1.1 Wahadło anharmoniczne(m5)

Wielkość: px
Rozpocząć pokaz od strony:

Download "1.1 Wahadło anharmoniczne(m5)"

Transkrypt

1 10 Mechanika 1.1 Wahadło anharmoniczne(m5) Celem ćwiczenia jest zbadanie drgań anharmonicznych wahadła fizycznego(zależność okresu drgań wahadła od amplitudy jego drgań, bilans energetyczny wahadła). Zagadnienia do przygotowania: oscylator harmoniczny; wahadło fizyczne; oscylator anharmoniczny; wykresy fazowe. Literaturapodstawowa:[1],[],[5],[4] Podstawowe pojęcia i definicje Wahadło fizyczne Wahadło fizyczne to bryła, która może obracać się wokół osi O nie przechodzącej przez środek ciężkości CM(rysunek 1.1.1). Niech kąt θ oznacza wychylenie z położenia równowagi. Moment siły N działający na wahadło, pochodzący od siły ciężkości, wyraża się wzorem: CM l lsin mg O N = mgl sin θ, (1.1.1) gdzie m to masa wahadła, l odległość środka ciężkości od punktu podparcia, czyli od osi obrotu. Równanie ruchu wahadła ma postać: N = J θ, (1.1.) gdzie J jest momentem bezwładności względem osi obrotu.wprowadzającoznaczenie ω 0 = mgl/jmożna równanie ruchu zapisać w postaci: Rys : Wahadło fizyczne. θ + ω 0 sinθ = 0. (1.1.3) Przybliżenie oscylatora harmonicznego Dla małych wychyleń możemy zrobić przybliżenie sin θ θ. Wtedy równanie(1.1.3) sprowadza się do równania ruchu oscylatora harmonicznego: Rozwiązaniem równania(1.1.4) jest funkcja postaci: gdzie θ 0 toamplituda,aφ 0 fazapoczątkowa. θ + ω0 θ = 0. (1.1.4) θ (t) = θ 0 sin(ω 0 t + φ 0 ), (1.1.5)

2 Wahadło anharmoniczne(m5) 11 Okres drgań wahadła fizycznego Ruchopisanyfunkcją(1.1.5)jestokresowyzokresem T 0 = π/ω 0.Dlapewnych warunków początkowych ruch opisany równaniem(1.1.3) jest również okresowy. Aby obliczyćokresdrgań Tmnożymyrównanie(1.1.3)przez θiposeparacjizmiennych całkujemyobustronnieuwzględniającwarunek θ = 0dla θ = θ 0.Otrzymujemywtedy równanie ruchu: θ ω 0 (cos θ cos θ 0) = 0. (1.1.6) Przyprzejściuwahadłaodkąta 0do θ 0 upływaczasrówny T/4.Więcrozdzielajączmienneicałkującrównanie(1.1.6)poczasiewgranicach (0,T/4)orazpokącie wgranicach (0,θ 0 )otrzymujemy: T 4 = θ 0 0 dθ ω 0 (cos θ cos θ 0 ). (1.1.7) W całce z równania(1.1.7) wykonujemy zamianę zmiennych z θ na α poprzez podstawienie sin α = sin (θ/)/sin (θ 0 /).Otrzymujemycałkęeliptycznązupełnąpierwszego rodzaju: T = T 0 π π/ 0 dα 1 sin (θ 0 /) sin α. (1.1.8) Całkęeliptycznąmożnawyrazićprzezfunkcjęhipergeometryczną F 1 lubjejrozwinięcie w szereg. Wtedy okres drgań wynosi: [ 1 T = T 0 F 1, 1 ( )] ;1;sin = [ = T ( ) 4 sin + 9 ( ) ] 64 sin (1.1.9) W przybliżeniu małych wychyleń otrzymujemy okres drgań: [ T = T θ ] 307 θ (1.1.10) Przybliżenie oscylatora anharmonicznego Dla większych wychyleń musimy uwzględnić kolejne wyrazy rozwinięcia w szereg funkcji sin θ θ θ 3 /6.Wtedyrównanie(1.1.3)sprowadzasiędorównaniaruchu oscylatora anharmonicznego:

3 1 Mechanika θ + ω0θ ω 0 θ3 = 0. (1.1.11) 6 Można znaleźć przybliżone rozwiązanie tego równania w postaci[4]: gdzie ω ω 0 ( 1 θ 0 /16 ). θ (t) = θ 0 sin (ωt) + θ3 0 sin(3ωt), (1.1.1) 19 Wykresy fazowe Ruch wahadła fizycznego(i ( innych układów mechanicznych) można wygodnie przedstawić na płaszczyźnie fazowej θ, θ ) [4]. Korzystając z równania(1.1.6) możemy zapisać energię mechaniczną wahadła fizycznego(energia potencjalna określona względem najniższego położenia wahadła): E = J θ + mgl (1 cos θ) = mgl (1 cos θ 0). (1.1.13) Różnym wartościom energii E odpowiada rodzina krzywych na płaszczyźnie fazowej. Jeżeli E = 0, to wahadło pozostaje w spoczynku. Odpowiada temu punkt (0, 0) na płaszczyźnie fazowej. Dla 0 < E < mgl otrzymujemy krzywe zamknięte otaczające punkt (0, 0), a ruch jest periodyczny względem położenia równowagi. Dla E > mgl mamy krzywe otwarte, a ruch odbywa się tylko w jednym kierunku. Przy rysowaniu krzywych wygodnie jest wprowadzić bezwymiarową energię ǫ = E/ ( Jω 0) iprędkość υ = θ/ω0.wtedynapłaszczyźnie (θ,υ)rysujemykrzywe υ = ǫ 4sin (θ/).ruchperiodycznymamydla 0 < ǫ < Przebiegpomiarów Układ doświadczalny Przyrządy: wahadło fizyczne ze skalą kątową, miernik czasu z układem fotokomórek (schemat układu pomiarowego przedstawiony jest na rysunku 1.1.). Badanie zależności okresu od amplitudy Zmierzyćokresdrgańwahadła Twzależnościodamplitudy θ 0 przystałympołożeniu fotokomórki, np. w najniższym położeniu wahadła. Sprawdzanie bilansu energetycznego Fotokomórkęumieścićwnajniższympołożeniuwahadła.Zmierzyćprędkość θwzależnościodkątapoczątkowego θ 0.Wtejseriipomiarówzewzrostemkątapoczątkowego ustalamy coraz większą całkowitą energię mechaniczną układu. Prędkość w całym

4 Wahadło anharmoniczne(m5) 13 wahad³o uk³ad fotokomórek miernik czasu skala k¹towa Rys. 1.1.: Schemat układu do badania drgań anharmonicznych. doświadczeniu obliczać jako odwrotność czasu przelotu pomiędzy bramkami. Przyjąć umowne jednostki prędkości, ponieważ jest to wystarczające do naszych rozważań. Ponadto unika się kłopotliwego pomiaru odległości kątowej pomiędzy bramkami. W następnej serii pomiarów wahadło wprawić w ruch za każdym razem z ustalonego położeniapoczątkowego θ 0.Wtensposóbukładmazakażdymrazemtąsamącałkowitąenergięmechaniczną.Zmierzyćprędkość θwfunkcjikąta θ 1 podjakimumieszczona jest fotokomórka. Wahadło nie może być w ruchu dłużej niż przez czas połowy jednego drgania, aby wpływ tarcia był minimalny. Badanie dyssypacji energii Wahadłowprawićwruchzustalonegopołożeniapoczątkowego θ 0.Zmierzyćprędkość θwzależnościodkąta θ 1,wktórymumieszczonajestfotokomórka.Tymrazem notować prędkości w obu kierunkach i na przestrzeni kilku okresów Opracowaniewyników Zależność okresu od amplitudy Narysowaćwykreszależności Tod θ 0 dladanychdoświadczalnychidopasowaćprostą T = aθ 0 + b(wykorzystaćtylkopunktyzprzedziałuod0do1rad ).Parametry otrzymane z dopasowania porównać z przewidywaniami równania(1.1.10). Parametr b = T 0 porównaćzezmierzonymiwartościamiokresu Tdlamałychwychyleń.Sprawdzić czy stosunek parametrów b i a zgodnie z równaniem(1.1.10) w granicy niepewności

