DYNAMIKA KONSTRUKCJI
|
|
- Dominik Markiewicz
- 7 lat temu
- Przeglądów:
Transkrypt
1 10. DYNAMIKA KONSTRUKCJI DYNAMIKA KONSTRUKCJI Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej chwili. Jes o odwołanie do zasady d'lambera, kóra mówi, że dla układu będącego w ruchu równowaga musi być spełniona w każdej chwili konkrenej przesrzeni czasowej. Macierz M jes macierzą masową, macierz K - macierzą szywności. Macierz P jes macierzą określającą przyłożone do układu obciążenia zewnęrzne. Naomias C jes macierzą określającą łumienie układu. Macierz ą przyjmujemy najczęściej w posaci zw. łumienia proporcjonalnego (zależnego od macierzy K i M) w posaci C= 1 M K (10.) Współczynniki 1 i wyznaczamy na podsawie udziału poszczególnych posaci drgań własnych. Jeśli założymy warość łumienia i obciążenia zewnęrzne równe zero, orzymamy równanie M d Kd =0 (10.3) czyli problem drgań własnych układu. Idąc dalej, sosując podsawienie d =d 0 sin (10.4) i różniczkując dwukronie po czasie d = d 0 cos d = d 0 sin (10.5) orzymujemy warości, kóre podsawiamy do równania (10.3) i dosajemy K M d 0 =0 (10.6) Czyli równanie, kóre definiuje nam uogólniony problem własny. Równanie o ma n równań rzeczywisych w posaci par: warości własnej i odpowiadającego jej wekora własnego.
2 10. DYNAMIKA KONSTRUKCJI 10.. Meody całkowania Jak wiemy równanie ruchu jes równaniem różniczkowym. Zasanówmy się zaem nad sposobami jego rozwiązywania. Ze względu na pewne własności macierzy K, M i C w analizie ruchu ciała przedsawionego przy pomocy elemenów skończonych zasadniczo sosujemy dwie meody: meodę całkowania bezpośredniego i meodę superpozycji modalnej Meody całkowania bezpośredniego Meody całkowania bezpośredniego są meodami jawnymi. Polegają ona na ym, że równanie ruchu jes całkowane krok po kroku. Równanie ma być spełnione ylko w wybranych chwilach, a nie w całym przedziale całkowania. Zakładamy, że w chwili =0 znane nam są przemieszczenia, prędkości i przyspieszenia (czyli znamy d 0, d 0, d 0 ). Rozparujemy określony przedział czasowy (0,T), kóry dzielimy na n równych przedziałów, w kórych o poszukujemy naszych nieznanych wielkości. Rozważamy zaem chwile: 0,,,...,,,..., T (10.7) Zadanie polega na zbudowaniu algorymu, kóry pozwoli nam na obliczeniu poszukiwanych warości w danym kroku przy wykorzysaniu wyliczonych warości z kroku poprzedniego. W aki sposób orzymamy warości we wszyskich chwilach czasowych z przedziału (0,T) Pokażemy na przykładzie, ok posępowania przy rozwiązywaniu zadania z dynamiki przy pomocy jednej z najbardziej efekywnych meod z grona meod całkowania bezpośredniego, a mianowicie meodą różnic cenralnych. Zakładamy zmienność w czasie wekorów prędkości i przyspieszeń w posaci d 1 d d d 1 d d d (10.8) Jeśli podsawimy operaory różnicowe (10.8) do (10.1) orzymamy 1 d d d M 1 d d C Kd =P (10.9) Z równania (10.9) obliczamy poszukiwany san przemieszczeń w chwili czyli d.
