Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut"

Transkrypt

1 Wojewódzki Konkurs Maemayczny dla uczniów gimnazjów. Eap szkolny 5 lisopada 2013 Czas 90 minu ZADANIA ZAMKNIĘTE Zadanie 1. (1 punk) Liczby A = 0, 99, B = 0, 99 2, C = 0, 99 3, D = 0, 99, E=0, 99 1 usawiono w kolejności rosnącej. Zaem: a) B < A < D < C < E b) A < D < E < B < C c) C < B < A < D < E d) A < B < C < D < E e) E < D < C < B < A Zadanie 2. (1 punk) Na zabawie było 12 osób (chłopców i dziewczą). Jeżeli jeden chłopiec opuści zabawę o liczba sposobów doboru par ańczących zmniejszy o 7. Ile było dziewczą na ej zabawie? (uwaga: dziewczynki ańczą ylko z chłopcami) a) 7 b) 6 c) 5 d) 8 e) 9 Zadanie 3. (1 punk) Liera x w liczbie 28692x oznacza cyfrę jedności. Jaka o cyfra, jeżeli a liczba jes podzielna jednocześnie przez 3 i przez 4? a) 0 b) 3 c) 8 d) 4 e) 6 Zadanie 4. (1 punk) Wykres funkcji y = 2x + b przechodzi ylko przez I i III ćwiarkę układu współrzędnych. Jaki warunek musi spełniać b? a) b = 2 b) b = 0 c) b = 2 d) b = 1 2 e) b = 1 2 Zadanie 5. (1 punk) Ką wewnęrzny pewnego wielokąa foremnego ma miarę 162 o. Ile boków ma en wieloką? a) 10 b) 15 c) 18 d) 20 e) 22 Zadanie 6. (1 punk) Ile wynosi promień okręgu opisanego na rójkącie o bokach długości 6 cm, 8 cm, 10 cm? a) 4 cm b) 5 cm c) 10 cm d) 8 cm e) nie można ego obliczyć

2 Zadanie 7. (1 punk) Zbiór zawierający wszyskie dzielniki liczby 64 o: a) {1, 2, 3, 4, 8, 16, 32} b) {1, 2, 3, 4, 8, 16, 32, 64} c) {1, 2, 4, 8, 16, 32, 64} d) {1, 2, 3, 4, 8, 16, 64} e) {2, 4, 8, 16, 32} Zadanie 8. (1 punk) Drogę przebyą przez ciało poruszające się ruchem jednosajnie przyspieszonym opisuje wzór s = s 0 + v 0 + a2 2, gdzie s 0 droga począkowa ciała, v 0 prędkość począkowa ciała, czas rwania ruchu, a przyspieszenie. Przyspieszenie jes równe: a) 2s 2(s 0+v 0 ) b) 2(s s 0) 3 2v 2 0 c) 2s (s 0+v 0 ) d) s 2(s 0+v 0 ) e) s (s 0+v 0 ) Zadanie 9. (1 punk) Pole zacieniowanego obszaru wynosi : a) 324 9π cm 2 b) π cm 2 c) 81(4 π) cm 2 d) 9(9 π) cm 2 e) 81π cm 2 Zadanie 10. (1 punk) Suma rzech kolejnych liczb nieparzysych wynosi Największą z ych liczb jes: a) 671 b) 672 c) 673 d) 669 e) 2015

3 ZADANIA OTWARTE Rozwiązania zadań od 11. do 15. należy zapisać w wyznaczonym miejscu pod ich reścią. Zadanie 11.(3 punky) Obwód przedniego koła wozu wynosi 35 dm, a ylnego 44 dm. Na drodze z A do B przednie koło wykonało o 387 obroów więcej niż ylne. Oblicz odległość między A i B. Rozwiązanie: s odległość między A i B ilość obroów wykonana przez koło przednie wynosi: x p = s 35, ilość obroów wykonana przez koło ylne wynosi: x = s 44, Zgodnie z warunkami zadania Orzymujemy równanie: Po przekszałceniach: Odp: Odległość między A i B wynosi dm. Punkacja: x p = x s 35 = s ( 1 s 35 44) 1 = 387, s = 387, 9 s = dm. 1. Prawidłowe określenie niewiadomych 1 punk, 2. Prawidłowe ułożenie równań 1 punk, 3. Rozwiązanie równania i orzymanie prawidłowego wyniku 1 punk.

