WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Opis ćwiczenia Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
SCENARIUSZ LEKCJI FIZYKI W KLASIE 8 Z WYKORZYSTANIEM TIK
Temat: Ruch drgający. SCENARIUSZ LEKCJI FIZYKI W KLASIE 8 Z WYKORZYSTANIEM TIK Czas trwania: 2godziny lekcyjne Cel główny: - zapoznanie uczniów z ruchem drgającym, Cele szczegółowe: - uczeń wie, na czym
Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Energia mechaniczna. Energia mechaniczna dzieli się na energię kinetyczną i potencjalną. Energia kinetyczna
Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła :
Zestaw zadań na I etap konkursu fizycznego Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : A) 5m/s B) 10m/s C) 20m/s D) 40m/s. Zad.2 Samochód o masie 1 tony poruszał
Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.
Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy
PRÓBNY EGZAMIN MATURALNY Z ZAMKOREM FIZYKA I ASTRONOMIA. Styczeń 2013 POZIOM ROZSZERZONY
PRÓBNY EGZAMIN MATURALNY Z ZAMKOREM FIZYKA I ASTRONOMIA Styczeń 2013 POZIOM ROZSZERZONY 1. Sprawdź, czy arkusz egzaminacyjny zawiera 10 stron (zadania 1 6). Ewentualny brak zgłoś przewodniczącemu zespołu
Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Drgania w obwodzie L Autorzy: Zbigniew Kąkol Kamil Kutorasiński 016 Drgania w obwodzie L Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Rozpatrzmy obwód złożony z szeregowo połączonych indukcyjności L (cewki)
Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
POWTÓRKA PRZED KONKURSEM CZĘŚĆ 8
POWTÓRKA PRZED KONKURSEM CZĘŚĆ 8 DO ZDOBYCIA 50 PUNKTÓW Jest to powtórka przed etapem szkolnym. zadanie 1 10 pkt Areometr służy do pomiaru gęstości cieczy. Przedstawiono go na rysunku poniżej, jednak ty
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne
KONSPEKT ZAJĘĆ EDUKACYJNYCH
KONSPEKT ZAJĘĆ EDUKACYJNYCH Część organizacyjna: Przedmiot: fizyka Klasa: II technikum poziom rozszerzony Czas trwania: 45 min. Data: Część merytoryczna: Dział programowy: Ruch harmoniczny i fale mechaniczne
Uczennica wyznaczyła objętość zabawki o masie 20 g po zanurzeniu jej w menzurce z wodą za pomocą sztywnego, cienkiego drutu (patrz rysunek).
ZADANIA POWTÓRZENIOWE BAZA ZADAŃ ZADANIE 1 Uczniowie wyznaczali okres drgań wahadła. Badali ruch wahadeł o tej samej długości, ale o różnych masach, wychylając je o ten sam kąt. Na które z poniższych pytań
WOJEWÓDZKI KONKURS PRZEDMIOTOWY z FIZYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW 2017/2018 ELIMINACJE REJONOWE
ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO WOJEWÓDZKI KONKURS PRZEDMIOTOWY z FIZYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW 2017/2018 ELIMINACJE
Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE
WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.
ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,
Konkurs fizyczny - gimnazjum. 2018/2019. Etap rejonowy
UWAGA: W zadaniach o numerach od 1 do 7 spośród podanych propozycji odpowiedzi wybierz i zaznacz tą, która stanowi prawidłowe zakończenie ostatniego zdania w zadaniu. Zadanie 1. (0 1pkt.) Podczas testów
5) W czterech rogach kwadratu o boku a umieszczono ładunki o tej samej wartości q jak pokazano na rysunku. k=1/(4πε 0 )
Zadania zamknięte 1 1) Ciało zostało wyrzucono z prędkością V 0 skierowną pod kątem α względem poziomu (x). Wiedząc iż porusza się ono w polu grawitacyjnym o przyspieszeniu g skierowanym pionowo w dół
We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2
m We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2. s Zadanie 1. (1 punkt) Pasażer samochodu zmierzył za pomocą stopera w telefonie komórkowym, że mija słupki kilometrowe co
Człowiek najlepsza inwestycja FENIKS
Człowiek najlepsza inwestycja FENIKS - długofalowy program odbudowy, popularyzacji i wspomagania fizyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i informatycznych
Imię i nazwisko: ... WOJEWÓDZKI KONKURS Z FIZYKI Z ASTRONOMIĄ DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2012/2013 ETAP I SZKOLNY
(pieczątka szkoły) Imię i nazwisko:.................................. Klasa.................................. Czas rozwiązywania zadań: 45 minut WOJEWÓDZKI KONKURS Z FIZYKI Z ASTRONOMIĄ DLA UCZNIÓW GIMNAZJUM
m We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2 Wskaż właściwe połączenie nazwy zjawiska fizycznego z jego opisem.
m We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2. s Zadanie 1. (1 punkt) Wskaż właściwe połączenie nazwy zjawiska fizycznego z jego opisem. I Resublimacja 1 tworzenia się mgły
KONKURS MATEMATYCZNO FIZYCZNY 11 marca 2010 r. Klasa II
...... kod ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY marca 200 r. Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 4 zadań. Pierwsze 0 to zadania zamknięte. Rozwiązanie tych zadań polega na
25kg 20J 30g 60mm 105N 1mm2 2.8cm2 5m/s 29m 0.5
1. Klocek o masie 25kg przymocowany do sprężyny wykonuje na gładkim stole o drgania harmoniczne o energii całkowitej 20J. Wyznacz wartość energii kinetycznej tego klocka w momencie gdy jego wychylenie
KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 27 stycznia 2012 r. zawody II stopnia (rejonowe)
Pieczęć KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 27 stycznia 2012 r. zawody II stopnia (rejonowe) Witamy Cię na drugim etapie Konkursu Fizycznego i życzymy powodzenia. Maksymalna liczba
m We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2
m We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2. s Zadanie 1. (1 punkt) Zamknięta szklana butelka pływa prawie całkowicie zanurzona w wodzie o temperaturze 10 o C. Gdy podgrzejemy
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego.