3 10. DYNAMIKA KONSTRUKCJI 3 Należy zwrócić uwagę, że rozwiązanie o orzymujemy na podsawie rozwiązania w chwili. Sąd eż meodę ę zaliczamy do meod jawnych (explicie). Dużą zaleą ego sposobu rozwiązywania równania (10.9) jes fak, iż nie musimy odwracać macierzy szywności. Należy zwrócić uwagę, że obliczanie wyników w kolejnych chwilach z wykorzysaniem wyników orzymanych w chwilach poprzednich wymaga przyjęcia pewnej procedury sarowej. Waro zaznaczyć, że zakładamy uaj, iż wekory d 0, d 0, d 0 są znane w chwili począkowej czyli w chwili =0. Sąd eż wykorzysując wzory (10.8) możemy wyznaczyć wekor przemieszczenia d w fikcyjnej chwili, kóra poprzedzać będzie począek ruchu czyli dla chwili : d =d 0 d 0 d 0, (10.10) Zaznaczmy, że meody jawne są ylko warunkowo sabilne, dlaego eż wymagane jes zasosowanie małych kroków całkowania przy obliczaniu kolejnych warości. Krok nie może być dowolnie duży, lecz musi spełniać poniższą zależność kr = T n, (10.11) gdzie T n jes najmniejszym okresem drgań układu Niespełnienie warunku (10.11) powoduje narasanie akumulację błędów całkowania i zaokrągleń w rakcie rozwiązywania równań ruchu. Algorym obliczeń dla meody całkowania jawnego: Obliczamy macierze K, C, M Nasępnie obliczamy d 0, d 0, d 0, Określamy sałe a 0 = 1 a 1 = 1 a = a 0 a 3 = 1 a (10.1) Obliczamy d =d 0 d 0 d 0 Wyznaczamy M M =a 0 M a 1 C (10.13) Triangularyzacja macierzy M przy pomocy wzoru M =L D L T (10.14)
4 10. DYNAMIKA KONSTRUKCJI 4 Obliczenia dla każdego kroku: - wekora obciążenia efekywnego R R=R K a M d a 0 M a 1 C d (10.15) - rozwiązanie równania (10.9) dla chwili -obliczenie wekorów prędkości i przyspieszeń: L T DLd = R (10.16) d a 1 d d d a 0 d d d (10.17) W przypadku braku łumienia czyli gdy C=0, równanie (10.9) upraszczamy do posaci 1 M d = R (10.18) gdzie R=R K M d 1 M d (10.19) Jeśli w równaniu (10.18) macierz mas będzie diagonalna, wówczas rozwiązania orzymujemy poprzez wykonanie określonego wzorem (10.19) mnożenia i d = R i (10.0) m ii i gdzie d oraz i R będą oznaczać i-e składowe wekorów d i R, naomias m ii odnoszą się do i-ej składowej diagonalnej macierzy mas (należy jednakże spełnić założenie, że m ii 0. Zauważmy, że nie musimy znać macierzy globalnych (zarówno macierzy szywności K jak i macierzy mas M). Dzieje się ak dlaego, bo nie rozwiązujemy układu równań liniowych. Macierze K i M mogą być określone na poziomie elemenów. Wśród meod całkowania jawnego możemy wymienić, oprócz meody różnic cenralnych, między innymi meodę Houbola, Wilsona i Newmarka. Meody e, pod warunkiem przyjęcia pewnych warości współczynników charakerysycznych dla danej meody, należą do meod bezwarunkowo sabilnych.
5 10. DYNAMIKA KONSTRUKCJI Meody superpozycji modalnej Równanie ruchu ma posać: M d C d Kd =P (10.1) M d C d Kd =P (10.) d = d [ 1 d d ] (10.3) d =d d [ 1 d d ] ℵ (10.4), - paramery przyjmowane na podsawie rozwiązań doyczących dokładności i sabilności orzymanych rozwiązań = 1 6 = 1 Rozwiązując ℵ względem d orzymamy: d = 1 [ d d d 1 ] d (10.5) ḋ = d d 1 d 1 d (10.6) 1 [ d d d 1 ] d M =P (10.7) i ḋ Z równania ego obliczamy niewiadomy wekor przemieszczeń d i podsawiamy do d Jeśli liczba kroków i liczba sopni swobody układu jes duża, wówczas efekywność obliczeń meodami całkowania bezpośredniego jes niesaysfakcjonująca. Należy wedy posłużyć się innymi meodami - meodami niejawnymi (implicie), do kórych można zaliczyć meodę superpozycji modalnej. Należy uaj dokonać przekszałcenia równania równowagi (10.1) do posaci, kóra będzie wymagała od nas mniejszego nakładu pracy.
