WYKŁAD FIZYKAIIIB 2000 Drgania tłumione
|
|
- Kamila Jóźwiak
- 6 lat temu
- Przeglądów:
Transkrypt
1 YKŁD FIZYKIIIB Drgania łumione (gasnące, zanikające). F siła łumienia; r F r b& b współczynnik łumienia [ Nm s] m & F m & && & k m b m F r k b& opis różnych zjawisk izycznych Niech Ce p p p p 4 ± Trzy przypadki: słabe łumienie: < silne łumienie: > łumienie kryyczne: G:\Z dysku E\_yklad \FIN\DOC\Drglum.doc /..
2 YKŁD FIZYKIIIB Słabe łumienie: p ± i 4 [ ] () C exp * exp ( i ) C exp ( i ) Inne ormy zapisu: ampliuda począkowa () exp cos( ϕ ) ampliuda () exp ( B cos B sin ) () Re D exp i! Drgania łumione drgania harmoniczne o ampliudzie zanikającej z czasem p! mpliuda maleje o czynnik e gdy czas wzrasa o / - czas relaksacji q G:\Z dysku E\_yklad \FIN\DOC\Drglum.doc /..
3 YKŁD FIZYKIIIB Częsość drgań: < 99,9 % Dla << (zw. bardzo słabe łumienie): ( można zasąpić ). arunki począkowe R.R drugiego rzędu dwie sałe dowolne, określone przez warunki brzegowe. Np. masa wyprowadzona z położenia równowagi na odległość w prawo i zwolniona dla.. Dla drgań swobodnych: () cos ( ϕ ) ( ) cosϕ, & ( ) sinϕ ϕ π cosϕ > ϕ () cos 3 G:\Z dysku E\_yklad \FIN\DOC\Drglum.doc /..
4 YKŁD FIZYKIIIB G:\Z dysku E\_yklad \FIN\DOC\Drglum.doc /.. 4. Dla drgań łumionych: ( ) ( ) ϕ ϕ ϕ ϕ g sin cos, cos & ( ) g cos ϕ ϕ ".." 4 okres π τ amp. począkowa
5 YKŁD FIZYKIIIB Dekremen logarymiczny drgań exp - czynnik łumienia ln δ () ( T ) T exp ln exp ( T ) ln exp T T dekremen logarymiczny δ ~ b - współczynnik łumienia b b m, δ T, b δ m m T m b ln T () ( T ) δ ln ln Dla słabego łumienia: <<, δ... 5 G:\Z dysku E\_yklad \FIN\DOC\Drglum.doc /..
6 YKŁD FIZYKIIIB Sray energii: cons d d ( m & k)& d d d d & d & d m& d d d d k prawdziwe dla wszyskich przypadków drgań łumionych (słabo, silnie, kryycznie) d d b& Z równania ruchu: Dla przypadku drgań mechanicznych: d d d d ( mx && kx)x& 443 bx& - z równań ruchu d b x& x&; Fr υ d Pochodna energii jes równa mocy raconej na opory ruchu. Szybkość zaniku energii średniej (średnia po wielu okresach): () exp cos( ϕ ) & T V m k 6 G:\Z dysku E\_yklad \FIN\DOC\Drglum.doc /..
7 YKŁD FIZYKIIIB Dla słabego łumienia: 4 m e cos [ ( ϕ )] sin [ ( ϕ )] Energia średniowana po wielu cyklach: < > m e Średnia energia maleje o czynnik /e gdy czas wzrasa o /. zględna sraa energii na jednoskę czasu: < d > < d > Znając charakerysykę zaniku energii można znaleźć. Zanik energii dla drgań słabo łumionych: 7 G:\Z dysku E\_yklad \FIN\DOC\Drglum.doc /..
8 YKŁD FIZYKIIIB Dobroć (): Sosunek / określa wielkość łumienia. Dla układu słabo łumionego: - dobroć > >> Dla układu bardzo słabo łumionego: Po cyklach, zn. po czasie maleje o czynnik: exp π τ π ampliuda exp π e - Z czasu po jakim ampliuda spada do 4%. Zanik ampliudy dla układów o różnej dobroci : π.43 8 G:\Z dysku E\_yklad \FIN\DOC\Drglum.doc /..
