ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym
|
|
- Mateusz Barański
- 7 lat temu
- Przeglądów:
Transkrypt
1 ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami obliczeń sanów nieusalonych meodą klasyczną i operaorową Symulacja cyfrowa sanu nieusalonego przy załączaniu napięcia sałego na gałąź Symulacja cyfrowa sanu nieusalonego przy załączaniu napięcia sałego na gałąź Symulacja cyfrowa sanu nieusalonego przy załączaniu napięcia sałego na gałąź Obserwacja przebiegów i badanie charakeru sanu nieusalonego Określanie sałej czasowej Określenie częsoliwości drgań własnych 2. Wprowadzenie eoreyczne Ćwiczenie ma na celu badanie przebiegów napięć i prądów w sanach nieusalonych w obwodach, i przy załączeniu napięcia sałego. 2.. San nieusalony w szeregowym obwodzie przy załączeniu napięcia sałego Jako pierwszy przykład rozparzymy san nieusalony w obwodzie szeregowym przy zerowych warunkach począkowych i załączeniu napięcia sałego jak o zosało w symboliczny sposób przedsawione na rys.. Zerowe warunki począkowe obwodu oznaczają, że i ( 0 ) = 0. ys.. Obwód szeregowy przy załączeniu napięcia sałego Po przełączeniu w obwodzie powsaje san nieusalony, kóry po określonym czasie prowadzi do powsania nowego sanu usalonego wynikającego z nowego układu połączeń elemenów. San nieusalony jes superpozycją sanu usalonego i przejściowego. Prąd cewki określony jes nasępującym wzorem E e = / i ( )
2 Wprowadzając pojęcie sałej czasowej τ obwodu τ = rozwiązanie na prąd cewki w sanie nieusalonym można zapisać w posaci E i = τ ( ) e Jes o przebieg ypu wykładniczego, w kórym san przejściowy rwa ym dłużej im dłuższa jes sała czasowa. Prakycznie po 5 sałych czasowych san przejściowy w obwodzie zanika przechodząc w san usalony. Wyznaczanie sałej czasowej Sałą czasową obwodu można wyznaczyć na podsawie zarejesrowanego przebiegu nieusalonego bez znajomości warości rezysancji i indukcyjności. Zauważmy, że dla = τ prąd cewki przyjmuje warość E E i ( τ ) = ( e ) = 0, 632 E Oznacza o, że warość prądu i( ) =τ = 0, 632 wyznacza na osi odcięych warość sałej czasowej. Sposób wyznaczania sałej czasowej zilusrowany jes na rys. 2. ys. 2. Ilusracja sposobu wyznaczania sałej czasowej na podsawie zarejesrowanego przebiegu prądu cewki 2.2. San nieusalony w gałęzi szeregowej przy załączeniu napięcia sałego ozparzymy san nieusalony w obwodzie szeregowym przy zerowych warunkach począkowych i załączeniu napięcia sałego (rys. 2). 2
3 ys. 3. Załączenie napięcia sałego do obwodu szeregowego Wobec braku zasilania w obwodzie przed przełączeniem w warunki począkowe obwodu są zerowe, co oznacza, że u ( 0 ) = 0. Po przełączeniu powsaje w obwodzie san nieusalony, kóry po pewnym czasie prowadzi do powsania nowego sanu usalonego. ozwiązanie czasowe określające przebieg napięcia na kondensaorze przyjmuje więc posać u = ( ) E e Wprowadzając pojęcie sałej czasowej τ obwodu jako iloczynu rezysancji i pojemności τ = rozwiązanie na napięcie kondensaora w sanie nieusalonym można zapisać w posaci u = τ ( ) E e Jednoską sałej czasowej w obwodzie jes sekunda. Sałą czasową można wyznaczyć bezpośrednio na podsawie zarejesrowanego przebiegu nieusalonego bez znajomości warości rezysancji i pojemności, podobnie jak o miało miejsce w przypadku obwodu. Zauważmy, że dla = τ napięcie na kondensaorze przyjmuje warość u ( τ ) = E( e ) = 0, 632E Oznacza o, że napięcie u ( ) =τ = 0, 632E wyznacza na osi odcięych warość sałej czasowej. Ilusruje o rys. 4. 3
4 ys. 4. Wyznaczanie sałej czasowej obwodu na podsawie przebiegu czasowego napięcia kondensaora 2.3. San nieusalony w gałęzi szeregowej przy załączeniu napięcia sałego Jednym z najważniejszych przypadków sanu nieusalonego są zjawiska powsające w obwodzie rys. 5. zawierającym jednocześnie cewkę i kondensaor. W obwodzie akim powsają godne uwagi zjawiska, kóre znalazły ogromne zasosowanie w wielu dziedzinach elekroniki i elekroechniki. W zależności od warości rezysancji mogą powsać rzy przypadki rozwiązania: przypadek oscylacyjny, gdy akualna rezysancja obwodu jes mniejsza od kryycznej, przypadek aperiodyczny kryyczny, gdy a rezysancja jes równa rezysancji kryycznej oraz przypadek aperiodyczny, gdy rezysancja obwodu jes większa od kryycznej. Szczególnie ineresujący jes przypadek oscylacyjny, w kórym przy zasilaniu obwodu napięciem sałym powsają drgania sinusoidalne o łumionej ampliudzie. Przy rezysancji równej zeru w obwodzie powsają drgania sinusoidalne niegasnące. ys. 5. Załączenie napięcia sałego do obwodu szeregowego Wobec zerowych warunków począkowych (brak wymuszenia w obwodzie przed przełączeniem) mamy u ( 0 ) = 0, i ( 0 ) = 0. 4