6 10. DYNAMIKA KONSTRUKCJI 6 Dokonajmy akiego przekszałcenia wykorzysując rozwiązanie problemu drgań własnych (a więc pomijamy obciążenie zewnęrzne i łumienie) M d K d =0 (10.8) Rozwiązaniem równania (10.8) jes n par i, i, czyli macierze i w posaci =[ 1... ], n =[ 1... n ] (10.9) Spełniony jes uaj zw. warunek M-orogonalności wekorów własnych T M =1 (10.30) oraz warunek T K = (10.31) Dokonajmy ransformacji równania (10.1) sosując podsawienie d = X (10.3) Orzymujemy w en sposób równanie ruchu M Ẍ C Ẋ K X =P (10.33) Nasępnie przemnażamy lewosronnie przez T i orzymujemy T M Ẍ T C Ẋ T K X = T P (10.34) Jeśli weźmiemy pod uwagę warunki (10.31) i (10.3) dosaniemy osaecznie
7 10. DYNAMIKA KONSTRUKCJI 7 Ẍ T C Ẋ X = T P (10.35) Uzupełniamy równanie (10.34) warunkami począkowymi X 0 = T M d 0 (10.36) X 0 = T M d 0 Z równania (10.34) wynika, że jeżeli przyjmiemy macierz łumienia równą zero zn. pominiemy człon T C Ẋ o orzymamy układ równań rozprzężony co możemy zapisać jako n równań skalarnych posaci Ẍ X = T P, (10.37) gdzie ẍ i i x i =r i, (10.38) Warunki począkowe orzymujemy z (10.36) r i = i T P (10.39) x i0 = i T M d 0, x i0 = T i M d 0, (10.40) Zaznaczmy, że rozwiązanie równań (10.38) możemy prowadzić przy wykorzysaniu meod całkowania bezpośredniego lub przy wykorzysaniu zw. całki Duhamela x i = 1 i o r i sin i d i sin i i cos i (10.41) sałe i i i wyznaczamy z warunków poczakowych (10.40) W naszym zadaniu po rozwiązaniu n równań musimy powrócić do ransformacji (10.3). Orzymamy wówczas osaeczne rozwiązanie n d = i x i (10.4) i=1
8 m 1 x 1 m x 10. DYNAMIKA KONSTRUKCJI Przykłady Równanie równowagi dynamicznej każdego punku w każdej chwili: [M ][ d ] [C ][ d ] [ K ][d ]=[ p ] (10.43) Rozwiązanie ego równania mówi nam, jak dany elemen przemieścił się w każdej chwili. Przykłady: k 1 k 1 p 1 k k p k 3 k 3 m 3 x3 p 3 Rys Przykład 1
9 10. DYNAMIKA KONSTRUKCJI 9 x 1 x x 3 k 1 k k 3 p 1 p p 3 c 1 c c 3 łumik Rys Przykład Równanie równowagi zapisane macierzowo: [k1 k k 0 c k k k 3 k 3 x c c c 3 c 3 x 0 m 0 x ]{x1 ]{ẋ1 0 k 3 k 3 x 3} [c1 c 0 c 3 c 3 ẋ 3} [m1 0 0 m 3]{ẍ1 P ẍ 3}={P1 3} P (10.44) [ K ]{x} [C ]{ẋ} [M ]{ẍ}={p} Przykład obliczeniowy: x 1 x k 1 =k k =k m 1 =m m = m Q()=0 [ 3 k k k k ]{ x 1 x } [ m 0 0 m]{ẍ1 x } = { 0 0} (10.45) X 1 =A 1 sin (10.46) X =A sin (10.47) Obliczamy drugą pochodną po czasie wyrażeń i X 1 = A 1 sin (10.48)
10 10. DYNAMIKA KONSTRUKCJI 10 X = A sin (10.49) i podsawiamy do równania 10.45, orzymując k[ 3 ]{ A 1 A } m [ ]{ A 1 A } = { 0 0} (10.50) Podsawiamy = m k : [ 3 ]{ A 1 A } { = 0 (10.51) 0} Przykładowa posać rozwiązania: 1 =0,673 =3,730 A 1 =0,73 A A 1 =,735 A (10.5) I posać: 0,73 1, Eksremalna warość własna [ A] [ B ] [ X ]={0} (10.53) [ A] [ X ]= [ B ][ X ] /[ B ] 1 (10.54) [C ] [ I ] [ B ] 1 [ A] [ X ]= [ B ] 1 [ B ] [ X ] (10.55) Orzymujemy: [C ][ X ]= [ X ] (10.56)
11 10. DYNAMIKA KONSTRUKCJI 11 [C ][ X i ]=[ X i 1 ]= [ X i 1 ] (10.57) Dokonujemy ieracji: [C ][ X 0 ]=[ X 1 ]= 1 [ X 1 ] [C ][ X 1 ]=[ X ]= [ X ] [C ][ X k 1 ]=[ X k ]= [ X k ] (10.58) Przykład: [ ][ 5 n] l [ m = ][ n] l m (10.59) 0 0 ieracje i=0: [ ]{ 0 0 l}0 ={ }i =30 { 0,166 0,300 1,000}l (10.60) i=1: [ ]{ 0,166 0,300 l,000} { 11,780 = 18,996 35,530} { 0,35 =35,59 0,566 (10.61) 1,000} Nasępne ieracje powarzamy do momenu, kiedy orzymane warości będą zbliżone: [ ]{ 0,766 1,000 0,98} { 0,78 =43,49 1,00 (10.6) 0,97}
12 10. DYNAMIKA KONSTRUKCJI Dynamika konsrukcji W przypadku dynamiki konsrukcji macierz mas wyrażona za pomocą funkcji kszału i gęsości jes posaci: M = e e N T e N e dv e (10.63) V
C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:
Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili
VII. ZAGADNIENIA DYNAMIKI
Konderla P. Meoda Elemenów Skończonych, eoria i zasosowania 47 VII. ZAGADNIENIA DYNAMIKI. Równanie ruchu dla zagadnienia dynamicznego Q, (7.) gdzie M NxN macierz mas, C NxN macierz łumienia, K NxN macierz
ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie
ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna
Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.
Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać
2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)
Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza
Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.
Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych
ψ przedstawia zależność
Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi
Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim
Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając
( ) ( ) ( τ) ( t) = 0
Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany
Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona
Całka nieoznaczona Andrzej Musielak Sr Całka nieoznaczona Całkowanie o operacja odwrona do liczenia pochodnych, zn.: f()d = F () F () = f() Z definicji oraz z abeli pochodnych funkcji elemenarnych od razu
y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =
Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,
Silniki cieplne i rekurencje
6 FOTO 33, Lao 6 Silniki cieplne i rekurencje Jakub Mielczarek Insyu Fizyki UJ Chciałbym Pańswu zaprezenować zagadnienie, kóre pozwala, rozważając emaykę sprawności układu silników cieplnych, zapoznać
Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych
Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,
Pobieranie próby. Rozkład χ 2
Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie
Metody Lagrange a i Hamiltona w Mechanice
Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /
ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM
Budownicwo Mariusz Poński ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM Wprowadzenie Coraz większe ograniczenia czasowe podczas wykonywania projeków
Wykład 4 Metoda Klasyczna część III
Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)
4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego
4.. Obliczanie przewodów grzejnych meodą dopuszczalnego obciążenia powierzchniowego Meodą częściej sosowaną w prakyce projekowej niż poprzednia, jes meoda dopuszczalnego obciążenia powierzchniowego. W
WNIOSKOWANIE STATYSTYCZNE
Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml
E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny
E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,
Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji
Agnieszka Przybylska-Mazur * Meody badania wpływu zmian kursu waluowego na wskaźnik inflacji Wsęp Do oceny łącznego efeku przenoszenia zmian czynników zewnęrznych, akich jak zmiany cen zewnęrznych (szoki
Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie
Wykład 5 Elemeny eorii układów liniowych sacjonarnych odpowiedź na dowolne wymuszenie Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska
Podstawowe człony dynamiczne
Podsawowe człony dynamiczne charakerysyki czasowe. Człon proporcjonalny = 2. Człony całkujący idealny 3. Człon inercyjny = = + 4. Człony całkujący rzeczywisy () = + 5. Człon różniczkujący rzeczywisy ()
Dynamiczne formy pełzania i relaksacji (odprężenia) górotworu
Henryk FILCEK Akademia Górniczo-Hunicza, Kraków Dynamiczne formy pełzania i relaksacji (odprężenia) góroworu Sreszczenie W pracy podano rozważania na ema możliwości wzbogacenia reologicznego równania konsyuywnego
DYNAMIKA RAM WERSJA KOMPUTEROWA
DYNAMIKA RAM WERSJA KOMPTEROWA Parametry przekrojów belek: E=205MPa=205 10 6 kn m 2 =205109 N m 2 1 - IPE 220 Pręty: 1, 3, 4: I y =2770cm 4 =0,00002770 m 4 EI =5678500 Nm 2 A=33,4 cm 4 =0,00334 m 2 EA=684700000
Dyskretny proces Markowa