4 Zadanie 12.(3 punky) W równoległoboku sosunek boków wynosi 1 : 2, ką osry ma miarę 60, a dłuższa przekąna ma długość 2 7. Oblicz długości boków równoległoboku. Długość boku BC zosała oznaczona przez x, w związku z ym długość boku AB wynosi 2x. Długość przekąnej AC zgodnie z reścią zadania wynosi 2 7. Z wierzchołka C zosała opuszczona wysokość równoległoboku CE. Trójką BCE jes rójkąem prosokąnym o kąach 30, 60 i 90 i przeciwprosokąnej x. W związku z ym odcinek BE ma długość x 3 naomias wysokość h (CE) ma długość x 2 2 Długość odcinka AE jes sumą długości odcinków AB i BE wynosi więc AE = 2x + x 2, AE = 5x 2 Korzysając z wierdzenia Piagorasa dla rójkąa ACE orzymujmy równanie: Po podniesieniu do kwadrau Sąd wynika, że ( ) ( ) ( ) = 2 x + 2 x. 28 = 25 4 x x2. x 2 = 4, x > 0, x = 2. Odp. Boki równoległoboku mają długości 4 oraz 2. Punkacja: 1. Poprawny rysunek i wyznaczenie wysokości równoległoboku 1 punk, 2. Zaznaczenie rójkąa prosokąnego zawierającego przekąną 1 punk, 3. Uzyskanie rozwiązania 1 punk. Błędy rachunkowe nie mające wpływu na ok rozumowania nie wpływają na ocenę zadania.

5 Zadanie 13.(3 punky) Kóra z liczb jes większa 1 Odpowiedź uzasadnić. + 1 czy 1 + 1? Sprowadzając pierwszą z liczb do wspólnego mianownika orzymujemy : = Sprowadzając drugą z liczb do wspólnego mianownika orzymujemy : = Obie liczby mają jednakowe liczniki równe 4025 ak więc należy porównać ich mianowniki. Mianownik pierwszej liczby: Mianownik drugiej liczby: = ( ) 2011 = = ( ) ( ) = Mianownik drugiej liczby jes większy od mianownika pierwszej liczby. Liczby mają jednakowe liczniki ak więc a kóra ma mniejszy mianownik jes większa. 1 Odp: Uwaga: + 1 > Wymnożenie liczb w mianowniku jes oczywiście eż poprawnym sposobem porównania mianowników, niemniej w rozwiązaniu powinien znajdować się zapis mnożenia (nie może być wykonane przy pomocy kalkulaora lub innego pomocnika ) Rozwiązanie przez bezpośrednie dzielenie i sumowanie może być również zaakcepowane pod warunkiem, że jes wykonane z odpowiednią dokładnością i wynik jes poprawny oraz zapis dzielenia i sumowania znajduje się w pracy. Jeżeli zadanie zosanie poprawnie rozwiązane powyżej wspomnianymi meodami lub inną poprawna meodą może zosać ocenione na maksymalną liczbę punków. W przypadku braku obliczeń prowadzących do wyniku, zadania należy ocenić jako nierozwiązane. Punkacja: 1. Sprowadzenie obu liczb do wspłnego mianownika 1 punk, 2. Zauważenie, że liczniki są równe 1 punk, 3. Uzyskanie poprawnego rozwiązania 1 punk.