5 W wyniku analizy operaorowej sanu nieusalonego orzymuje się wzór na ransformaę prądu w obwodzie E / s E / I ( s) = = s + + / s 2 s + s + Dla wyznaczenia ransformay odwronej należy obliczyć pierwiaski mianownika ransmiancji, czyli 2 s + s + = 0 W wyniku rozwiązania ego równania orzymuje się dwa pierwiaski (bieguny układu) 2 s = s 2 2 = 2 2 Z posaci wzoru opisującego bieguny wynika, że w zależności od znaku funkcji podpierwiaskowej możliwe są 3 przypadki rozwiązania. Przypadek aperiodyczny dla > 2. Przy spełnieniu ego warunku oba bieguny są rzeczywise i ujemne. haraker zmian prądu w obwodzie w sanie przejściowym jes aperiodyczny (nieokresowy) zanikający do zera w sposób wykładniczy. Przypadek aperiodyczny kryyczny wysępujący dla = 2. Przy spełnieniu ego warunku oba bieguny są rzeczywise i równe sobie. haraker zmian prądu w obwodzie w sanie przejściowym jes również aperiodyczny, podobnie jak w przypadku pierwszym, ale czas dochodzenia do warości usalonych (z określona olerancją) jes najkrószy z możliwych. Przypadek oscylacyjny (periodyczny) wysępujący dla < 2. Przy spełnieniu ego warunku oba bieguny są zespolone (zespolony i sprzężony z nim). haraker zmian prądu w obwodzie w sanie przejściowym jes sinusoidalny łumiony, o oscylacjach zanikających do zera. ezysancja = 2 nazywana jes rezysancją kryyczną i oznaczana w posaci kr. W ćwiczeniu należy badać wszyskie wymienione przypadki zmieniając paramery obwodu i obserwując uzyskane w programie kompuerowym przebiegi. Sałe czasowe obwodów wyznacza się w podobny sposób jak opisano w punkcie doyczącym obwodów i. Sposób pomiaru częsoliwości drgań własnych ω 0 przedsawiony jes na rys. 6. 5
6 T 2 ω 0 = 2π T ys. 6. Sposób pomiaru częsoliwości drgań własnych w obwodzie dla przypadku oscylacyjnego Dla określenia częsoliwości drgań własnych w obwodzie dla przypadku oscylacyjnego należy wyznaczyć chwile czasowe dwóch kolejnych punków na wykresie odległych od siebie o okres częsoliwości drgań własnych np. przejścia przez zero bądź eksremów przebiegu: maksimów lub minimów. Na rysunku 6 przedsawiono pomiar okresu dla dwóch kolejnych maksimów: = 2,86 s, 2 = 0 s, T = 2 - = 7,4s 2π f 0 = = 0,4Hz i osaecznie ω = T T 0 = rad 0,88 s 3. Program kompuerowy do symulacji sanów nieusalonych w obwodach szeregowych przy załączaniu napięcia sałego Do badań symulacyjnych sanów nieusalonych w obwodach szeregowych przy załączaniu napięcia sałego użye będą 3 programy kompuerowe dosępne na sronie WWW aboraorium: dla obwodu : hp://wikidyd.iem.pw.edu.pl/index.cgi/wo/wo_cw4 dla obwodu : hp://wikidyd.iem.pw.edu.pl/index.cgi/wo/wo_cw4rc dla obwodu : hp://wikidyd.iem.pw.edu.pl/index.cgi/wo/wo_cw4rlc Są o programy napisane w Javie, uruchamiane bezpośrednio z przeglądarki inerneowej bez porzeby insalacji w kompuerze sudena. Do działania wymagana jes jedynie obecność darmowej maszyny wirualnej Javy (jre). W razie braku maszyny wirualnej na kompuerze zosanie wyświelony odpowiedni komunika z propozycją jej pobrania i zainsalowania. 6
7 ysunki 7, 8 i 9 przedsawiają główne okna programów do symulacji sanów nieusalonych przy załączaniu napięcia sałego na gałęzie szeregowe odpowiednio: rysunek 7, rysunek 8 i rysunek 9. ys. 7. Okno programu do symulacji sanów nieusalonych przy załączeniu wymuszenia napięciowego na gałąź szeregową ys. 8. Okno programu do symulacji sanów nieusalonych przy załączeniu wymuszenia napięciowego na gałąź szeregową 7