5 14 Mechanika wynosi b/a = 16.Narysowaćwykreszależności T/T 0 od θ 0 dladanychdoświadczalnych. Na tym samym wykresie przedstawić zależność teoretyczną daną równaniem(1.1.9). Bilans energetyczny Narysowaćwykresyzależności θ od (1 cos θ 0 )oraz θ od (cos θ 1 cos θ 0 ).Do danych eksperymentalnych dopasować zależność liniową i obliczyć współczynnik korelacji. Z zasady zachowania energii mechanicznej wynika, że energia kinetyczna wahadła w najniższym położeniu jest równa energii potencjalnej wahadła w najwyższym położeniu.dlategooczekujemyzależnościliniowej θ od (1 cos θ 0 ).Ponieważwkażdej chwili energia kinetyczna wahadła jest równa ubytkowi energii potencjalnej wahadła,torównieżwdrugimprzypadkuoczekujemyzależnościliniowejzmiennych θ od (cos θ 1 cos θ 0 ).Oznaczato,żewobydwóchprzypadkachpowinnootrzymaćsię współczynnik korelacji bliski jedności. W rozważaniach tych pominięto wpływ tarcia, który rozważany jest w przypadku dyssypacji energii. Dyssypacja energii Nawykresiefazowym (θ, θ)zaznaczyćkolejnepozycjewahadła.zaobserwowaćstopniowe zbliżanie się do punktu (0, 0). Wynik ten potwierdza istnienie tarcia w układzie, które powoduje stopniowe zmniejszanie całkowitej energii mechanicznej układu. Energia mechaniczna zamienia się na inne formy energii, głównie na ciepło.

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

I PRACOWNIA FIZYCZNA

I PRACOWNIA FIZYCZNA I PRACOWNIA FIZYCZNA I PRACOWNIA FIZYCZNA redakcja naukowa Andrzej Magiera Wydanie czwarte poprawione i uzupełnione Instytut Fizyki Uniwersytet Jagielloński 2012 c Copyright by Instytut Fizyki Uniwersytetu

Bardziej szczegółowo

Fizyka 11. Janusz Andrzejewski

Fizyka 11. Janusz Andrzejewski Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna

Bardziej szczegółowo

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego Ćwiczenie M6 Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego M6.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przyspieszenia ziemskiego poprzez analizę ruchu wahadła prostego. M6..

Bardziej szczegółowo

Ć W I C Z E N I E N R M-2

Ć W I C Z E N I E N R M-2 INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność

Bardziej szczegółowo

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera) Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Bardziej szczegółowo

BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO

BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO ĆWICZENIE 36 BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO Cel ćwiczenia: Wyznaczenie podstawowych parametrów drgań tłumionych: okresu (T), częstotliwości (f), częstotliwości kołowej (ω), współczynnika tłumienia

Bardziej szczegółowo

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,

Bardziej szczegółowo

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

4.2 Analiza fourierowska(f1)

4.2 Analiza fourierowska(f1) Analiza fourierowska(f1) 179 4. Analiza fourierowska(f1) Celem doświadczenia jest wyznaczenie współczynników szeregu Fouriera dla sygnałów okresowych. Zagadnienia do przygotowania: szereg Fouriera; sygnał

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Ruch drgający

Podstawy fizyki sezon 1 VII. Ruch drgający Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania

Bardziej szczegółowo

WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA ĆWICZENIE

WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA ĆWICZENIE ĆWICZENIE 1 WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Cel ćwiczenia: Doświadczalne potwierdzenie twierdzenia Steinera, wyznaczenie

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

a, F Włodzimierz Wolczyński sin wychylenie cos cos prędkość sin sin przyspieszenie sin sin siła współczynnik sprężystości energia potencjalna

a, F Włodzimierz Wolczyński sin wychylenie cos cos prędkość sin sin przyspieszenie sin sin siła współczynnik sprężystości energia potencjalna Włodzimierz Wolczyński 3 RUCH DRGAJĄCY. CZĘŚĆ 1 wychylenie sin prędkość cos cos przyspieszenie sin sin siła współczynnik sprężystości sin sin 4 3 1 - x. v ; a ; F v -1,5T,5 T,75 T T 8t x -3-4 a, F energia

Bardziej szczegółowo

Siła sprężystości - przypomnienie

Siła sprężystości - przypomnienie Siła sprężystości - przypomnienie Pomiary siły sprężystości wykonane kilka wykładów wcześniej (z uwzględnieniem kierunku siły). F = kx = 0.13x 0 F x cm mg Prawo Hooke a Ciało m na idealnie gładkiej powierzchni

Bardziej szczegółowo

Wykład 6 Drgania. Siła harmoniczna

Wykład 6 Drgania. Siła harmoniczna Wykład 6 Drgania Ruch, który powtarza się w regularnych odstępach czasu, nazywamy ruchem okresowym (periodycznym). Przemieszczenie cząstki w ruchu periodycznym można wyrazić za pomocą funkcji sinus albo