Procesy sochasyczne WYKŁAD 4 Dyskreny roces Markowa Rozarujemy roces sochasyczny X, w kórym aramer jes ciągły zwykle. Będziemy zakładać, że zbiór sanów jes co najwyżej rzeliczalny. Proces X, jes rocesem
RÓWNANIA RÓŻNICZKOWE WYKŁAD 13
RÓWNANIA RÓŻNICZKOWE WYKŁAD 13 Geomeria różniczkowa Geomeria różniczkowa o dział maemayki, w kórym do badania obieków geomerycznych wykorzysuje się meody opare na rachunku różniczkowym. Obieky geomeryczne
( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =
ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:
Drgania układu o wielu stopniach swobody
Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut
Wojewódzki Konkurs Maemayczny dla uczniów gimnazjów. Eap szkolny 5 lisopada 2013 Czas 90 minu ZADANIA ZAMKNIĘTE Zadanie 1. (1 punk) Liczby A = 0, 99, B = 0, 99 2, C = 0, 99 3, D = 0, 99, E=0, 99 1 usawiono
RACHUNEK CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ
RACHUNEK CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ Wykorzysano: M A T E M A T Y K A Wykład dla sudenów Część Krzyszo KOŁOWROCKI, ZBIÓR ZADAŃ Z RACHUNKU CAŁKOWEGO Krzyszo PISKÓRZ Deinicja CAŁKA NIEOZNACZONA Funkcję
I. KINEMATYKA I DYNAMIKA
piagoras.d.pl I. KINEMATYKA I DYNAMIKA KINEMATYKA: Położenie ciała w przesrzeni można określić jedynie względem jakiegoś innego ciała lub układu ciał zwanego układem odniesienia. Ruch i spoczynek są względne
ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym
ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH
POLIECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGEYKI INSYU MASZYN i URZĄDZEŃ ENERGEYCZNYCH IDENYFIKACJA PARAMERÓW RANSMIANCJI Laboraorium auomayki (A ) Opracował: Sprawdził: Zawierdził:
Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )
Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa
WYKŁAD FIZYKAIIIB 2000 Drgania tłumione
YKŁD FIZYKIIIB Drgania łumione (gasnące, zanikające). F siła łumienia; r F r b& b współczynnik łumienia [ Nm s] m & F m & && & k m b m F r k b& opis różnych zjawisk izycznych Niech Ce p p p p 4 ± Trzy
Szacowanie błędu lokalnego w metodach jednokrokowych. 1) W rachunkach numerycznych musimy znać oszacowanie błędu
Szacowanie błędu lokalnego w meodach jednokrokowych Po co? 1) W rachunkach numerycznych musimy znać oszacowanie błędu 2) Gdy oszacowanie jes w miarę dokładne: można poprawić wynik 3) Aby usawić krok czasowy
Podstawowe wyidealizowane elementy obwodu elektrycznego Rezystor ( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( τ ) i t i t u ( ) u t u t i ( ) i t. dowolny.
Tema. Opracował: esław Dereń Kaedra Teorii Sygnałów Insyu Telekomunikacji Teleinformayki i Akusyki Poliechnika Wrocławska Prawa auorskie zasrzeżone Podsawowe wyidealizowane elemeny obwodu elekrycznego
Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D
Równanie konstytutywne opisujące sposób w jaki ciepło przepływa w materiale o danych właściwościach, prawo Fouriera Macierz konstytutywna (właściwości) materiału Wektor gradientu temperatury Wektor strumienia
WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera.
7. Całka Fouriera w posaci rzeczywisej. Wykład VII Przekszałcenie Fouriera. Doychczas rozparywaliśmy szeregi Fouriera funkcji w ograniczonym przedziale [ l, l] lub [ ] Teraz pokażemy analogicznie przedsawienie
Przemieszczeniem ciała nazywamy zmianę jego położenia
1 Przemieszczeniem ciała nazywamy zmianę jego położenia + 0 k k 0 Przemieszczenie jes wekorem. W przypadku jednowymiarowym możliwy jes ylko jeden kierunek, a zwro określamy poprzez znak. Przyjmujemy, że
Krzywe na płaszczyźnie.