8 ys. 9. Okno programu do symulacji sanów nieusalonych przy załączeniu wymuszenia napięciowego na gałąź szeregową Inerfejs użykownika każdego programu posiada e same elemeny: okno graficzne zawierające wykresy napięć i prądów, panel umożliwiający wpisanie warości elemenów obwodu, okno edycyjne pozwalające na podanie czasu symulacji czas począkowy załączenia napięcia przyjmuje się równy zero, różnokolorowe przyciski włączające wyświelanie w oknie graficznym przebiegów, kolor przycisku odpowiada kolorowi przebiegu na rysunku, szary przycisk włączający i wyłączający siakę (Grid on/off), żóły przycisk przerysowujący wykresy (POT). 4. Program badań 4.. Badanie sanu nieusalonego w obwodzie Dla kilku badanych obwodów (o różnych warościach i ) należy obserwować przebiegi wszyskich napięć na elemenach i prąd w obwodzie. Należy określić warość sałej czasowej z przebiegu i porównać ją z warością wyliczoną eoreycznie. Wyniki wpisać do abeli. Zbadać wpływ warości napięcia załączanego do obwodu na przebiegi. P. τ zmierzone τ obliczone
9 4.2. Badanie sanu nieusalonego w obwodzie Dla kilku badanych obwodów (o różnych warościach i ) należy obserwować przebiegi wszyskich napięć na elemenach i prąd w obwodzie. Należy określić warość sałej czasowej z przebiegu i porównać ją z warością wyliczoną eoreycznie. Wyniki wpisać do abeli. Zbadać wpływ warości napięcia załączanego do obwodu na przebiegi. P. τ zmierzone τ obliczone Badanie sanu nieusalonego w obwodzie Dla kilku badanych obwodów (o różnych warościach, i ) należy obserwować przebiegi wszyskich napięć na elemenach i prąd w obwodzie. Należy określić warość sałej czasowej z przebiegu i porównać ją z warością wyliczoną eoreycznie. Wyniki wpisać do abeli. P. τ zmierzone τ obliczone Określić częsoliwości drgań własnych z przebiegów i porównać ją z warością wyliczoną eoreycznie. Wyniki wpisać do abeli. P. 2 T f 0 ω Zbadać wpływ warości napięcia załączanego do obwodu na przebiegi. 5. Opracowanie wyników Na podsawie zaobserwowanych pomiarów i wykonanych obliczeń należy porównać dokładność meod przybliżonych wyznaczania sałych czasowych i częsoliwości drgań własnych z wyznaczonymi ze wzorów. W każdym przypadku należy zanoować po jakim czasie można uznać san nieusalony za zakończony. W sprawozdaniu należy zamieścić własne wnioski i sposrzeżenia. 6. ieraura. S. Bolkowski, Teoria obwodów, WNT 2. S. Osowski, K. Siwek, M. Śmiałek, Teoria obwodów, OWPW, Warszawa, K. Mikołajuk, Podsawy analizy obwodów energoelekronicznych, PWN, Warszawa, 998 9
Wykład 4 Metoda Klasyczna część III
Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)
ĆWICZENIE 5 Badanie stanów nieustalonych w obwodach szeregowych RLC przy wymuszeniu sinusoidalnie zmiennym
ĆWIZENIE 5 Badanie stanów nieustalonych w obwodach szeregowych R przy wyuszeniu sinusoidaie zienny. el ćwiczenia Zapoznanie się z rozpływe prądów, rozkłade w stanach nieustalonych w obwodach szeregowych
C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:
Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili
Drgania elektromagnetyczne obwodu LCR
Ćwiczenie 61 Drgania elekromagneyczne obwodu LCR Cel ćwiczenia Obserwacja drgań łumionych i przebiegów aperiodycznych w obwodzie LCR. Pomiar i inerpreacja paramerów opisujących obserwowane przebiegi napięcia
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,
LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI
ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 5 PROSTOWNIKI DO UŻYTKU
ĆWICZENIE 2 Badanie obwodów trójfazowych z odbiornikiem połączonym w gwiazdę
Laboratorium Wirtualne Obwodów w Stanach stalonych i ieustalonych ĆWZ adanie obwodów trójowych z odbiornikiem połączonym w gwiazdę. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem napięć i poborem
ĆWICZENIE 3 Badanie obwodów trójfazowych z odbiornikiem połączonym w trójkąt
ĆWICZENIE 3 Badanie obwodów trójfazowych z odbiornikiem połączonym w trójkąt 1. Cel ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem napięć i poborem mocy w obwodach trójfazowych połączonych w trójkąt:
E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO
E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy
Podstawowe człony dynamiczne
Podsawowe człony dynamiczne charakerysyki czasowe. Człon proporcjonalny = 2. Człony całkujący idealny 3. Człon inercyjny = = + 4. Człony całkujący rzeczywisy () = + 5. Człon różniczkujący rzeczywisy ()
Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych
ĆWICZENIE 1 Badanie obwodów jednofazowych rozgałęzionych przy wymuszeniu sinusoidalnym Cel ćwiczenia Celem ćwiczenia jest Poznanie podstawowych elementów pasywnych R, L, C, wyznaczenie ich wartości na
Ćw. S-II.2 CHARAKTERYSTYKI SKOKOWE ELEMENTÓW AUTOMATYKI
Dr inż. Michał Chłędowski PODSAWY AUOMAYKI I ROBOYKI LABORAORIUM Ćw. S-II. CHARAKERYSYKI SKOKOWE ELEMENÓW AUOMAYKI Cel ćwiczenia Celem ćwiczenia jes zapoznanie się z pojęciem charakerysyki skokowej h(),
ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów
ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów. Cel ćwiczenia Badanie układów pierwszego rzędu różniczkującego, całkującego
( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =
ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:
ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie
ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna
WYKŁAD FIZYKAIIIB 2000 Drgania tłumione
YKŁD FIZYKIIIB Drgania łumione (gasnące, zanikające). F siła łumienia; r F r b& b współczynnik łumienia [ Nm s] m & F m & && & k m b m F r k b& opis różnych zjawisk izycznych Niech Ce p p p p 4 ± Trzy
POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU
Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów
Podstawy elektrotechniki
Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 71 320 3201
Sygnały zmienne w czasie
Sygnały zmienne w czasie a) b) c) A = A = a A = f(+) d) e) A d = A = A sinω / -A -A ys.. odzaje sygnałów: a)sały, b)zmienny, c)okresowy, d)przemienny, e)sinusoidalny Sygnały zmienne okresowe i ich charakerysyczne
( ) ( ) ( τ) ( t) = 0
Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany
Podstawy elektrotechniki
Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 7 320 320
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH
POLIECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGEYKI INSYU MASZYN i URZĄDZEŃ ENERGEYCZNYCH IDENYFIKACJA PARAMERÓW RANSMIANCJI Laboraorium auomayki (A ) Opracował: Sprawdził: Zawierdził:
Badanie funktorów logicznych TTL - ćwiczenie 1
adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami
Podstawowe wyidealizowane elementy obwodu elektrycznego Rezystor ( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( τ ) i t i t u ( ) u t u t i ( ) i t. dowolny.
Tema. Opracował: esław Dereń Kaedra Teorii Sygnałów Insyu Telekomunikacji Teleinformayki i Akusyki Poliechnika Wrocławska Prawa auorskie zasrzeżone Podsawowe wyidealizowane elemeny obwodu elekrycznego
Podstawy Elektroniki dla Elektrotechniki
AGH Kaedra Elekroniki Podsawy Elekroniki dla Elekroechniki Klucze Insrukcja do ćwiczeń symulacyjnych (5a) Insrukcja do ćwiczeń sprzęowych (5b) Ćwiczenie 5a, 5b 2015 r. 1 1. Wsęp. Celem ćwiczenia jes ugrunowanie
Ćwiczenie E-5 UKŁADY PROSTUJĄCE
KŁADY PROSJĄCE I. Cel ćwiczenia: pomiar podsawowych paramerów prosownika jedno- i dwupołówkowego oraz najprosszych filrów. II. Przyrządy: płyka monaŝowa, wolomierz magneoelekryczny, wolomierz elekrodynamiczny
ψ przedstawia zależność
Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi
Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD
1. Cel ćwiczenia Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD Celem ćwiczenia jes poznanie własności dynamicznych diod półprzewodnikowych. Obejmuje ono zbadanie sanów przejściowych podczas procesu przełączania
Gr.A, Zad.1. Gr.A, Zad.2 U CC R C1 R C2. U wy T 1 T 2. U we T 3 T 4 U EE
Niekóre z zadań dają się rozwiązać niemal w pamięci, pamięaj jednak, że warunkiem uzyskania różnej od zera liczby punków za każde zadanie, jes przedsawienie, oprócz samego wyniku, akże rozwiązania, wyjaśniającego
Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie
Wykład 5 Elemeny eorii układów liniowych sacjonarnych odpowiedź na dowolne wymuszenie Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska
imei 1. Cel ćwiczenia 2. Zagadnienia do przygotowania 3. Program ćwiczenia
CYFROWE PRZEWARZANIE SYGNAŁÓW Laboraorium Inżynieria Biomedyczna sudia sacjonarne pierwszego sopnia ema: Wyznaczanie podsawowych paramerów okresowych sygnałów deerminisycznych imei Insyu Merologii Elekroniki
Ćwiczenie 119. Tabela II. Część P19. Wyznaczanie okresu drgań masy zawieszonej na sprężynie. Nr wierzchołka 0 1 2 3 4 5 6 7 8