6 Zadanie 14.(3 punky) Wiek Sasia w roku 1969 był równy sumie cyfr jego roku urodzenia. Kóre urodziny obchodzi Saś w roku 2013? Przedsawić sposób obliczenia. Wiek Sasia w roku 1969 nie przekraczał liczby 36 kóra jes sumą cyfr Wynika sąd, że najwcześniejszy rok, w kórym Saś mógł się urodzić o jes =1933. Tak więc na pewno dwie pierwsze cyfry roku urodzenia o są 1 i 9. Przyjmując, że cyfra dziesiąek roku urodzenia wynosi x, a cyfra jednosek y, rok urodzenia Sasia można zapisać jako x + y naomias wiek Sasia w roku 1969 można obliczyć jako x + y = 10 + x + y. Porównując wiek w roku 1969 orzymujemy równanie: 1969 ( x + y) = 10 + x + y, 69 10x y = 10 + x + y, 11x + 2y = 59. Rozwiązaniem ego równania powinny być jednocyfrowe liczby całkowie. Wyznaczając x z ego równania orzymujemy y = x, y powinnno być liczbą całkowią spełniającą nierówność 1 y 9, x 9. 2 Po przekszałceniach: x Jedynymi liczbami całkowiymi spełniającymi ę nierówność są 4 i 5. Obliczając y w przypadku x = 4 orzymujemy y = = Nie jes o liczba całkowia więc nie spełnia warunków zadania. Obliczając y w przypadku x = 5 orzymujemy y = = = 2 Liczba y = 2 spełnia warunki zadania, ak więc Saś urodził się w roku Odp. W roku 2013 Saś będzie obchodził sześćdziesiąe pierwsze urodziny. Punkacja: 1. Zgadnięcie roku urodzenia i odpowiedź na pyanie z zadania 2 punky, 2. Wykazanie, że jes o jedyne możliwe rozwiązanie 1 punk.

7 Zadanie 15.(3 punky) Ogrodzona łąka ma kszał prosokąa kórego jeden z boków ma długość 20 m. W jednym z rogów łąki (wierzchołku prosokąa) na łańcuchu o długości 20 2 m zaczepiona jes koza. Jaka jes długość drugiego boku łąki, jeżeli część łąki dosępna dla kozy sanowi połowę całej łąki? x długość nieznanego boku prosokąa. Część łąki w zasięgu kozy jes sumą wycinka koła o kącie 45 o i promieniu 20 2 oraz rójkąa prosokąnego równoramiennego o długości przyprosokąnych 20. Pole łąki w zasięgu kozy można obliczyć jako sumę wymienionych figur. Całkowie pole łąki jes równe Z warunków zadania wynika, że po podsawieniu orzymujemy P kozy = π(20 2) 2 P kozy = π 100 P = 20 x P = 2 P kozy 20 x = 2 (200 + π 100) Osaecznie x = π Odp Drugi bok łąki ma długość π m. 1. Wykonanie poprawnego rysunku 1 punk, 2. Zauważenie rójkąa równoramiennego 1 punk, 3. Napisanie poprawnego równania 1 punk. Błędy rachunkowe nie wpływające isonie na sposób rozwiązania nie wpływają na ocenę.

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut sumaryczna liczba punktów Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut 1. Otrzymujesz do rozwiązania 10 zadań zamkniętych oraz 5 zadań otwartych. 2.

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2015 Rozwiązania zadań

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2015 Rozwiązania zadań Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2015 Rozwiązania zadań ZADANIA ZAMKNIĘTE Zadanie 1. (1 punkt) Gwiazda sześcioramienna ma wszystkie boki równe i składa się

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 13 luty 2014 Czas 90 minut. Rozwiązania zadań

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 13 luty 2014 Czas 90 minut. Rozwiązania zadań Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 13 luty 2014 Czas 90 minut Rozwiązania zadań ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Piecząka szkoły Kod ucznia Liczba punków WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2015/2016 09 LISTOPAD 2015 R. 1. Tes konkursowy zawiera 21 zadań. Są o zadania zamknięe i

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 16 listopada 2018 Rozwiązania i punktacja

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 16 listopada 2018 Rozwiązania i punktacja Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 16 listopada 018 Rozwiązania i punktacja ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną

Bardziej szczegółowo

XV WOJEWÓDZKI KONKURS Z MATEMATYKI

XV WOJEWÓDZKI KONKURS Z MATEMATYKI XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP

Bardziej szczegółowo

XV WOJEWÓDZKI KONKURS Z MATEMATYKI

XV WOJEWÓDZKI KONKURS Z MATEMATYKI XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 24 listopada 2016 Rozwiązania zadań z punktacją

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 24 listopada 2016 Rozwiązania zadań z punktacją Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 24 listopada 2016 Rozwiązania zadań z punktacją ZADANIA ZAMKNIĘTE Zadanie 1. (1 punkt) Pole koła κ 1 wynosi P 1 = 20 cm 2. Ile wynosi

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 12 lutego 2015 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 12 lutego 2015 Czas 90 minut Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 12 lutego 2015 Czas 90 minut Rozwiązania i punktacja Zadanie 1. (1 punkt) Średnia arytmetyczna liczb 0, 3 10 2015 i 2, 2 10 201 jest

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ...... kod pracy ucznia pieczątka nagłówkowa szkoły KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 16 listopada 2018 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 16 listopada 2018 Czas 90 minut pieczęć szkoły pesel nazwisko imiona Zadanie 1-10 11 12 13 14 15 suma punkty Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 16 listopada 2018 Czas 90 minut 1. Otrzymujesz do rozwiązania

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki Rozwiązania i punktacja

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki Rozwiązania i punktacja Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki Rozwiązania i punktacja ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 15 lutego 2019 Czas 90 minut Rozwiązania i punktacja

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 15 lutego 2019 Czas 90 minut Rozwiązania i punktacja Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 15 lutego 2019 Czas 90 minut Rozwiązania i punktacja ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 19 luty 2013 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 19 luty 2013 Czas 90 minut Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 19 luty 01 Czas 90 minut ZADANIA ZAMKNIĘTE Rozwiązania zadań W zadaniach od 1. do 10. właściwe odpowiedzi zostały zaznaczone Zadanie 1. (1 punkt) Ile

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 16 lutego 2018 Czas 90 minut Rozwiązania i punktacja

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 16 lutego 2018 Czas 90 minut Rozwiązania i punktacja Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 6 lutego 208 Czas 90 minut Rozwiązania i punktacja ZADANIA ZAMKNIĘTE Zadanie. ( punkt) Odległość między miastami A i B na mapie wynosi

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 12 lutego 2015 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 12 lutego 2015 Czas 90 minut punkty Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 12 lutego 2015 Czas 90 minut 1. Otrzymujesz do rozwiązania 10 zadań zamkniętych oraz 5 zadań otwartych. 2. Obok każdego zadania

Bardziej szczegółowo

ARKUSZ II

ARKUSZ II www.galileusz.com.pl ARKUSZ II W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D)

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2016/2017 11.01.2017 1. Test konkursowy zawiera 21 zadań. Są to zadania zamknięte i otwarte. Na ich rozwiązanie

Bardziej szczegółowo

SZKOLNY KONKURS MATEMATYCZNY MATMIX 2007 DROGI UCZNIU!

SZKOLNY KONKURS MATEMATYCZNY MATMIX 2007 DROGI UCZNIU! Wersja A klasy I II SZKOLNY KONKURS MATEMATYCZNY MATMIX 007 DROGI UCZNIU! Masz do rozwiązania 8 zadań testowych, na rozwiązanie których masz 90 minut. Punktacja rozwiązań: - zadania od do 7 - punkty -

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny Rozwiązania i punktacja

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny Rozwiązania i punktacja Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny Rozwiązania i punktacja ZADANIA ZAMKNIĘTE Zadanie 1. (1 punkt) Symbol n! oznacza iloczyn liczb naturalnych od 1 do n tzn. n! = 1 3...