9 YKŁD FIZYKIIIB G:\Z dysku E\_yklad \FIN\DOC\Drglum.doc /.. 9 Dobroć a sray energii Dla () x (maksymalne wychylenie): () () k ( ) ( ) T k T Niech () ( ) T, () ( ) ( ) k k T Dla słabego łumienia: δ ( ) [ ] ; T T δ π π δ π π
10 YKŁD FIZYKIIIB Silne łumienie Niech > p, - rzeczywise, ujemne µ p µ p µ > > 4 4 µ µ µ < () C exp ( µ ) C ( µ ) exp C, C rzeczywise, bo () rzeczywise. C, C z warunków począkowych µ, µ dane przez własności układu C, C mogą być dodanie, ujemne, mogą różnić się znakiem. Jeśli en sam znak nigdy nie zmieni znaku (np. masa nigdy nie przejdzie przez położenie równowagi) Jeśli różny znak zmienia znak gdy oba człony są równe co do warości (np. masa przechodzi raz przez położenie równowagi ylko raz!). To nie są prawdziwe drgania! Ruch aperiodyczny G:\Z dysku E\_yklad \FIN\DOC\Drglum.doc /..
11 YKŁD FIZYKIIIB Niech & ( ) C C ( ) ( µ C µ C ) ( ) ( ) () [ µ exp µ µ exp µ ] µ µ Masa wychylona i puszczona () dla 4 ; µ 3.73 ; µ. 68 : Dla dużych czasów można zaniedbać drugi człon i mamy wykładniczy zanik ruchu: µ µ µ () exp ( µ ) Bardzo silne łumienie >> µ µ 4 G:\Z dysku E\_yklad \FIN\DOC\Drglum.doc /..
12 YKŁD FIZYKIIIB µ Jeśli () & ( ) ( ) C C exp exp ( >> ) ( ) exp - zanik prawie wykładniczy. ( ) Czas relaksacji (wychylenie zmniejsza się e-kronie) r b k τ ( m) b b & τ r! (bo Fr k Fs ) () k Inne warunki począkowe: Niech & - układ prawie zrównoważony ( ) C C ( ) ( µ C µ C ) υ - masa pchnięa z lewa na prawo ak, że ma prędkość υ przy przejściu przez. G:\Z dysku E\_yklad \FIN\DOC\Drglum.doc /..
13 YKŁD FIZYKIIIB () υ [ exp( µ ) ( µ ) ] exp µ µ Tłumienie kryyczne p Rozwiązanie p Ce nie jes dobre jedna sała! - za mało dla ogólnego rozwiązania r.r. II-go sopnia. Dla układu słabo łumionego było: [ ] () C exp * exp ( i ) C exp ( i ) 3 G:\Z dysku E\_yklad \FIN\DOC\Drglum.doc /..
14 YKŁD FIZYKIIIB Jeśli - szybsze łumienie, dąży do zera częsość znikają oscylacje. Można spróbować rozwiązania w posaci iloczynu zaniku wykładniczego i linii prosej. (nie sam.) () ( C C ) ( ) exp C, a Niech C aby wymiar obu sałych był aki & ( ) ( ) C C C () ( ) ( ) exp C C Tłumienie kryyczne wychylenie w unkcji czasu: Dla łumienia kryycznego zanik długoczasowy jes szybszy niż dla silnego, bo - - sała zaniku ampliudy dla łumienia kryycznego jes większa od µ - sałej zaniku dla łumienia silnego. nalogicznie dla słabego: -. 4 G:\Z dysku E\_yklad \FIN\DOC\Drglum.doc /..
15 YKŁD FIZYKIIIB Sysem o danej uspokaja się najszybciej jeśli jes łumiony kryycznie (znaczenie prakyczne). ; Dobroć: Dla obwodu RLC: d& L d & R L R & & LC R L C Tłumienie kryyczne: dobroć L R ładunek. LC L R 5 G:\Z dysku E\_yklad \FIN\DOC\Drglum.doc /..