Krzwe na płaszczźnie. Współrzędne paramerczne i biegunowe. Współrzędne biegunowe. Dan jes punk O, zwan biegunem, kór sanowi począek półprosej, zwanej półosią. Dowoln punk P na płaszczźnie można opisać
CHEMIA KWANTOWA Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoretycznej Zespół Chemii Kwantowej Grupa Teorii Reaktywności Chemicznej
CHEMI KWTOW CHEMI KWTOW Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoreycznej Zespół Chemii Kwanowej Grupa Teorii Reakywności Chemicznej LITERTUR R. F. alewajski, Podsawy i meody chemii kwanowej:
1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych
Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci
Praca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Zad Stoisz na brzegu oceanu, pogoda jest idealna,
Praca domowa nr. Meodologia Fizyki. Grupa. Szacowanie warości wielkości fizycznych Zad... Soisz na brzegu oceanu, pogoda jes idealna, powierze przeźroczyse; proszę oszacować jak daleko od Ciebie znajduje
Rozruch silnika prądu stałego
Rozruch silnika prądu sałego 1. Model silnika prądu sałego (SPS) 1.1 Układ równań modelu SPS Układ równań modelu silnika prądu sałego d ua = Ra ia + La ia + ea d równanie obwodu wornika d uf = Rf if +
LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR
LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje
Rys.1. Podstawowa klasyfikacja sygnałów
Kaedra Podsaw Sysemów echnicznych - Podsawy merologii - Ćwiczenie 1. Podsawowe rodzaje i ocena sygnałów Srona: 1 1. CEL ĆWICZENIA Celem ćwiczenia jes zapoznanie się z podsawowymi rodzajami sygnałów, ich
POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU
Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów
EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.
EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b
Pomiar współczynników sprężystości i lepkości skórki ogórka.
Pomiar współczynników sprężysości i lepkości skórki ogórka. Przyrządy. Uniwersalna maszyna wyrzymałościowa serownie esem i rejesracja wyników. Główną częścią maszyny wyrzymałościowej jes czujnik siły umieszczony
Szeregi Fouriera. Powyższe współczynniki można wyznaczyć analitycznie z następujących zależności:
Trygonomeryczny szereg Fouriera Szeregi Fouriera Każdy okresowy sygnał x() o pulsacji podsawowej ω, spełniający warunki Dirichlea:. całkowalny w okresie: gdzie T jes okresem funkcji x(), 2. posiadający
PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 69 Elecrical Engineering 0 Janusz WALCZAK* Seweryn MAZURKIEWICZ* PROGRAMOWY GENERATOR PROCESÓW STOCHASTYCZNYCH LEVY EGO W arykule opisano meodę generacji
ĆWICZENIE NR 43 U R I (1)
ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości
WYKORZYSTANIE TESTU OSTERBERGA DO STATYCZNYCH OBCIĄŻEŃ PRÓBNYCH PALI
Prof. dr hab.inż. Zygmun MEYER Poliechnika zczecińska, Kaedra Geoechniki Dr inż. Mariusz KOWALÓW, adres e-mail m.kowalow@gco-consul.com Geoechnical Consuling Office zczecin WYKORZYAIE EU OERERGA DO AYCZYCH
Zarządzanie Projektami. Wykład 3 Techniki sieciowe (część 1)
Zarządzanie Projekami Wykład 3 Techniki sieciowe (część ) Przedsięwzięcie wieloczynnościowe Przedsięwzięcie wieloczynnościowe skończona liczba wzajemnie ze sobą powiązanych czynności (eapów). Powiązania
Sformułowanie Schrödingera mechaniki kwantowej. Fizyka II, lato
Sformułowanie Schrödingera mechaniki kwanowej Fizyka II, lao 018 1 Wprowadzenie Posać funkcji falowej dla fali de Broglie a, sin sin k 1 Jes o przypadek jednowymiarowy Posać a zosała określona meodą zgadywania.
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MACHANIKI BUDOWLI
POLIECHNIKA POZNAŃSKA INSYU KONSRUKCJI BUDOWLANYCH ZAKŁAD MACHANIKI BUDOWLI ĆWICZENIE PROJEKOWE NR 2 DYNAMIKA RAM WERSJA KOMPUEROWA Z PRZEDMIOU MECHANIKA KONSRUKCJI Wykonał: Kamil Sobczyński WBiIŚ; SUM;
Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni.