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły

Bardziej szczegółowo

Drgania wymuszone - wahadło Pohla

Drgania wymuszone - wahadło Pohla Zagadnienia powiązane Częstość kołowa, częstotliwość charakterystyczna, częstotliwość rezonansowa, wahadło skrętne, drgania skrętne, moment siły, moment powrotny, drgania tłumione/nietłumione, drgania

Bardziej szczegółowo

RUCH HARMONICZNY. sin. (r.j.o) sin

RUCH HARMONICZNY. sin. (r.j.o) sin RUCH DRGAJĄCY Ruch harmoniczny Rodzaje drgań Oscylator harmoniczny Energia oscylatora harmonicznego Wahadło matematyczne i fizyczne Drgania tłumione Drgania wymuszone i zjawisko rezonansu Politechnika

Bardziej szczegółowo

Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego

Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego Ćwiczenie nr Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego. Wymagania do ćwiczenia 1. ynamika ruchu obrotowego.. rgania harmoniczne Literatura:. Halliday, R. Resnick,

Bardziej szczegółowo

1.5 Badanie drgań modelu cząsteczki czteroatomowej(m20)

1.5 Badanie drgań modelu cząsteczki czteroatomowej(m20) Badanie drgań modelu cząsteczki czteroatomowej(m20) 37 1.5 Badanie drgań modelu cząsteczki czteroatomowej(m20) Celem ćwiczenia jest wyznaczenie widma drgań układu czterech wahadeł sprzężonych oraz wyznaczenie

Bardziej szczegółowo

1. Wahadło fizyczne o regulowanej płaszczyźnie. drgań. kilkukrotnie sprawdzając z jaką niepewnością statystyczną możemy mieć do czynienia. pomiarze.

1. Wahadło fizyczne o regulowanej płaszczyźnie. drgań. kilkukrotnie sprawdzając z jaką niepewnością statystyczną możemy mieć do czynienia. pomiarze. . Wahadło fizyczne o regulowanej płaszczyźnie drgań.. Cel ćwiczenia Cel ćwiczenia: Analiza drgań harmonicznych na przykładzie wahadła fizycznego. Sprawdzenie relacji między okresem drgań obliczonym a okresem

Bardziej szczegółowo

Rys. 1Stanowisko pomiarowe

Rys. 1Stanowisko pomiarowe ĆWICZENIE WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Wykaz przyrządów: Stojak z metalową pryzmą do zawieszania badanych ciał Tarcza

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

Drgania. O. Harmoniczny

Drgania. O. Harmoniczny Dobrej fazy! Drgania O. Harmoniczny Położenie równowagi, 5 lipca 218 r. 1 Zadanie Zegar Małgorzata Berajter, update: 217-9-6, id: pl-ciepło-5, diff: 2 Pewien zegar, posiadający wahadło ze srebra, odmierza

Bardziej szczegółowo

WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ

WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ ĆWICZENIE 12 WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ Cel ćwiczenia: Wyznaczanie modułu sztywności drutu metodą sprężystych drgań obrotowych. Zagadnienia: sprężystość, naprężenie ścinające, prawo

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej

Bardziej szczegółowo

Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera.

Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera. ĆWICZENIE WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Opis ćwiczenia Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Bardziej szczegółowo

VII. Drgania układów nieliniowych

VII. Drgania układów nieliniowych VII. Drgania układów nieliniowych 1. Drgania anharmoniczne spowodowane symetryczna siła zwrotna 1.1 Różniczkowe równanie ruchu Rozważamy teraz drgania swobodne masy m przytwierdzonej do sprężyny o współczynniku

Bardziej szczegółowo

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż.

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż. Ruch drgajacy dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Ruch drgajacy Drgania harmoniczne Drgania oscylacje to cykliczna

Bardziej szczegółowo

Promieniowanie dipolowe

Promieniowanie dipolowe Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A

Bardziej szczegółowo

D103. Wahadła fizyczne sprzężone (przybliżenie małego kąta).

D103. Wahadła fizyczne sprzężone (przybliżenie małego kąta). D3. Wahadła fizyczne sprzężone (przybliżenie małego kąta). Cel: Zbadanie przebiegu drgań dwóch wahadeł sprzężonych: zbadanie zależności częstości drgań wahadła prostego od jego momentu bezwładności, wyznaczenie

Bardziej szczegółowo

I PRACOWNIA FIZYCZNA

I PRACOWNIA FIZYCZNA I PRACOWNIA FIZYCZNA I PRACOWNIA FIZYCZNA redakcja naukowa Andrzej Magiera Wydanie drugie poprawione i uzupełnione Instytut Fizyki Uniwersytet Jagielloński 2010 c Copyright by Instytut Fizyki Uniwersytetu

Bardziej szczegółowo

Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm.

Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm. 2 Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm. Nr pomiaru T[s] 1 2,21 2 2,23 3 2,19 4 2,22 5 2,25 6 2,19 7 2,23 8 2,24 9 2,18 10 2,16 Wyniki pomiarów okresu drgań dla wahadła

Bardziej szczegółowo

Drgania i fale II rok Fizyk BC

Drgania i fale II rok Fizyk BC 00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem

Bardziej szczegółowo

MECHANIKA II. Drgania wymuszone

MECHANIKA II. Drgania wymuszone MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny Daniel Lewandowski (I-19) MECHANIKA II. Drgania wymuszone 1 / 30 Układ drgajacy o jednym stopniu swobody

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie

Bardziej szczegółowo

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA M WYZNACZANE MOMENTU BEZWŁADNOŚC WAHADŁA OBERBECKA opracowała Bożena Janowska-Dmoch Do opisu ruchu obrotowego ciał stosujemy prawa dynamiki ruchu obrotowego, w których występują wielkości takie jak: prędkość

Bardziej szczegółowo

Laboratorium Mechaniki Technicznej

Laboratorium Mechaniki Technicznej Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach

Bardziej szczegółowo

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia

Bardziej szczegółowo

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Obrót wokół ustalonej osi Prawa ruchu Dla bryły sztywnej obracajacej się wokół ostalonej osi mement

Bardziej szczegółowo

Natomiast dowolny ruch chaotyczny, np. ruchy Browna, czy wszelkie postacie ruchu postępowego są przykładami ruchu nie będącego ruchem drgającym.

Natomiast dowolny ruch chaotyczny, np. ruchy Browna, czy wszelkie postacie ruchu postępowego są przykładami ruchu nie będącego ruchem drgającym. Wstęp Z wszelkiego radzaju drganiami mamy doczyniania w życiu codziennym. Na przykład codziennie korzystamy z prądu. Gdy pobieramy go z sieci miejskiej natężenie prądu zmienia się periodycznie z czasem.

Bardziej szczegółowo

PRACOWNIA FIZYCZNA DLA UCZNIÓW WAHADŁA SPRZĘŻONE

PRACOWNIA FIZYCZNA DLA UCZNIÓW WAHADŁA SPRZĘŻONE PRACOWNA FZYCZNA DLA UCZNÓW WAHADŁA SPRZĘŻONE W ćwiczeniu badać będziemy drgania dwóch wahadeł sprzężonych za pomocą sprężyny. Wahadła są jednakowe (mają ten sam moment bezwładności, tę samą masę m i tę

Bardziej szczegółowo

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3. Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy

Bardziej szczegółowo

Modelowanie układów dynamicznych

Modelowanie układów dynamicznych Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 11 Równania Eulera-Lagrange a Rozważmy układ p punktów materialnych o współrzędnych uogólnionych q i i zdefiniujmy lagranżian

Bardziej szczegółowo

Metody Optymalizacji Laboratorium nr 4 Metoda najmniejszych kwadratów

Metody Optymalizacji Laboratorium nr 4 Metoda najmniejszych kwadratów Laboratorium Metod Optymalizacji 216 Metody Optymalizacji Laboratorium nr 4 Metoda najmniejszych kwadratów 1. Za pomocą funkcji lsqcurvefit dobrać parametry a i b funkcji: Posiadając następujące dane pomiarowe:

Bardziej szczegółowo

Człowiek najlepsza inwestycja FENIKS

Człowiek najlepsza inwestycja FENIKS Człowiek najlepsza inwestycja FENIKS - długofalowy program odbudowy, popularyzacji i wspomagania fizyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i informatycznych

Bardziej szczegółowo

Ekpost=mv22. Ekobr=Iω22, mgh =mv22+iω22,

Ekpost=mv22. Ekobr=Iω22, mgh =mv22+iω22, Koło Maxwella Cel ćwiczenia Celem ćwiczenia jest badanie prawa zachowania energii w polu grawitacyjnym, a także zapoznanie się z prawami rządzącymi ruchem obrotowym. Wstęp Wahadło Maxwella Wahadło Maxwella

Bardziej szczegółowo

Fizyka Elementarna rozwiązania zadań. Część 20, 21 i 22 Przygotowanie: Grzegorz Brona,

Fizyka Elementarna rozwiązania zadań. Część 20, 21 i 22 Przygotowanie: Grzegorz Brona, Fizyka Elementarna rozwiązania zadań. Część 0, 1 i Przygotowanie: Grzegorz Brona, 0.1.008 Seria 0 Zadanie 1 Punkt Q porusza się w płaszczyźnie XOY po okręgu o promieniu A ze stałą prędkością kątową ω.