16 YKŁD FIZYKIIIB Sray energii: de d d d L& C & L && C R& de 3 & R d Ciepło Joule a Drgania łumione na płaszczyźnie azowej: przypadku b łumienie jes znacznie większe, niż w przypadku a. 6 G:\Z dysku E\_yklad \FIN\DOC\Drglum.doc /..
drgania h armoniczne harmoniczne
ver-8..7 drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne () An cos( nω + ϕ n ) N n Fig (...) analiza Fouriera małe drgania E p E E k E p ( ) jeden sopień swobody: -A A E p
Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE
ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie
ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna
Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)
ver b drgania harmoniczne
ver-28.10.11 b drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne N = n=1 A n cos nω n Fig (...) analiza Fouriera małe drgania E p E E k jeden sopień swobody: E p -A E p A 0
Metody Lagrange a i Hamiltona w Mechanice
Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /
α - stałe 1 α, s F ± Ψ taka sama Drgania nieliniowe (anharmoniczne) Harmoniczne: Inna zależność siły od Ψ : - układ nieliniowy,
Drgania nieliniowe (anharmoniczne) Harmoniczne: F s s Inna zależność siły od : - układ nieliniowy, Symetryczna siła zwrotna Niech: F s ( ) s Symetryczna wartość - drgania anharmoniczne α, s F s dla α -
Przemieszczeniem ciała nazywamy zmianę jego położenia
1 Przemieszczeniem ciała nazywamy zmianę jego położenia + 0 k k 0 Przemieszczenie jes wekorem. W przypadku jednowymiarowym możliwy jes ylko jeden kierunek, a zwro określamy poprzez znak. Przyjmujemy, że
ψ przedstawia zależność
Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi
Drgania elektromagnetyczne obwodu LCR
Ćwiczenie 61 Drgania elekromagneyczne obwodu LCR Cel ćwiczenia Obserwacja drgań łumionych i przebiegów aperiodycznych w obwodzie LCR. Pomiar i inerpreacja paramerów opisujących obserwowane przebiegi napięcia
C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:
Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili
Związek między ruchem harmonicznym a ruchem jednostajnym po okręgu
Związek międz ruchem harmonicznm a ruchem jednosajnm po okręgu Rozważm rzu Q i R punku P na osie i : Q cos v r R sin R Q P δ Q cos ( δ ) R sin ( δ ) Jeżeli punk P porusza się ruchem jednosajnm po okręgu,
Fizyka 12. Janusz Andrzejewski
Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające
ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym
ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami
Temat VIII. Drgania harmoniczne
Tema VIII Drgania harmoniczne Równanie ruchu F k Siła k m Równanie ruchu sin cos Położenie równowagi w ruchu drgającym Położenie równowagi o akie położenie, w kórym siły wymuszające ruch równoważą się
RUCH HARMONICZNY. sin. (r.j.o) sin
RUCH DRGJĄCY Ruch harmoniczny Rodzaje drgań Oscylaor harmoniczny Energia oscylaora harmonicznego Wahadło maemayczne i fizyczne Drgania łumione Drgania wymuszone i zjawisko rezonansu RUCH HRMONICZNY Ruch
( ) ( ) ( τ) ( t) = 0
Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany
Podstawy fizyki sezon 2 7. Układy elektryczne RLC
Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC
Podstawowe człony dynamiczne
Podsawowe człony dynamiczne charakerysyki czasowe. Człon proporcjonalny = 2. Człony całkujący idealny 3. Człon inercyjny = = + 4. Człony całkujący rzeczywisy () = + 5. Człon różniczkujący rzeczywisy ()
Wykład 4 Metoda Klasyczna część III
Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)
2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)
Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
Fizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =
ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:
Wykład 6 Drgania. Siła harmoniczna
Wykład 6 Drgania Ruch, który powtarza się w regularnych odstępach czasu, nazywamy ruchem okresowym (periodycznym). Przemieszczenie cząstki w ruchu periodycznym można wyrazić za pomocą funkcji sinus albo
Dynamiczne formy pełzania i relaksacji (odprężenia) górotworu
Henryk FILCEK Akademia Górniczo-Hunicza, Kraków Dynamiczne formy pełzania i relaksacji (odprężenia) góroworu Sreszczenie W pracy podano rozważania na ema możliwości wzbogacenia reologicznego równania konsyuywnego
Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Drgania w obwodzie L Autorzy: Zbigniew Kąkol Kamil Kutorasiński 016 Drgania w obwodzie L Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Rozpatrzmy obwód złożony z szeregowo połączonych indukcyjności L (cewki)
Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.
Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać
lim Np. lim jest wyrażeniem typu /, a
Wykład 3 Pochodna funkcji złożonej, pochodne wyższych rzędów, reguła de l Hospitala, różniczka funkcji i jej zastosowanie, pochodna jako prędkość zmian 3. Pochodna funkcji złożonej. Jeżeli funkcja złożona
Pojęcia podstawowe 1
Tomasz Lubera Pojęcia podsawowe aa + bb + dd + pp + rr + ss + Kineyka chemiczna dział chemii fizycznej zajmujący się przebiegiem reakcji chemicznych w czasie, ich mechanizmami oraz wpływem różnych czynników
DYNAMIKA KONSTRUKCJI
10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej
Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.
Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej
VII. Drgania układów nieliniowych
VII. Drgania układów nieliniowych 1. Drgania anharmoniczne spowodowane symetryczna siła zwrotna 1.1 Różniczkowe równanie ruchu Rozważamy teraz drgania swobodne masy m przytwierdzonej do sprężyny o współczynniku
Drgania i fale II rok Fizyk BC
00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem
Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski
Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +
) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0.
Obwody RC t = 0, V C = 0 V 0 IR 0 V C C I II prawo Kirchhoffa: " po całym obwodzie zamkniętym E d l = 0 IR +V C V 0 = 0 R dq dt + Q C V 0 = 0 V 0 R t = RC (stała czasowa) Czas, po którym prąd spadnie do
, to: Energia całkowita w ruchu harmonicznym prostym jest proporcjonalna do kwadratu amplitudy.
Wykład z fizyki Piotr Posmykiewicz 4 Podstawiając to do wzoru na energię kinetyczną: K = ma sin t + ( δ ) Podstawiając = k / m K = ka sin t ( + δ ) -5 Energia kinetyczna w ruchu harmonicznym prostym Energia
Wykład 2 Wahadło rezonans parametryczny. l+δ
Wykład Wahadło rzonans paramryczny θ θ l l+δ C B B Wykład Wahadło - rzonans paramryczny E E E B mg l cos θ θ E kinb m d d l l+δ B B l C I m l E B B kinb' I m B' B' d d d d B l ml d d B ' mgl cos ' B gcos
RUCH HARMONICZNY. sin. (r.j.o) sin
RUCH DRGAJĄCY Ruch harmoniczny Rodzaje drgań Oscylator harmoniczny Energia oscylatora harmonicznego Wahadło matematyczne i fizyczne Drgania tłumione Drgania wymuszone i zjawisko rezonansu Politechnika
FIZYKA 2. Janusz Andrzejewski
FIZYKA wykład 7 Janusz Andrzejewski Niedoceniany geniusz Nikola Tesla Nikola Tesla wynalazł (lub znakomicie ulepszył) większość urządzeń, które spowodowały to, że prąd zmienny wyparł z naszych domów prąd
DRGANIA OSCYLATOR HARMONICZNY
DRGANIA OSCYLATOR HARMONICZNY wyklad8 2012/2013, zima 1 Własności sprężyste ciał stałych naprężenie rozciągające naprężenie ścinające naprężenie objętościowe Względne odkształcenie ciała zależy od naprężenia
1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2
Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH
POLIECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGEYKI INSYU MASZYN i URZĄDZEŃ ENERGEYCZNYCH IDENYFIKACJA PARAMERÓW RANSMIANCJI Laboraorium auomayki (A ) Opracował: Sprawdził: Zawierdził:
Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż.
Ruch drgajacy dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Ruch drgajacy Drgania harmoniczne Drgania oscylacje to cykliczna
E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO
E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy
Siła elektromotoryczna
Wykład 5 Siła elektromotoryczna Urządzenie, które wykonuje pracę nad nośnikami ładunku ale różnica potencjałów między jego końcami pozostaje stała, nazywa się źródłem siły elektromotorycznej. Energia zamieniana
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych.
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie Badanie unkcji korelacji w przebiegach elektrycznych. Cel ćwiczenia: Celem ćwiczenia jest zbadanie unkcji korelacji w okresowych sygnałach
Podstawy fizyki sezon 1 VII. Ruch drgający
Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania
POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU
Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów
Laboratorium Mechaniki Technicznej
Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22
Ćwiczenia 3 ( ) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki.