Bardziej szczegółowo

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018. Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki Rozwiązania i punktacja

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki Rozwiązania i punktacja Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki Rozwiązania i punktacja ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2015 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2015 Czas 90 minut pieczątka szkoły imię, nazwisko i data urodzenia ucznia liczba punktów Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2015 Czas 90 minut 1. Otrzymujesz do rozwiązania 10

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

x Kryteria oceniania

x Kryteria oceniania Wojewódzki Konkurs z matematyki dla uczniów szkół podstawowych rok szkolny 216/21 Etap I - szkolny W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą inną poprawną metodę

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2015/2016 13 STYCZNIA 2016 R. 1. Test konkursowy zawiera 21 zadań. Są to zadania zamknięte i otwarte. Na

Bardziej szczegółowo

EGZAMIN WSTĘPNY Z MATEMATYKI

EGZAMIN WSTĘPNY Z MATEMATYKI Egzamin wstępny do I Społecznego Liceum Ogólnokształcącego BEDNARSKA Kod zdającego EGZAMIN WSTĘPNY Z MATEMATYKI 1. Przed sobą masz egzamin wstępny z matematyki, który składa się z dwóch części. Osoby,

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP WOJEWÓDZKI Rok szkolny 2012/2013 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny

Bardziej szczegółowo

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA 7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

ZADANIA PRZED EGZAMINEM KLASA I LICEUM

ZADANIA PRZED EGZAMINEM KLASA I LICEUM ZADANIA PRZED EGZAMINEM KLASA I LICEUM + 7. Równanie = 0 : + A. ma tylko jedno rozwiązanie równe 7 B. ma tylko jedno rozwiązania równe 7 C. ma tylko jedno rozwiązanie równe D. nie ma rozwiązań.. Do przedziału,

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A06 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Wartość wyrażenia 1 3 + 1 + 3

Bardziej szczegółowo

Suma dziewięciu poczatkowych wyrazów ciagu arytmetycznego wynosi 18, a suma siedmiu poczatkowych

Suma dziewięciu poczatkowych wyrazów ciagu arytmetycznego wynosi 18, a suma siedmiu poczatkowych www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI CIAGI ARYTMETYCZNE ZADANIE 1 Suma drugiego, czwartego i szóstego wyrazu ciagu arytmetycznego jest równa 42, zaś suma kwadratów wyrazów drugiego

Bardziej szczegółowo

Przykładowe zadania - I półrocze, klasa 5, poziom podstawowy

Przykładowe zadania - I półrocze, klasa 5, poziom podstawowy MARIUSZ WRÓBLEWSKI Przykładowe zadania - I półrocze, klasa 5, poziom podstawowy. W każdej z zapisanych poniżej liczb podkreśl cyfrę jedności. 5 908 5 987 7 900 09 5. Oblicz, ile razy kąt prosty jest mniejszy

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego ETAP WOJEWÓDZKI rok szkolny 2018/2019

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego ETAP WOJEWÓDZKI rok szkolny 2018/2019 Kod ucznia Data urodzenia ucznia dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego ETAP WOJEWÓDZKI rok szkolny 018/019 Instrukcja dla ucznia 1. Sprawdź,

Bardziej szczegółowo

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery

Bardziej szczegółowo

Bukiety matematyczne dla gimnazjum

Bukiety matematyczne dla gimnazjum Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 5 IX rok 2003/2004 Bukiet 1 1. W trójkącie ABC prosta równoległa do boku AB przecina boki AC i BC odpowiednio w punktach D i E. Zauważ,

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ klasa 2b

LUBELSKA PRÓBA PRZED MATURĄ klasa 2b MATEMATYKA materiał ćwiczeniowy CZERWIEC 0 Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach od do są podane

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 17 lutego 2016 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 17 lutego 2016 Czas 90 minut kod ucznia Zadanie 1-10 11 12 13 14 15 suma punkty (wypełnia komisja) Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 17 lutego 2016 Czas 90 minut 1. Otrzymujesz do rozwiązania 10

Bardziej szczegółowo

Test na koniec nauki w klasie trzeciej gimnazjum

Test na koniec nauki w klasie trzeciej gimnazjum 8 Test na koniec nauki w klasie trzeciej gimnazjum imię i nazwisko ucznia...... data klasa Test 2 1 Na przeciwległych ścianach każdej z pięciu sześciennych kostek umieszczono odpowiednio liczby: 1 i 1,