2012 Kaedra Fizyki SGGW Nazwisko... Daa... Nr na liście... Imię... Wydział... Dzień yg.... Godzina... Ruch harmoniczny prosy masy na sprężynie Tabela I: Część X19. Wyznaczanie sałej sprężyny Położenie
1. Rezonans w obwodach elektrycznych 2. Filtry częstotliwościowe 3. Sprzężenia magnetyczne 4. Sygnały odkształcone
Wyład 6 - wersja srócona. ezonans w obwodach elerycznych. Filry częsoliwościowe. Sprzężenia magneyczne 4. Sygnały odszałcone AMD ezonans w obwodach elerycznych Zależności impedancji dwójnia C od pulsacji
Katedra Elektrotechniki Teoretycznej i Informatyki
Katedra Elektrotechniki Teoretycznej i normatyki aboratorium Teorii Obwodów Przedmiot: Elektrotechnika teoretyczna Numer ćwiczenia: 4 Temat: Obwody rezonansowe (rezonans prądów i napięć). Wprowadzenie
LABORATORIUM Z ELEKTRONIKI
LABORAORIM Z ELEKRONIKI PROSOWNIKI Józef Boksa WA 01 1. PROSOWANIKI...3 1.1. CEL ĆWICZENIA...3 1.. WPROWADZENIE...3 1..1. Prosowanie...3 1.3. PROSOWNIKI NAPIĘCIA...3 1.4. SCHEMAY BLOKOWE KŁADÓW POMIAROWYCH...5
PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny
DYNAMIKA KONSTRUKCJI
10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej
ZASTOSOWANIE WZMACNIACZY OPERACYJNYCH DO LINIOWEGO PRZEKSZTAŁCANIA SYGNAŁÓW. Politechnika Wrocławska
Poliechnika Wrocławska Insyu elekomunikacji, eleinformayki i Akusyki Zakład kładów Elekronicznych Insrukcja do ćwiczenia laboraoryjnego ZASOSOWANIE WZMACNIACZY OPEACYJNYCH DO LINIOWEGO PZEKSZAŁCANIA SYGNAŁÓW
R L. Badanie układu RLC COACH 07. Program: Coach 6 Projekt: CMA Coach Projects\ PTSN Coach 6\ Elektronika\RLC.cma Przykłady: RLC.cmr, RLC1.
OAH 07 Badanie układu L Program: oach 6 Projekt: MA oach Projects\ PTSN oach 6\ Elektronika\L.cma Przykłady: L.cmr, L1.cmr, V L Model L, Model L, Model L3 A el ćwiczenia: I. Obserwacja zmian napięcia na
BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH
BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH. Cel ćwiczenia Celem ćwiczenia jes poznanie właściwości przyrządów i przeworników pomiarowych związanych ze sanami przejściowymi powsającymi po
ĆWICZENIE 2. Autor pierwotnej i nowej wersji; mgr inż. Leszek Widomski
ĆWICZENIE Auor pierwonej i nowej wersji; mgr inż. Leszek Widomski UKŁADY LINIOWE Celem ćwiczenia jes poznanie właściwości i meod opisu linioch układów elekrycznych i elekronicznych przenoszących sygnały.
Ćwiczenie: "Rezonans w obwodach elektrycznych"
Ćwiczenie: "Rezonans w obwodach elektrycznych" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:
Szeregi Fouriera. Powyższe współczynniki można wyznaczyć analitycznie z następujących zależności:
Trygonomeryczny szereg Fouriera Szeregi Fouriera Każdy okresowy sygnał x() o pulsacji podsawowej ω, spełniający warunki Dirichlea:. całkowalny w okresie: gdzie T jes okresem funkcji x(), 2. posiadający
Temat ćwiczenia: STANY NIEUSTALONE W OBWODACH ELEKTRYCZNYCH Badanie obwodów II-go rzędu - pomiary w obwodzie RLC A.M.D. u C
aboraorium eorii Obwodów ABOAOIUM AMD6 ema ćwiczenia: SANY NIEUSAONE W OBWODAH EEKYZNYH Badanie obwodów II-go rzędu - pomiary w obwodzie Obwód II-go rzędu przedawia poniżzy ryunek.. ównanie obwodu di()
PAlab_4 Wyznaczanie charakterystyk częstotliwościowych
PAlab_4 Wyznaczanie charakerysyk częsoliwościowych Ćwiczenie ma na celu przedsawienie prakycznych meod wyznaczania charakerysyk częsoliwościowych elemenów dynamicznych. 1. Wprowadzenie Jedną z podsawowych
ĆWICZENIE NR 43 U R I (1)
ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości
RÓWNANIE RÓśNICZKOWE LINIOWE
Analiza stanów nieustalonych metodą klasyczną... 1 /18 ÓWNANIE ÓśNICZKOWE INIOWE Pod względem matematycznym szukana odpowiedź układu liniowego o znanych stałych parametrach k, k, C k w k - tej gałęzi przy
PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA
1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje
4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego
4.. Obliczanie przewodów grzejnych meodą dopuszczalnego obciążenia powierzchniowego Meodą częściej sosowaną w prakyce projekowej niż poprzednia, jes meoda dopuszczalnego obciążenia powierzchniowego. W
Pomiar indukcyjności.