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /

Bardziej szczegółowo

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch

Bardziej szczegółowo

2. OPIS ZAGADNIENIA Na podstawie literatury podręczniki akademickie, poz. [2] zapoznać się z zagadnieniem i wyprowadzeniami wzorów.

2. OPIS ZAGADNIENIA Na podstawie literatury podręczniki akademickie, poz. [2] zapoznać się z zagadnieniem i wyprowadzeniami wzorów. Zad. M 04 Temat: PRACOWA FZYCZA nstytut Fizyki US Wyznaczanie momentu bezwładności brył metodą wahadła fizycznego. Doświadczalne potwierdzenie twierdzenia Steinera. Cel: zapoznanie się z ruchem drgającym

Bardziej szczegółowo

Zadanie domowe z drgań harmonicznych - rozwiązanie trzech wybranych zadań

Zadanie domowe z drgań harmonicznych - rozwiązanie trzech wybranych zadań - rozwiązanie trzech wybranych zadań Ireneusz Mańkowski I LO im. Stefana Żeromskiego w Lęborku ul. Dygasińskiego 14 28 kwietnia 2016 Wybrane zadania domowe 1 Zadanie 5.4.4 Rozwiązanie zadania 5.4.4 2 Zadanie

Bardziej szczegółowo

Zasada prac przygotowanych

Zasada prac przygotowanych 1 Ćwiczenie 20 Zasada prac przygotowanych 20.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z praktycznym zastosowaniem zasady prac przygotowanych przy rozpatrywaniu równowagi układu o dwóch stopniach

Bardziej szczegółowo

Badanie ciał na równi pochyłej wyznaczanie współczynnika tarcia statycznego

Badanie ciał na równi pochyłej wyznaczanie współczynnika tarcia statycznego Ćwiczenie M8 Badanie ciał na równi pochyłej wyznaczanie współczynnika tarcia statycznego M8.1. Cel ćwiczenia Celem ćwiczenia jest analiza sił działających na ciało spoczywające na równi pochyłej i badanie

Bardziej szczegółowo

Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego

Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego POLTECHNKA ŚLĄSKA WYDZAŁ CHEMCZNY KATEDRA FZYKOCHEM TECHNOLOG POLMERÓW LABORATORUM Z FZYK Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego WYZNACZANE MOMENTÓW BEZWŁADNOŚC

Bardziej szczegółowo

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu

Bardziej szczegółowo

Wyznaczanie współczynnika tarcia tocznego za pomocą wahadła nachylnego

Wyznaczanie współczynnika tarcia tocznego za pomocą wahadła nachylnego POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: FIZYKA Kod przedmiotu: KS0137; KN0137; LS0137; LN0137 Ćwiczenie Nr 4 Wyznaczanie współczynnika tarcia

Bardziej szczegółowo

Ć W I C Z E N I E N R E-15

Ć W I C Z E N I E N R E-15 NSTYTUT FZYK WYDZAŁ NŻYNER PRODUKCJ TECNOLOG MATERAŁÓW POLTECNKA CZĘSTOCOWSKA PRACOWNA ELEKTRYCZNOŚC MAGNETYZMU Ć W C Z E N E N R E-15 WYZNACZANE SKŁADOWEJ POZOMEJ NATĘŻENA POLA MAGNETYCZNEGO ZEM METODĄ

Bardziej szczegółowo

Ćwiczenie nr 2: ZaleŜność okresu drgań wahadła od amplitudy

Ćwiczenie nr 2: ZaleŜność okresu drgań wahadła od amplitudy Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 2: ZaleŜność okresu

Bardziej szczegółowo

ZADANIE 8 BADANIE WAHADEŁ SPRZĘŻONYCH

ZADANIE 8 BADANIE WAHADEŁ SPRZĘŻONYCH ZADANIE 8 BADANIE WAHADEŁ SPRZĘŻONYCH WYKAZ PRZYRZĄDÓW:. Wahadło sprzężone. Linia metrowa 3. Szalka wagi 4. Statyw 5. Odważniki 6. Ostrze pryzmatyczne do wyznaczania środka ciężkości WYKONANIE ZADANIA:.