Bardziej szczegółowo

Kod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 2016/2017 ETAP SZKOLNY - 8 listopada 2016 roku

Kod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 2016/2017 ETAP SZKOLNY - 8 listopada 2016 roku Kod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 016/017 ETAP SZKOLNY - listopada 016 roku 1. Przed Tobą zestaw 1 zadań konkursowych.. Na ich rozwiązanie masz 90 minut. Piętnaście

Bardziej szczegółowo

31 MAJA 2012 CZAS PRACY: 90 MIN.

31 MAJA 2012 CZAS PRACY: 90 MIN. IMIE I NAZWISKO MAJA 202 CZAS PRACY: 90 MIN. ZADANIE Asia jeździła rowerem 2 godziny. Na diagramie przedstawiono w procentach (w %) czas jazdy Asi po leśnej drodze, ścieżce rowerowej i polnej drodze, ale

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi. Podanie dziedziny funkcji f:

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 08/09 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź uczeń otrzymuje punkt. Numer zadania Poprawna odpowiedź...

Bardziej szczegółowo

ETAP III wojewódzki 16 marca 2019 r.

ETAP III wojewódzki 16 marca 2019 r. oraz klas trzecich oddziałów gimnazjalnych prowadzonych w szkołach innego typu Liczba punktów możliwych do uzyskania: 40 ETAP III wojewódzki 16 marca 2019 r. Zasady ogólne: 1. Za każde poprawne rozwiązanie

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2019

LUBELSKA PRÓBA PRZED MATURĄ 2019 1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2019 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.

Bardziej szczegółowo

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN Gr. 1 Zad. 1. Dane są punkty: P = (-, 1), R = (5, -1), S = (, 3). a) Oblicz odległość między punktami R i S. b) Wyznacz współrzędne środka odcinka PR. c) Napisz równanie

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY dla uczniów gimnazjów i oddziałów gimnazjalnych województwa pomorskiego w roku szkolnym 2018/2019 etap wojewódzki

WOJEWÓDZKI KONKURS MATEMATYCZNY dla uczniów gimnazjów i oddziałów gimnazjalnych województwa pomorskiego w roku szkolnym 2018/2019 etap wojewódzki WOJEWÓDZKI KONKURS MATEMATYCZNY dla uczniów gimnazjów i oddziałów gimnazjalnych województwa pomorskiego w roku szkolnym 2018/2019 etap wojewódzki Zad.1. (0-3) PRZYKŁADOWE ROZWIĄZANIA I KRYTERIA OCENIANIA

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2018/2019 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź uczeń otrzymuje 1 punkt. Numer zadania Poprawna odpowiedź

Bardziej szczegółowo

Planimetria VII. Wymagania egzaminacyjne:

Planimetria VII. Wymagania egzaminacyjne: Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych

Bardziej szczegółowo

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n = /9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n

Bardziej szczegółowo

I. Funkcja kwadratowa

I. Funkcja kwadratowa Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy w roku szkolnym 2018/2019 w CKZiU nr 3 Ekonomik w Zielonej Górze KLASA III fl POZIOM PODSTAWOWY I. Funkcja kwadratowa narysować wykres funkcji

Bardziej szczegółowo

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając

Bardziej szczegółowo

I. Funkcja kwadratowa

I. Funkcja kwadratowa Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas III w roku szkolnym 2017/2018 w Zespole Szkół Ekonomicznych w Zielonej Górze Dla każdej klasy 3 obowiązuje taka ilość poniższego

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2017/2018 04.01.2018 1. Test konkursowy zawiera 20 zadań. Są to zadania zamknięte i otwarte. Na ich rozwiązanie

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 5 MARCA 016 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 3 4 3 + 3 9 jest

Bardziej szczegółowo

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2014/2015 ETAP OKRĘGOWY. Instrukcja dla ucznia

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2014/2015 ETAP OKRĘGOWY. Instrukcja dla ucznia Kuratorium Oświaty w Lublinie KOD UCZNIA ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2014/2015 ETAP OKRĘGOWY Instrukcja dla ucznia 1. Zestaw konkursowy zawiera 8 zadań. 2.