Ćwiczenia 3 (22.04.2013) Współczynnik przyrosu nauralnego. Koncepcja ludności zasojowej i usabilizowanej. Prawo Loki. Współczynnik przyrosu nauralnego r = U Z L gdzie: U - urodzenia w roku Z - zgony w
cx siła z jaką element tłumiący działa na to ciało.
Drgania układu o jedny sopniu swobody Rozparzy układ składający się z ciała o asie połączonego z nierucoy podłoże za poocą eleenu sprężysego o współczynniku szywności k oraz eleenu łuiącego o współczynniku
Podstawy elektrotechniki
Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 7 320 320
Zajmijmy się najpierw pierwszym równaniem. Zapiszmy je w postaci trygonometrycznej, podstawiając z = r(cos ϕ + i sin ϕ).
Zad (0p) Zaznacz na płaszczyźnie zespolonej wszystkie z C, które spełniają równanie ( iz 3 z z ) Re [(z + 3) ( z 3) = 0 Szukane z C spełniają: iz 3 = z z Re [(z + 3) ( z 3) = 0 Zajmijmy się najpierw pierwszym
dr inż. Paweł Szeptyński materiały pomocnicze do przedmiotu MECHANIKA TEORETYCZNA DYNAMIKA - ZADANIA
NAZEWNICTWO LINIOWE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE O STAŁYCH WSPÓŁCZYNNIKACH d n u a n d x + a d n 1 u n n 1 d x +... + a d 2 u n 1 2 d x + a d u 2 1 d x + a u = b( x) Powyższe równanie o niewiadomej funkcji
m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):
Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem
J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I
J. Szantyr Wykład nr 7 Przepływy w kanałach otwartych Przepływy w kanałach otwartych najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy
IX. MECHANIKA (FIZYKA) KWANTOWA
IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji
Plan wykładu. Ruch drgajacy. Drgania harmoniczne... Drgania harmoniczne. Oscylator harmoniczny Przykłady zastosowań. dr inż.
Plan wykładu Ruch drgajacy 1 Przykłady zastosowań dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 01/13 Drgania wymuszone 3 Drgania zachodzace w tym samym kierunku
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Sformułowanie Schrödingera mechaniki kwantowej. Fizyka II, lato
Sformułowanie Schrödingera mechaniki kwanowej Fizyka II, lao 018 1 Wprowadzenie Posać funkcji falowej dla fali de Broglie a, sin sin k 1 Jes o przypadek jednowymiarowy Posać a zosała określona meodą zgadywania.
Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona
Całka nieoznaczona Andrzej Musielak Sr Całka nieoznaczona Całkowanie o operacja odwrona do liczenia pochodnych, zn.: f()d = F () F () = f() Z definicji oraz z abeli pochodnych funkcji elemenarnych od razu
WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.
WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny
MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
oznacza przyrost argumentu (zmiennej niezależnej) x 3A82 (Definicja). Granicę (właściwą) ilorazu różnicowego funkcji f w punkcie x x x e x lim x lim
WYKŁAD 9 34 Pochodna nkcji w pnkcie Inerpreacja geomerczna pochodnej Własności pochodnch Twierdzenia Rolle a Lagrange a Cach ego Regla de lhôspiala Niech ( ) O( ) będzie nkcją określoną w pewnm ooczeni
ĆWICZENIE 2. BADANIE WAHADEŁ SPRZĘŻONYCH.
ĆWICZENIE BADANIE WAHADEŁ SPRZĘŻONYCH Wahadło sprzężone Weźmy pod uwagę układ złożony z dwóch wahadeł o długościach połączonych sprężyną o współczynniku kierującym k Rys Na wahadło działa siła będąca składową
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,
Fale elektromagnetyczne spektrum
Fale elekroagneyczne spekru w próżni wszyskie fale e- rozchodzą się z prędkością c 3. 8 /s Jaes Clerk Mawell (w połowie XIX w.) wykazał, że świało jes falą elekroagneyczną rozprzesrzeniającą się falą ziennego
Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
Jaki musi być kąt b, aby siła S potrzebna do wywołania poślizgu była minimalna G S
Jaki musi być kąt b, aby siła potrzebna do wywołania poślizgu była minimalna G N b T PRAWA COULOMBA I MORENA: 1. iła tarcia jest niezależna od wielkości stykających się powierzchni i zależy tylko (jedynie)
Ć W I C Z E N I E N R M-2
INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność
Detekcja synchroniczna i PLL. Układ mnoŝący -detektor fazy!