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ . Cel ćwiczenia Pomiar współrzędnych powierzchni swobodnej w naczyniu cylindrycznym wirującym wokół

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Liczba godzin: sem. II *) - wykład 30 godz., ćwiczenia 30 godz. sem. III *) - wykład 30 godz., ćwiczenia 30 godz., ale

Bardziej szczegółowo

Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności

Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności Zadanie 1 (7 pkt) Cząstka o masie m i prędkości v skierowanej horyzontalnie wpada przez bocznąściankę

Bardziej szczegółowo

3.5 Wyznaczanie stosunku e/m(e22)

3.5 Wyznaczanie stosunku e/m(e22) Wyznaczanie stosunku e/m(e) 157 3.5 Wyznaczanie stosunku e/m(e) Celem ćwiczenia jest wyznaczenie stosunku ładunku e do masy m elektronu metodą badania odchylenia wiązki elektronów w poprzecznym polu magnetycznym.

Bardziej szczegółowo

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx

Bardziej szczegółowo

INSTRUKCJA do ćwiczenia Wyważanie wirnika maszyny w łożyskach własnych

INSTRUKCJA do ćwiczenia Wyważanie wirnika maszyny w łożyskach własnych ZAKŁAD PODSTAW KONSTRUKCJI I EKSPLOATACJI MASZYN ENERGETYCZNYCH Instytut Maszyn i Urządzeń Energetycznych Politechnika Śląska INSTRUKCJA do ćwiczenia Wyważanie wirnika maszyny w łożyskach własnych Wprowadzenie

Bardziej szczegółowo

WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów

WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów LABORATORIUM DRGANIA I WIBROAUSTYA MASZYN Wydział Budowy Maszyn i Zarządzania Zakład Wibroakustyki i Bio-Dynamiki Systemów Ćwiczenie nr WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów

Bardziej szczegółowo

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej

Bardziej szczegółowo

XIXOLIMPIADA FIZYCZNA (1969/1970). Stopień W, zadanie doświadczalne D.. Znaleźć doświadczalną zależność T od P. Rys. 1

XIXOLIMPIADA FIZYCZNA (1969/1970). Stopień W, zadanie doświadczalne D.. Znaleźć doświadczalną zależność T od P. Rys. 1 KOOF Szczecin: www.of.szc.pl XIXOLIMPIADA FIZYCZNA (1969/197). Stopień W, zadanie doświadczalne D. Źródło: Olimpiady fizyczne XIX i XX Autor: Waldemar Gorzkowski Nazwa zadania: Drgania gumy. Działy: Drgania

Bardziej szczegółowo

Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała,

Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała, Zadania do przeliczenia na lekcji. Drgania - zadanka 1. Ciało o masie m = 0.5kg zawieszono na nieważkiej nitce o długości l = 1m a następne wychylono o 2cm z położenia równowagi (g = 10 m s 2), (a) oblicz

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

Państwowa Wyższa Szkoła Zawodowa w Kaliszu Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie Wyznaczanie parametrów ruchu obrotowego bryły sztywnej Kalisz, luty 005 r. Opracował: Ryszard Maciejewski Natura jest

Bardziej szczegółowo

Sprawozdanie z zad. nr 4 Wahadło Matematyczne z Fizyki Komputerowej. Szymon Wawrzyniak / Artur Angiel / Gr. 5 / Poniedziałek 12:15

Sprawozdanie z zad. nr 4 Wahadło Matematyczne z Fizyki Komputerowej. Szymon Wawrzyniak / Artur Angiel / Gr. 5 / Poniedziałek 12:15 Sprawozdanie z zad. nr 4 Wahadło Matematyczne z Fizyki Komputerowej Szymon Wawrzyniak / Artur Angiel / Gr. 5 / Poniedziałek 12:15 =============================================== =========================

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

Fizyka 12. Janusz Andrzejewski

Fizyka 12. Janusz Andrzejewski Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3 autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania PYTANIA ZAMKNIĘTE Zadanie

Bardziej szczegółowo

1.6 Badanie ruchu obrotowego bryły sztywnej(m7)

1.6 Badanie ruchu obrotowego bryły sztywnej(m7) 48 Mechanika 1.6 Badanie ruchu obrotowego bryły sztywnej(m7) Celem ćwiczenia jest sprawdzenie praw ruchu obrotowego bryły sztywnej. Zagadnienia do przygotowania: bryła sztywna; moment bezwładności; twierdzenie