Bardziej szczegółowo

SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania

SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania SPIS TREŚCI Do Nauczyciela... 6 Regulamin konkursu... 7 Zadania Liczby i działania... 9 Procenty... 14 Figury geometryczne... 19 Kąty w kole... 24 Wyrażenia algebraiczne... 29 Równania i nierówności...

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 4 CZERWCA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 4 CZERWCA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI

Bardziej szczegółowo

Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną)

Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną) Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną) Zadania zamknięte (jedna poprawna odpowiedź) 1 punkt Wyrażenia algebraiczne Zadanie 1. Wartość wyrażenia 3 x 3x

Bardziej szczegółowo

Model odpowiedzi i schemat oceniania do arkusza II

Model odpowiedzi i schemat oceniania do arkusza II Model odpowiedzi i schemat oceniania do arkusza II Zadanie 12 (3 pkt) Z warunków zadania : 2 AM = MB > > n Wprowadzenie oznaczeń, naprzykład: A = (x, y) i obliczenie współrzędnych wektorów n Obliczenie

Bardziej szczegółowo

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2019 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 4 czerwca 2019

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 19 luty 2012 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 19 luty 2012 Czas 90 minut kod ucznia Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 19 luty 2012 Czas 90 minut 1. Otrzymujesz do rozwiązania 10 zadań zamkniętych oraz 5 zadań otwartych. 2. Obok każdego zadania podana jest

Bardziej szczegółowo

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI MATERIAŁ ĆWICZENIOWY Z MATEMATYKI STYCZEŃ 0 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 0 stron.. W zadaniach od. do 0. są podane odpowiedzi: A, B, C, D,

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2019

LUBELSKA PRÓBA PRZED MATURĄ 2019 1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2019 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Miejsce na naklejkę ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU

Bardziej szczegółowo

IX Olimpiada Matematyczna Gimnazjalistów

IX Olimpiada Matematyczna Gimnazjalistów IX Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (3 października 2013 r.) Rozwiązania zadań testowych 1. Liczba 3 9 3 27 jest a) niewymierna; b) równa 3 27;

Bardziej szczegółowo

DŁUGOŚĆ OKRĘGU. POLE KOŁA

DŁUGOŚĆ OKRĘGU. POLE KOŁA Zadania za 1 punkt Zadanie 1.1 Zadanie 1.2 Pole koła o promieniu długości 9 m A. 81π m 2 C. 18π m 2 B. 81 m 2 D. 9π m 2 Długość okręgu o średnicy 4 cm A. 4 cm C. 8π cm B. 4π cm D. 16π cm Zadanie 1.3 Zadanie

Bardziej szczegółowo

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016 Szczegółowe kryteria ocen dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń, który: Zna zależności wartości cyfry od jej

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 15 MARCA 2014 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 43256232a2 jest

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2014 Rozwiązania zadań

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2014 Rozwiązania zadań Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 014 Rozwiązania zadań ZADANIA ZAMKNIĘTE Zadanie 1. (1 punkt) Jaka jest cyfra jedności liczby 3 014 + 3 01? a) 0 b) 1 c) 3

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Suma punktów Numer zadania 1-20 21 22 23 Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2014/2015 13 STYCZNIA 2015R. 1. Test konkursowy zawiera 23 zadania.

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. rok szkolny 2016/2017. Etap III etap wojewódzki- klucz odpowiedzi

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. rok szkolny 2016/2017. Etap III etap wojewódzki- klucz odpowiedzi Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 2016/2017 Etap III etap wojewódzki- klucz odpowiedzi W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy Drogi Uczniu Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

WOJEWÓDZKI KONKURS PRZEDMIOTOWY z MATEMATYKI dla uczniów szkół podstawowych 2018/2019

WOJEWÓDZKI KONKURS PRZEDMIOTOWY z MATEMATYKI dla uczniów szkół podstawowych 2018/2019 Nr identyfikacyjny spma - 2018/2019 (numer porządkowy z kodowania) Nr identyfikacyjny - wyjaśnienie sp szkoła podstawowa, symbol przedmiotu MA matematyka, numer porządkowy wynika z numeru stolika wylosowanego

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATUR 2016

LUBELSKA PRÓBA PRZED MATUR 2016 1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2016 Instrukcja dla zdajcego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.