Włodzimierz Wolczyński 14 POLE GRAWITACYJNE Wzór Newtona M r m G- stała grawitacji Natężenie pola grawitacyjnego 6,67 10 jednostka [ N/kg] Przyspieszenie grawitacyjne jednostka [m/s 2 ] Praca w polu grawitacyjnym
Blok 2: Zależność funkcyjna wielkości fizycznych. Rzuty
Blok : Zależność funkcyjna wielkości fizycznych. Rzuty ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przeanalizuj wykresy zaprezentowane na rysunkach. Załóż, żę w każdym przypadku ciało poruszało się zgodnie ze
Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Obrót wokół ustalonej osi Prawa ruchu Dla bryły sztywnej obracajacej się wokół ostalonej osi mement
WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA ĆWICZENIE
ĆWICZENIE 1 WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Cel ćwiczenia: Doświadczalne potwierdzenie twierdzenia Steinera, wyznaczenie
Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka 1- Mechanika Wykład 4 6.X.017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu
Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyn i współczynnika sztywności zastępczej
Doświadczalne wyznaczanie (sprężystości) sprężyn i zastępczej Statyczna metoda wyznaczania. Wprowadzenie Wartość użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić
Sprawozdanie z zad. nr 4 Wahadło Matematyczne z Fizyki Komputerowej. Szymon Wawrzyniak / Artur Angiel / Gr. 5 / Poniedziałek 12:15
Sprawozdanie z zad. nr 4 Wahadło Matematyczne z Fizyki Komputerowej Szymon Wawrzyniak / Artur Angiel / Gr. 5 / Poniedziałek 12:15 =============================================== =========================
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
WSTĘP TEORETYCZNY Więcej na: dział laboratoria
WSTĘP TEORETYCZNY Więcej na: www.tremolo.prv.pl, www.tremolo.elektroda.net dział laboratoria Wahadło jest to ciało stałe wykonujace wahania wokuł nieruchomego punktu lub osi pod działaniem przyłozonych
MECHANIKA II. Drgania wymuszone
MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny Daniel Lewandowski (I-19) MECHANIKA II. Drgania wymuszone 1 / 30 Układ drgajacy o jednym stopniu swobody
pobrano z serwisu Fizyka Dla Każdego - - zadania z fizyki, wzory fizyczne, fizyka matura
11. Ruch drgający i fale mechaniczne zadania z arkusza I 11.6 11.1 11.7 11.8 11.9 11.2 11.10 11.3 11.4 11.11 11.12 11.5 11. Ruch drgający i fale mechaniczne - 1 - 11.13 11.22 11.14 11.15 11.16 11.17 11.23
KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO
KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO II ETAP REJONOWY 6 grudnia 2017 r. Uczennico/Uczniu: 1. Na rozwiązanie wszystkich zadań masz 90 minut. 2. Pisz długopisem/piórem
Doświadczalne sprawdzenie drugiej zasady dynamiki ruchu obrotowego za pomocą wahadła OBERBECKA.
Dowiadczalne sprawdzenie drugiej zasady dynamiki ruchu obrotowego za pomocą wahadła OBERBECKA. Wprowadzenie Wahadło Oberbecka jest bryłą sztywną utworzoną przez tuleję (1) i cztery identyczne wkręcone
Zadania z fizyki. Wydział Elektroniki
Zadania z fizyki Wydział Elektroniki 7 Ruch obrotowy, moment pędu. Drgania Uwaga: Zadania oznaczone przez (c) należy w pierwszej kolejności rozwiązać na ćwiczeniach. Zadania (lub ich części) opatrzone
KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY
... pieczątka nagłówkowa szkoły... kod pracy ucznia KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu, witaj na I etapie Konkursu Fizycznego. Przeczytaj uważnie instrukcję i postaraj się
O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,
PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły.
PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. Pracę oznaczamy literą W Pracę obliczamy ze wzoru: W = F s W praca;
Zasady oceniania karta pracy
Zadanie 1.1. 5) stosuje zasadę zachowania energii oraz zasadę zachowania pędu do opisu zderzeń sprężystych i niesprężystych. Zderzenie, podczas którego wózki łączą się ze sobą, jest zderzeniem niesprężystym.
Wyznaczanie współczynnika sztywności sprężyny. Ćwiczenie nr 3
Wyznaczanie. Ćwiczenie nr 3 Metoda teoretyczna Znając średnicę D, średnicę drutu d, moduł sprężystości poprzecznej materiału G oraz liczbę czynnych zwojów N, współczynnik można obliczyć ze wzoru: Wzór