Pomiar indukcyjności.. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z metodami pomiaru indukcyjności, ich wadami i zaletami, wynikającymi z nich błędami pomiarowymi, oraz umiejętnością ich właściwego
LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR
LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje
Układy RLC oraz układ czasowy 555
Układy L oraz układ czasowy 555 Sonda oscyloskopowa s Kabel Obwód wejsciowy oscyloskopu wes wes s k we we Konspek do ćwiczeń laboraoryjnych z przedmiou TEHNIKA YFOWA SPIS TEŚI. Układ różniczkujący... 3.
Układy sekwencyjne asynchroniczne Zadania projektowe
Układy sekwencyjne asynchroniczne Zadania projekowe Zadanie Zaprojekować układ dwusopniowej sygnalizacji opycznej informującej operaora procesu o przekroczeniu przez konrolowany paramer warości granicznej.
Ćwiczenie nr 1. Badanie obwodów jednofazowych RLC przy wymuszeniu sinusoidalnym
Ćwiczenie nr Badanie obwodów jednofazowych RC przy wymuszeniu sinusoidalnym. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z rozkładem napięć prądów i mocy w obwodach złożonych z rezystorów cewek i
Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"
Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres
Ćw. 27. Wyznaczenie elementów L C metoda rezonansu
7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R
LABORATORIUM OBWODÓW I SYGNAŁÓW. Stany nieustalone
Politechnika Warszawska Instytut Radioelektroniki Zakład Radiokomunikacji WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW Ćwiczenie nr 4 Stany nieustalone opracował: dr inż. Wojciech Kazubski
1 Ćwiczenia wprowadzające
1 W celu prawidłowego wykonania ćwiczeń w tym punkcie należy posiłkować się wiadomościami umieszczonymi w instrukcji punkty 1.1.1. - 1.1.4. oraz 1.2.2. 1.1 Rezystory W tym ćwiczeniu należy odczytać wartość
zestaw laboratoryjny (generator przebiegu prostokątnego + zasilacz + częstościomierz), oscyloskop 2-kanałowy z pamięcią, komputer z drukarką,
- Ćwiczenie 4. el ćwiczenia Zapoznanie się z budową i działaniem przerzunika asabilnego (muliwibraora) wykonanego w echnice dyskrenej oraz TTL a akże zapoznanie się z działaniem przerzunika T (zwanego
KATEDRA ELEKTROTECHNIKI LABORATORIUM ELEKTROTECHNIKI
KTEDR ELEKTROTECHNIKI LBORTORIUM ELEKTROTECHNIKI =================================================================================================== Temat ćwiczenia POMIRY OBODCH SPRZĘŻONYCH MGNETYCZNIE
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2009/2010 Zadania dla grupy elektrycznej na zawody I stopnia
EUOEEKA Ogólnopolska Olimpiada iedzy Elekrycznej i Elekronicznej ok szkolny 2009/2010 Zadania dla grpy elekrycznej na zawody I sopnia 1 Ilość ładnk w klombach [C], kóry przepłynął przez przewód, można
POLITECHNIKA BIAŁOSTOCKA
DODATEK A POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI ĆWICZENIE NR 1 CHARAKTERYSTYKI CZASOWE I CZĘSTOTLIWOŚCIOWE PROSTYCH UKŁADÓW DYNAMICZNYCH PRACOWNIA SPECJALISTYCZNA
Analityczny opis łączeniowych strat energii w wysokonapięciowych tranzystorach MOSFET pracujących w mostku
Pior GRZEJSZCZK, Roman BRLIK Wydział Elekryczny, Poliechnika Warszawska doi:1.15199/48.215.9.12 naliyczny opis łączeniowych sra energii w wysokonapięciowych ranzysorach MOSFET pracujących w mosku Sreszczenie.