Bardziej szczegółowo

Sprawdzian całoroczny kl. II Gr. A x

Sprawdzian całoroczny kl. II Gr. A x . Oblicz: a) (,5) 8 c) ( ) : ( ). Oblicz: Sprawdzian całoroczny kl. II Gr. A [ ] d) 6 a) ( : ) 5 6 6 8 50. Usuń niewymierność z mianownika: a). Oblicz obwód koła o polu,π dm. 5. Podane wyrażenia przedstaw

Bardziej szczegółowo

OCENIANIE ARKUSZA POZIOM PODSTAWOWY

OCENIANIE ARKUSZA POZIOM PODSTAWOWY Numer zadania.. Etapy rozwiązania zadania OCENIANIE ARKUSZA POZIOM PODSTAWOWY Zapisanie ceny wycieczki po podwyżce, np. x + 5% x, gdzie x oznacza pierwotną cenę wycieczki. Liczba punktów. Zapisanie równania:

Bardziej szczegółowo

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM Klucz odpowiedzi do ETAPU WOJEWÓDZKIEGO Zadania zamknięte: Nr zadania 3 4 5 6 7 8 9 0 Poprawna odpowiedź D C B A C C B D C A Zadania otwarte:. Zadania

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA. Poziom podstawowy

GEOMETRIA ANALITYCZNA. Poziom podstawowy GEOMETRIA ANALITYCZNA Poziom podstawowy Zadanie (4 pkt.) Dana jest prosta k opisana równaniem ogólnym x + y 6. a) napisz równanie prostej k w postaci kierunkowej. b) podaj współczynnik kierunkowy prostej

Bardziej szczegółowo

14:00 15:00 16:00. Godzina Turysta A. Godzina. Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F jeśli jest fałszywe.

14:00 15:00 16:00. Godzina Turysta A. Godzina. Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F jeśli jest fałszywe. Zadanie 1. (0 1) Turysta A szedł ze schroniska w kierunku szczytu, natomiast turysta B schodził ze szczytu w kierunku schroniska. Obaj szli tym samym szlakiem i tego samego dnia. Wykresy przedstawiają,

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM. Etap Wojewódzki

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM. Etap Wojewódzki Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Drogi Uczniu, witaj na III etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP REJONOWY Drogi Uczniu, witaj na II etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 6 MARCA 2010 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) ( 5 Liczba 3 4 2 1 2

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1 Klasa 1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach

Bardziej szczegółowo

ZADANIE 2 Czy istnieje taki wielokat, który ma 2 razy więcej przekatnych niż boków?

ZADANIE 2 Czy istnieje taki wielokat, który ma 2 razy więcej przekatnych niż boków? PLANIMETRIA 2 ZADANIE 1 W rombie jedna z przekatnych jest dłuższa od drugiej o 3 cm. Dla jakich długości przekatnych pole rombu jest większe od 5cm 2? 1 ZADANIE 2 Czy istnieje taki wielokat, który ma 2

Bardziej szczegółowo

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut Klasa I - zakres podstawowy Etap wojewódzki 17.04.004 rok Zad 1 ( 6 pkt) Znajdź wszystkie liczby czterocyfrowe podzielne przez 15, w których cyfrą tysięcy jest jeden, a cyfrą dziesiątek dwa. Odpowiedź

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów Etap Szkolny 27 listopada 2012 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów Etap Szkolny 27 listopada 2012 Czas 90 minut Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów Etap Szkolny 27 listopada 2012 Czas 90 minut 1. Otrzymujesz do rozwiązania 10 zadań zamkniętych oraz 5 zadań otwartych. 2. Obok każdego zadania podana

Bardziej szczegółowo

Tematy: zadania tematyczne

Tematy: zadania tematyczne Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.

Bardziej szczegółowo