Część I. MECHANIKA Wykład.. KINEMATYKA PUNKTU MATERIALNEGO Ruch jednowymiarowy Ruch na płaszczyźnie i w przesrzeni 1 KINEMATYKA PUNKTU MATERIALNEGO KINEMATYKA zajmuje się opisem ruchu ciał bez rozparywania
więc powyższy warunek będzie zapisany jako dy dt
Meo maemaczne w echnologii maeriałów Krzszof Szszkiewicz Wprowadzenie DEFINICJA. Równaniem różniczkowm zwczajnm rzędu pierwszego nazwam równanie posaci gdzie f : f (, ), () U jes daną funkcją. Rozwiązaniem
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp
Kinematyka W Y K Ł A D I. Ruch jednowymiarowy. 2-1 Przemieszczenie, prędkość. x = x 2 - x x t
Wykład z fizyki. Pior Posmykiewicz W Y K Ł A D I Ruch jednowymiarowy Kinemayka Zaczniemy wykład z fizyki od badania przedmioów będących w ruchu. Dział fizyki, kóry zajmuje się badaniem ruchu ciał bez wnikania
4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ
4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów
8. PODSTAWY ANALIZY NIELINIOWEJ
8. PODSTAWY ANALIZY NIELINIOWEJ 1 8. 8. PODSTAWY ANALIZY NIELINIOWEJ 8.1. Wprowadzenie Zadania nieliniowe mają swoje zastosowanie na przykład w rozwiązywaniu cięgien. Przyczyny nieliniowości: 1) geometryczne:
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki
E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO
E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy
PROJEKT nr 1 Projekt spawanego węzła kratownicy. Sporządził: Andrzej Wölk
PROJEKT nr 1 Projek spawanego węzła kraownicy Sporządził: Andrzej Wölk Projek pojedynczego węzła spawnego kraownicy Siły: 1 = 10 3 = -10 Kąy: α = 5 o β = 75 o γ = 75 o Schema węzła kraownicy Dane: Grubość
Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz
Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia
DYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika
Dendrochronologia Tworzenie chronologii
Dendrochronologia Dendrochronologia jes nauką wykorzysującą słoje przyrosu rocznego drzew do określania wieku (daowania) obieków drewnianych (budynki, przedmioy). Analizy różnych paramerów słojów przyrosu
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków
3. Wykład Układy równań liniowych.
31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +
cx siła z jaką element tłumiący działa na to ciało.
Drgania układu o jedny sopniu swobody Rozparzy układ składający się z ciała o asie połączonego z nierucoy podłoże za poocą eleenu sprężysego o współczynniku szywności k oraz eleenu łuiącego o współczynniku
IMPLEMENTACJA WYBRANYCH METOD ANALIZY STANÓW NIEUSTALONYCH W ŚRODOWISKU MATHCAD
Pior Jankowski Akademia Morska w Gdyni IMPLEMENTACJA WYBRANYCH METOD ANALIZY STANÓW NIEUSTALONYCH W ŚRODOWISKU MATHCAD W arykule przedsawiono możliwości (oraz ograniczenia) środowiska Mahcad do analizy
WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH
SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
Postęp techniczny. Model lidera-naśladowcy. Dr hab. Joanna Siwińska-Gorzelak
Posęp echniczny. Model lidera-naśladowcy Dr hab. Joanna Siwińska-Gorzelak Założenia Rozparujemy dwa kraje; kraj 1 jes bardziej zaawansowany echnologicznie (lider); kraj 2 jes mniej zaawansowany i nie worzy
Metoda Różnic Skończonych (MRS)
Metoda Różnic Skończonych (MRS) METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek () Równania różniczkowe zwyczajne
dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW
Kaedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Sposoby usalania płac w gospodarce Jednym z głównych powodów, dla kórych na rynku pracy obserwujemy poziom bezrobocia wyższy
Prognozowanie średniego miesięcznego kursu kupna USD
Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska
Definicje i przykłady
Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest
PODSTAWY CHEMII KWANTOWEJ. Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoretycznej Zespół Chemii Kwantowej Grupa Teorii Reaktywności Chemicznej