Deekcja synchroniczna i PLL Układ mnoŝący -deekor azy! VCC VCC U wy, średnie Deekcja synchroniczna Gdy na wejścia podamy przebiegi o różnych częsoliwościach U cosω i U cosω +φ oraz U ma dużą ampliudę o:
MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
RÓWNANIE RÓśNICZKOWE LINIOWE
Analiza stanów nieustalonych metodą klasyczną... 1 /18 ÓWNANIE ÓśNICZKOWE INIOWE Pod względem matematycznym szukana odpowiedź układu liniowego o znanych stałych parametrach k, k, C k w k - tej gałęzi przy
Sprawozdanie z zad. nr 4 Wahadło Matematyczne z Fizyki Komputerowej. Szymon Wawrzyniak / Artur Angiel / Gr. 5 / Poniedziałek 12:15
Sprawozdanie z zad. nr 4 Wahadło Matematyczne z Fizyki Komputerowej Szymon Wawrzyniak / Artur Angiel / Gr. 5 / Poniedziałek 12:15 =============================================== =========================
Wstęp do równań różniczkowych, studia I stopnia. 1. Znaleźć (i narysować przykładowe) rozwiązania ogólne równania y = 2x.
Wstęp do równań różniczkowych, studia I stopnia 1. Znaleźć (i narysować przykładowe) rozwiązania ogólne równania y = 2x. 2. Znaleźć wszystkie (i narysować przykładowe) rozwiązania równania y + 3 3 y 2
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski
Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne
Równania różniczkowe cząstkowe drugiego rzędu
Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................
Wykład 1: Fale wstęp. Drgania Katarzyna Weron. WPPT, Matematyka Stosowana
Wykład 1: Fale wstęp. Drgania Katarzyna Weron WPPT, Matematyka Stosowana Sposoby komunikacji Chcesz się skontaktować z przyjacielem Wysyłasz list? Wykorzystujesz cząstki Telefonujesz? Wykorzystujesz fale
TEORIA DRGAŃ Program wykładu 2016
TEORIA DRGAŃ Program wykładu 2016 I. KINEMATYKA RUCHU POSTE POWEGO 1. Ruch jednowymiarowy 1.1. Prędkość (a) Prędkość średnia (b) Prędkość chwilowa (prędkość) 1.2. Przyspieszenie (a) Przyspieszenie średnie
INSTRUKCJA DO ĆWICZENIA NR 5
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 5 PRZEDMIOT TEMAT OPRACOWAŁ MODELOWANIE UKŁADÓW MECHANICZNYCH Badania analityczne układu mechanicznego
LABORATORIUM OBWODÓW I SYGNAŁÓW. Stany nieustalone
Politechnika Warszawska Instytut Radioelektroniki Zakład Radiokomunikacji WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW Ćwiczenie nr 4 Stany nieustalone opracował: dr inż. Wojciech Kazubski
θ = 0 lub = = g l dw dt Przykłady drgań: Wahadło matematyczne (małe wychylenia): Inaczej: m l(1-cosθ) Drgania i fale II rok Fizyki BC
Przykłady drgań: Wahadło ateatyczne (ałe wychyenia): θ ( sinθ) M g && θ gsinθ && θ gθ (1-cosθ) && g θ + θ g g naczej: υ T V W & 1 g T θ υ 1 ( cosθ ) + V & θ dw dt &&& θθ + g & θ sinθ θ ub && g θ + sinθ
3.DRGANIA SWOBODNE MODELU O JEDNYM STOPNIU SWOBODY(JSS)
3.DRGANIA SWOBODNE MODELU O JEDNYM STOPNIU SWOBODY(JSS) 3.1. DRGANIA TRANSLACYJNE I SKRĘTNE WYMUSZME SIŁOWO I KINEMATYCZNIE W poprzednim punkcie o modelowaniu doszliśmy do przekonania, że wielokrotnie
Ruch drgający i falowy
Ruch drgający i falowy 1. Ruch harmoniczny 1.1. Pojęcie ruchu harmonicznego Jednym z najbardziej rozpowszechnionych ruchów w mechanice jest ruch ciała drgającego. Przykładem takiego ruchu może być ruch
Krzywe na płaszczyźnie.