4.8. Badania laboratoryjne
BOTOIUM EEKTOTECHNIKI I EEKTONIKI Grupa Podgrupa Numer ćwiczenia 4 p. Nazwisko i imię Ocena Data wykonania ćwiczenia Podpis prowadzącego zajęcia 4. 5. Temat Wyznaczanie indukcyjności własnej i wzajemnej
Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym
Ćwiczenie 1 Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym Wprowadzenie Celem ćwiczenia jest sprawdzenie podstawowych praw elektrotechniki w obwodach prądu stałego. Badaniu
Metody Lagrange a i Hamiltona w Mechanice
Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /
VII. ZAGADNIENIA DYNAMIKI
Konderla P. Meoda Elemenów Skończonych, eoria i zasosowania 47 VII. ZAGADNIENIA DYNAMIKI. Równanie ruchu dla zagadnienia dynamicznego Q, (7.) gdzie M NxN macierz mas, C NxN macierz łumienia, K NxN macierz
Rozruch silnika prądu stałego
Rozruch silnika prądu sałego 1. Model silnika prądu sałego (SPS) 1.1 Układ równań modelu SPS Układ równań modelu silnika prądu sałego d ua = Ra ia + La ia + ea d równanie obwodu wornika d uf = Rf if +
Podręcznik: Jan Machowski Regulacja i stabilność
dr hab. Désiré D. Rasolomampionona, pro. PW GM pok.111 STANY NEUSTALONE SYSTEMÓW ELEKTROENERGETYCZNYCH Wykład dla sem. sudiów sopnia Auomayka Elekroenergeyczna Podręcznik: Jan Machowski Regulacja i sabilność
Regulatory. Zadania regulatorów. Regulator
Regulaory Regulaor Urządzenie, kórego podsawowym zadaniem jes na podsawie sygnału uchybu (odchyłki regulacji) ukszałowanie sygnału serującego umożliwiającego uzyskanie pożądanego przebiegu wielkości regulowanej
PRACOWNIA ELEKTRONIKI
PRACOWNIA ELEKTRONIKI Tema ćwiczenia: BADANIE MULTIWIBRATORA UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI. 2. 3. Imię i Nazwisko 4. Daa wykonania Daa oddania Ocena Kierunek Rok sudiów
Wydział Mechaniczno-Energetyczny Laboratorium Elektroniki. Badanie zasilaczy ze stabilizacją napięcia
Wydział Mechaniczno-Energeyczny Laboraorium Elekroniki Badanie zasilaczy ze sabilizacją napięcia 1. Wsęp eoreyczny Prawie wszyskie układy elekroniczne (zarówno analogowe, jak i cyfrowe) do poprawnej pracy
Ć W I C Z E N I E N R E-9
INSTYTT FIZYKI WYDZIAŁ INŻYNIERII PRODKJI I TEHNOLOGII MATERIAŁÓW POLITEHNIKA ZĘSTOHOWSKA PRAOWNIA ELEKTRYZNOŚI I MAGNETYZM Ć W I Z E N I E N R E-9 DRGANIA RELAKSAYJNE I. Zagadnienia do przesudiowania
LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ
INSTTUTU TECHNIKI CIEPLNEJ WDZIAŁ INŻNIERII ŚRODOWISKA I ENERGETKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORJNA Tema ćwiczenia: WZNACZANIE WSPÓŁCZNNIKA PRZEWODZENIA CIEPŁA CIAŁ STAŁCH METODĄ STANU UPORZĄDKOWANEGO
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,
Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO
Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Mechatronika (WM) Laboratorium Elektrotechniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO
E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny
E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,
Lista nr Znaleźć rozwiązania ogólne następujących równań różniczkowych: a) y = y t,
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE B Lisa nr 1 1. Napisać równanie różniczkowe, jakie spełnia napięcie u = u() na okładkach kondensaora w obwodzie zawierającym połączone szeregowo oporność R i pojemność C,
2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)
Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza
Laboratorium Podstaw Elektrotechniki i Elektroniki
Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PĄDU SINUSOIDLNEGO
POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 8. Generatory przebiegów elektrycznych
Cel ćwiczenia: Celem ćwiczenia jes zapoznanie sudenów z podsawowymi właściwościami ów przebiegów elekrycznych o jes źródeł małej mocy generujących przebiegi elekryczne. Przewidywane jes również (w miarę
Wyznaczanie charakterystyk częstotliwościowych
Wyznaczanie charakerysyk częsoliwościowych Ćwiczenie ma na celu przedsawienie prakycznych meod wyznaczania charakerysyk częsoliwościowych elemenów dynamicznych. 1. Wprowadzenie Jedną z podsawowych meod
POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH
Program ćwiczeń: Pomiary częsoliwości i przesunięcia fazowego sygnałów okresowych POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Cel ćwiczenia Celem ćwiczenia jes poznanie: podsawowych
13 K A T E D R A F I ZYKI S T O S O W AN E J
3 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 3. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony
DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH
Franciszek SPYRA ZPBE Energopomiar Elekryka, Gliwice Marian URBAŃCZYK Insyu Fizyki Poliechnika Śląska, Gliwice DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH. Wsęp Zagadnienie poprawnego
Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści
Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, 2013 Spis treści Słowo wstępne 8 Wymagania egzaminacyjne 9 Wykaz symboli graficznych 10 Lekcja 1. Podstawowe prawa
Dynamiczne formy pełzania i relaksacji (odprężenia) górotworu
Henryk FILCEK Akademia Górniczo-Hunicza, Kraków Dynamiczne formy pełzania i relaksacji (odprężenia) góroworu Sreszczenie W pracy podano rozważania na ema możliwości wzbogacenia reologicznego równania konsyuywnego
Ćwiczenie nr 4. Badanie filtrów składowych symetrycznych prądu i napięcia
Ćwiczenie nr 4 Badanie filtrów składowych symetrycznych prądu i napięcia 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą składowych symetrycznych, pomiarem składowych w układach praktycznych
Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude
Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe
Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego:
Ćwiczenie 27 Temat: Prąd przemienny jednofazowy Cel ćwiczenia: Rozróżnić parametry charakteryzujące przebieg prądu przemiennego, oszacować oraz obliczyć wartości wielkości elektrycznych w obwodach prądu
PODSTAWY PROGRAMOWANIA STEROWNIKÓW PLC
PODSTAWY PROGRAMOWANIA STEROWNIKÓW PLC SPIS TREŚCI WSTĘP JĘZYK SCHEMATÓW DRABINKOWYCH JĘZYK SCHEMATÓW BLOKÓW FUNKCYJNYCH JĘZYK INSTRUKCJI JĘZYK STRUKTURALNY SEKWENCYJNY SCHEMAT FUNKCYJNY PRZYKŁADY PROGRAMÓW
Dobór przekroju żyły powrotnej w kablach elektroenergetycznych
Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego
ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ
Ćwiczenie 8 ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ. Cel ćwiczenia Analiza złożonego przebiegu drgań maszyny i wyznaczenie częsoliwości składowych harmonicznych ego przebiegu.. Wprowadzenie
Zauważmy, że wartość częstotliwości przebiegu CH2 nie jest całkowitą wielokrotnością przebiegu CH1. Na oscyloskopie:
Wydział EAIiIB Kaedra Merologii i Elekroniki Laboraorium Podsaw Elekroniki Cyfrowej Wykonał zespół w składzie (nazwiska i imiona): Ćw.. Wprowadzenie do obsługi przyrządów pomiarowych cz. Daa wykonania:
POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ FLUKSOMETRU
Ćwiczenie 56 E. Dudziak POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ FLUKSOMETRU Cel ćwiczenia: pomiar fluksomerem indukcji maneycznej sałeo pola maneyczneo między nabieunnikami elekromanesu. Zaadnienia: indukcja
I. Przełączanie diody
Laboraorium Elemenów Elekronicznych: PZEŁĄCZAIE DIOD I TAZYTOÓW. zał. 1 I. Przełączanie diody 1. Trochę eorii an przejściowy pomiędzy sanem przewodzenia diod, a sanem nieprzewodzenia opisuje się za pomocą
Temat 6. ( ) ( ) ( ) k. Szeregi Fouriera. Własności szeregów Fouriera. θ możemy traktować jako funkcje ω, których dziedziną jest dyskretny zbiór
ema 6 Opracował: Lesław Dereń Kaedra eorii Sygnałów Insyu eleomuniacji, eleinformayi i Ausyi Poliechnia Wrocławsa Prawa auorsie zasrzeżone Szeregi ouriera Jeżeli f ( ) jes funcją oresową o oresie, czyli
TEORIA PRZEKSZTAŁTNIKÓW. Kurs elementarny Zakres przedmiotu: ( 7 dwugodzinnych wykładów :) W4. Złożone i specjalne układy przekształtników sieciowych
EORA PRZEKSZAŁNKÓW W1. Wiadomości wsępne W. Przekszałniki sieciowe 1 W3. Przekszałniki sieciowe Kurs elemenarny Zakres przedmiou: ( 7 dwugodzinnych wykładów :) W4. Złożone i specjalne układy przekszałników
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych
ELEMENTY ELEKTRONICZNE
AKADMA GÓNZO-HTNZA M. STANSŁAWA STASZA W KAKOW Wydział nformayki, lekroniki i Telekomunikacji Kaedra lekroniki MNTY KTONZN dr inż. Pior Dziurdzia paw. -3, pokój 43; el. 67-7-0, pior.dziurdzia@agh.edu.pl