Bardziej szczegółowo

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-28.06.07 współrzędne uogólnione punkt materialny... wektor wodzący: prędkość: przyspieszenie: liczba

Bardziej szczegółowo

DRGANIA OSCYLATOR HARMONICZNY

DRGANIA OSCYLATOR HARMONICZNY DRGANIA OSCYLATOR HARMONICZNY wyklad8 2012/2013, zima 1 Własności sprężyste ciał stałych naprężenie rozciągające naprężenie ścinające naprężenie objętościowe Względne odkształcenie ciała zależy od naprężenia

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem

Bardziej szczegółowo

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki): Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy

Bardziej szczegółowo

MECHANIKA II. Drgania wymuszone

MECHANIKA II. Drgania wymuszone MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Stosując II zasadę dynamiki Newtona dla ruchu postępowego otrzymujemy

Stosując II zasadę dynamiki Newtona dla ruchu postępowego otrzymujemy Zadania do rozdziału 6 Zad.6.. Wprowadzić równanie ruchu drgań wahadła matematcznego. Obicz okres wahadła matematcznego o długości =0 m. Wahadło matematczne jest to punkt materian (np. w postaci kuki K

Bardziej szczegółowo

Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego

Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego 2019/02/14 13:21 1/5 Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego 1. Cel ćwiczenia Wyznaczenie przyspieszenia

Bardziej szczegółowo

α - stałe 1 α, s F ± Ψ taka sama Drgania nieliniowe (anharmoniczne) Harmoniczne: Inna zależność siły od Ψ : - układ nieliniowy,

α - stałe 1 α, s F ± Ψ taka sama Drgania nieliniowe (anharmoniczne) Harmoniczne: Inna zależność siły od Ψ : - układ nieliniowy, Drgania nieliniowe (anharmoniczne) Harmoniczne: F s s Inna zależność siły od : - układ nieliniowy, Symetryczna siła zwrotna Niech: F s ( ) s Symetryczna wartość - drgania anharmoniczne α, s F s dla α -

Bardziej szczegółowo

Laboratorium Dynamiki Maszyn

Laboratorium Dynamiki Maszyn Laboratorium Dynamiki Maszyn Laboratorium nr 5 Temat: Badania eksperymentane drgań wzdłużnych i giętnych układów mechanicznych Ce ćwiczenia:. Zbudować mode o jednym stopniu swobody da zadanego układu mechanicznego.

Bardziej szczegółowo

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,

Bardziej szczegółowo

ĆWICZENIE 5. Wyznaczanie przyśpieszenia ziemskiego przy pomocy wahadła matematycznego i fizycznego. Kraków,

ĆWICZENIE 5. Wyznaczanie przyśpieszenia ziemskiego przy pomocy wahadła matematycznego i fizycznego. Kraków, Maria Nowotny-Różańska Zakład Fizyki, Uniwersytet Rolniczy do użytku wewnętrznego ĆWICZENIE 5 Wyznaczanie przyśpieszenia ziemskiego przy pomocy wahadła matematycznego i fizycznego Kraków, 03.015 Spis treści:

Bardziej szczegółowo

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe

Bardziej szczegółowo

1.2 Badanie drgań tłumionych wahadła torsyjnego(m19)

1.2 Badanie drgań tłumionych wahadła torsyjnego(m19) Badanie drgań tłumionych wahadła torsyjnego(m19) 15 1.2 Badanie drgań tłumionych wahadła torsyjnego(m19) Celem ćwiczenia jest badanie małych drgań swobodnych i tłumionych wahadła torsyjnego oraz wyznaczenie

Bardziej szczegółowo

Prosty oscylator harmoniczny

Prosty oscylator harmoniczny Ruch drgający i falowy Siła harmoniczna, drgania swobodne Ruch, który powtarza się w regularnych odstępach czasu, nazywamy ruchem okresowym. Przemieszczenie cząstki w ruchu periodycznym można zawsze wyrazić

Bardziej szczegółowo

Plan wynikowy fizyka rozszerzona klasa 3a

Plan wynikowy fizyka rozszerzona klasa 3a Plan wynikowy fizyka rozszerzona klasa 3a 1. Hydrostatyka Temat lekcji dostateczną uczeń Ciśnienie hydrostatyczne. Prawo Pascala zdefiniować ciśnienie, objaśnić pojęcie ciśnienia hydrostatycznego, objaśnić

Bardziej szczegółowo