Krzwe na płaszczźnie. Współrzędne paramerczne i biegunowe. Współrzędne biegunowe. Dan jes punk O, zwan biegunem, kór sanowi począek półprosej, zwanej półosią. Dowoln punk P na płaszczźnie można opisać
VII. ZAGADNIENIA DYNAMIKI
Konderla P. Meoda Elemenów Skończonych, eoria i zasosowania 47 VII. ZAGADNIENIA DYNAMIKI. Równanie ruchu dla zagadnienia dynamicznego Q, (7.) gdzie M NxN macierz mas, C NxN macierz łumienia, K NxN macierz
Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c.
Opis matematyczny Równanie modulatora Charakterystyka statyczna d t = v c t V M dla 0 v c t V M D 1 V M V c Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy v c (t )=V c + v c (t ) d (t
Metody numeryczne. Sformułowanie zagadnienia interpolacji
Ćwiczenia nr 4. Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n i wartości y 0,..., y n, takie że i=0,...,n y i = f (x i )). Szukamy funkcji F (funkcji interpolującej), takiej
Sygnały zmienne w czasie
Sygnały zmienne w czasie a) b) c) A = A = a A = f(+) d) e) A d = A = A sinω / -A -A ys.. odzaje sygnałów: a)sały, b)zmienny, c)okresowy, d)przemienny, e)sinusoidalny Sygnały zmienne okresowe i ich charakerysyczne
Drgania. O. Harmoniczny
Dobrej fazy! Drgania O. Harmoniczny Położenie równowagi, 5 lipca 218 r. 1 Zadanie Zegar Małgorzata Berajter, update: 217-9-6, id: pl-ciepło-5, diff: 2 Pewien zegar, posiadający wahadło ze srebra, odmierza
Równania różniczkowe opisujące ruch fotela z pilotem:
. Katapultowanie pilota z samolotu Równania różniczkowe opisujące ruch fotela z pilotem: gdzie D - siłą ciągu, Cd współczynnik aerodynamiczny ciągu, m - masa pilota i fotela, g przys. ziemskie, ρ - gęstość
Lista nr Znaleźć rozwiązania ogólne następujących równań różniczkowych: a) y = y t,
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE B Lisa nr 1 1. Napisać równanie różniczkowe, jakie spełnia napięcie u = u() na okładkach kondensaora w obwodzie zawierającym połączone szeregowo oporność R i pojemność C,
PRACOWNIA FIZYCZNA I
Skrypt do laboratorium PRACOWNIA FIZYCZNA I Ćwiczenie 2: Wyznaczanie czasu zderzenia dwóch ciał. Opracowanie: mgr Tomasz Neumann Gdańsk, 2011 Projekt Przygotowanie i realizacja kierunku inżynieria biomedyczna
DRGANIA OSCYLATOR HARMONICZNY
DRGANIA OSCYLATOR HARMONICZNY wyklad 8 017/018, zima 1 Własności sprężyste ciał stałych Przedmiot: Fizyka naprężenie rozciągające naprężenie ścinające naprężenie objętościowe Względne odkształcenie ciała
Praca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Zad Stoisz na brzegu oceanu, pogoda jest idealna,
Praca domowa nr. Meodologia Fizyki. Grupa. Szacowanie warości wielkości fizycznych Zad... Soisz na brzegu oceanu, pogoda jes idealna, powierze przeźroczyse; proszę oszacować jak daleko od Ciebie znajduje
gęstością prawdopodobieństwa
Funkcja falowa Zgodnie z hipotezą de Broglie'a, cząstki takie jak elektron czy proton, mają własności falowe. Własności falowe cząstki (lub innego obiektu) w mechanice kwantowej opisuje tzw. funkcja falowa(,t)
Rozwiązania prac domowych - Kurs Pochodnej. x 2 4. (x 2 4) 2. + kπ, gdzie k Z
1 Wideo 5 1.1 Zadanie 1 1.1.1 a) f(x) = x + x f (x) = x + f (x) = 0 x + = 0 x = 1 [SZKIC] zatem w x = 1 występuje minimum 1.1. b) f(x) = x x 4 f (x) = x(x 4) x (x) (x 4) f (x) = 0 x(x 4) x (x) (x 4) =