PODSTWY CHEMII KWTOWEJ Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoreycznej Zespół Chemii Kwanowej Grupa Teorii Reakywności Chemicznej LITERTUR R. F. alewajski, Podsawy i meody chemii kwanowej:
Numeryczne rozwiązywanie równań różniczkowych ( )
Numeryczne rozwiązywanie równań różniczkowych Równanie różniczkowe jest to równanie, w którym występuje pochodna (czyli różniczka). Przykładem najprostszego równania różniczkowego może być: y ' = 2x które
Drgania elektromagnetyczne obwodu LCR
Ćwiczenie 61 Drgania elekromagneyczne obwodu LCR Cel ćwiczenia Obserwacja drgań łumionych i przebiegów aperiodycznych w obwodzie LCR. Pomiar i inerpreacja paramerów opisujących obserwowane przebiegi napięcia
oznacza przyrost argumentu (zmiennej niezależnej) x 3A82 (Definicja). Granicę (właściwą) ilorazu różnicowego funkcji f w punkcie x x x e x lim x lim
WYKŁAD 9 34 Pochodna nkcji w pnkcie Inerpreacja geomerczna pochodnej Własności pochodnch Twierdzenia Rolle a Lagrange a Cach ego Regla de lhôspiala Niech ( ) O( ) będzie nkcją określoną w pewnm ooczeni
Ćw. S-II.2 CHARAKTERYSTYKI SKOKOWE ELEMENTÓW AUTOMATYKI
Dr inż. Michał Chłędowski PODSAWY AUOMAYKI I ROBOYKI LABORAORIUM Ćw. S-II. CHARAKERYSYKI SKOKOWE ELEMENÓW AUOMAYKI Cel ćwiczenia Celem ćwiczenia jes zapoznanie się z pojęciem charakerysyki skokowej h(),
Badanie funktorów logicznych TTL - ćwiczenie 1
adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami
Związek między ruchem harmonicznym a ruchem jednostajnym po okręgu
Związek międz ruchem harmonicznm a ruchem jednosajnm po okręgu Rozważm rzu Q i R punku P na osie i : Q cos v r R sin R Q P δ Q cos ( δ ) R sin ( δ ) Jeżeli punk P porusza się ruchem jednosajnm po okręgu,
specyfikacji i estymacji modelu regresji progowej (ang. threshold regression).
4. Modele regresji progowej W badaniach empirycznych coraz większym zaineresowaniem cieszą się akie modele szeregów czasowych, kóre pozwalają na objaśnianie nieliniowych zależności między poszczególnymi
ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach
ROZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Kaowicach WYZNAZANIE PARAMETRÓW FUNKJI PEŁZANIA DREWNA W UJĘIU LOSOWYM * Kamil PAWLIK Poliechnika
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy
Podział metod przeszukiwania
Podział meod przeszukiwania Algorymy geneyczne - selekcja Algorymy geneyczne - krzyŝowanie Algorymy geneyczne - muacja Algorymy geneyczne - algorym działania Opymalizacja dla funkcji jednej zmiennej Opymalizacja
Lista nr Znaleźć rozwiązania ogólne następujących równań różniczkowych: a) y = y t,
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE B Lisa nr 1 1. Napisać równanie różniczkowe, jakie spełnia napięcie u = u() na okładkach kondensaora w obwodzie zawierającym połączone szeregowo oporność R i pojemność C,
Przemysław Klęsk. Słowa kluczowe: analiza składowych głównych, rozmaitości algebraiczne
Przemysław Klęsk O ALGORYTMIE PRINCIPAL MANIFOLDS OPARTYM NA PCA SŁUŻACYM DO ZNAJDOWANIA DZIEDZIN JAKO ROZMAITOŚCI ALGEBRAICZNYCH NA PODSTAWIE ZBIORU DANYCH, PROPOZYCJA MIAR JAKOŚCI ROZMAITOŚCI Sreszczenie
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
II.2 Położenie i prędkość cd. Wektory styczny i normalny do toru. II.3 Przyspieszenie
II. Położenie i prędkość cd. Wekory syczny i normalny do oru. II.3 Przyspieszenie Wersory cylindrycznego i sferycznego układu współrzędnych krzywoliniowych Wyrażenia na prędkość w układach cylindrycznym
METROLOGICZNE WŁASNOŚCI SYSTEMU BADAWCZEGO
PROBLEY NIEONWENCJONALNYCH ŁADÓW ŁOŻYSOWYCH Łódź, 4 maja 999 r. Jadwiga Janowska, Waldemar Oleksiuk Insyu ikromechaniki i Fooniki, Poliechnika Warszawska ETROLOGICZNE WŁASNOŚCI SYSTE BADAWCZEGO SŁOWA LCZOWE:
Modelowanie i obliczenia techniczne. Równania różniczkowe Numeryczne rozwiązywanie równań różniczkowych zwyczajnych
Moelowanie i obliczenia echniczne Równania różniczowe Numeryczne rozwiązywanie równań różniczowych zwyczajnych Przyła ułau ynamicznego E Uła ynamiczny R 0 Zachozi porzeba wyznaczenia: C u C () i() ur ir