M4. BADANIE DRGAŃ WAHADŁA PROSTEGO I DRGAŃ ZŁOŻONYCH

Podobne dokumenty
Stosując II zasadę dynamiki Newtona dla ruchu postępowego otrzymujemy

ĆWICZENIE 2. POMIAR NATĘŻENIA POLA GRAWITACYJNEGO W SIEDLCACH PRZY POMOCY MODELU WAHADŁA MATEMATYCZNEGO. Wprowadzenie

Związek między ruchem harmonicznym a ruchem jednostajnym po okręgu

WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO

Algebra WYKŁAD 9 ALGEBRA

ĆWICZENIE 2. BADANIE WAHADEŁ SPRZĘŻONYCH.

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA

LABORATORIUM FIZYKI I

ψ przedstawia zależność

Krzywe na płaszczyźnie.

Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

XXII OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne

WYDZIAŁ LABORATORIUM FIZYCZNE

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Ć W I C Z E N I E N R M-2

LABORATORIUM Z FIZYKI

Fizyka dla Informatyki Stosowanej

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Wykład FIZYKA I. 9. Ruch drgający swobodny. Dr hab. inż. Władysław Artur Woźniak

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ver b drgania harmoniczne

Wykład FIZYKA I. 9. Ruch drgający swobodny

Wyznaczanie przyspieszenia ziemskiego przy uŝyciu wahadła matematycznego

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO

LABORATORIUM PODSTAW OPTOELEKTRONIKI WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH I DYNAMICZNYCH TRANSOPTORA PC817

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut

drgania h armoniczne harmoniczne

Doświadczenie. Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła matematycznego. I. CZĘŚĆ TEORETYCZNA

Cechy szeregów czasowych

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Zajęcia 2. Estymacja i weryfikacja modelu ekonometrycznego

WYZNACZANIE OKRESU MAŁYCH I DUŻYCH WAHAŃ WAHADŁA FIZYCZNEGO

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni.

Prognozowanie i symulacje

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7

WYKŁAD FIZYKAIIIB 2000 Drgania tłumione

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx

Wygładzanie metodą średnich ruchomych w procesach stałych

Ruch falowy, ośrodek sprężysty

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)

DYNAMIKA KONSTRUKCJI

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):

Ć w i c z e n i e K 2 b

2. Obliczenie sił działających w huśtawce

Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

W-9 (Jaroszewicz) 15 slajdów. Równanie fali płaskiej parametry fali Równanie falowe prędkość propagacji, Składanie fal fale stojące

Funkcje wielu zmiennych

Ć w i c z e n i e K 2 a Wyznaczanie siły krytycznej pręta o przekroju prostokątnym posiadającego krzywiznę początkową.

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Laboratorium. Mechaniki Technicznej

Równania różniczkowe zwyczajne MAP 3014, 3062

RUCH HARMONICZNY. sin. (r.j.o) sin

więc powyższy warunek będzie zapisany jako dy dt

4.4. Obliczanie elementów grzejnych

Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego

BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym

Pomiary przyspieszenia ziemskiego.

Równania różniczkowe zwyczajne A

oznacza przyrost argumentu (zmiennej niezależnej) x 3A82 (Definicja). Granicę (właściwą) ilorazu różnicowego funkcji f w punkcie x x x e x lim x lim

I. KINEMATYKA I DYNAMIKA

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera.

Pobieranie próby. Rozkład χ 2

Wektory. P. F. Góra. rok akademicki

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

Przemieszczeniem ciała nazywamy zmianę jego położenia

Ćwiczenie 119. Tabela II. Część P19. Wyznaczanie okresu drgań masy zawieszonej na sprężynie. Nr wierzchołka

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

Człowiek najlepsza inwestycja FENIKS

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

RÓWNANIA RÓŻNICZKOWE WYKŁAD 13

Opracowanie wyników pomiarowych. Ireneusz Mańkowski

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

Temat VIII. Drgania harmoniczne

Analiza szeregów czasowych uwagi dodatkowe

Ćwiczenie 361 Badanie układu dwóch soczewek

Rys.1. Podstawowa klasyfikacja sygnałów

cx siła z jaką element tłumiący działa na to ciało.

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Metody Lagrange a i Hamiltona w Mechanice

- obliczyć względne procentowe odchylenie otrzymanej wartości od wartości tablicowej:

METODY KOMPUTEROWE 10

Zginanie belek o przekroju prostokątnym i dwuteowym naprężenia normalne i styczne, projektowanie 8

lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów

Wykład Analiza jakościowa równań różniczkowych

Badania zginanych belek

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA

PF11- Dynamika bryły sztywnej.

Konspekty wykładów z ekonometrii

Fizyka 11. Janusz Andrzejewski

Sygnały zmienne w czasie

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Transkrypt:

M4. BADANIE DRGAŃ WAHADŁA PROSTEGO I DRGAŃ ZŁOŻONYCH eks opracowała: Bożena Janowska-Dmoch Gd wpadkowa siła działająca na ciało jes w każdej chwii skierowana do położenia równowai, zn. chce zawrócić ciało do eo położenia, a jej warość jes proporcjonana do wchenia z położenia równowai, o ciało wkonwać będzie oscacje wokół eo położenia z częsością opisane równaniem różniczkowm, zwanm równaniem oscaora harmoniczneo d, d dzie zmienna reprezenuje wchenie ciała. Ce Ceem pomiarów jes: zbadanie drań wahadła proseo i sprawdzenie cz okres drań zaeż od mas ciała; wznaczenie warości przspieszenia rawiacjneo; składanie drań harmonicznch. Wmaania Zasad dnamiki Newona, równanie ruchu oscaora harmoniczneo, paramer opisujące ruch drając: wchenie, ampiuda, częsość, faza, przesunięcie fazowe prędkość i przspieszenie. Eneria całkowia, poencjana i kineczna w ruchu drającm, przemian enerii. Wahadło maemaczne. Składanie drań. Lieraura R. Resnick, D. Haida, Fizka, om I, PWN C. Kie, W.D. Knih, M.A.Ruderman, Mechanika, Kurs berkeejowski om I, PWN D. Haida, R. Resnick, J. Waker, Podsaw fizki, om II, PWN A. Piekara, Mechanika oóna, PWN Opis przrządu Badanie drań mechanicznch prosch i złożonch Wahadło maemaczne: Do ścian pracowni jes zamocowan pionow prę, do kóreo dokręca się wmiennie pojedncz zaciskacz nici, ewenuanie dłui prę z dwoma zaciskami. Zaciskacz pojedncz służ do badania ruchu wahadła proseo, a podwójn do składania drań. Zasosowanie zaciskacz pozwaa na zmian dłuości wahadeł. Do ziczania wahań służ układ złożon z fookomórki i icznika impusów. widok z boku

Wahadło złożone: Do pręa mocuje się dłui uchw z dwoma zaciskami, w kórch unieruchamia się nici zaczepione do kui z wdrążonm oworem. Po wpełnieniu wdrążenia kui proszkiem spiąc się z oworu, w czasie ruchu wahadła, proszek worz śad na płaszczźnie poziomej. Składanie drań eekrcznch widok z przodu Układ eekrczn składa się z ransformaora siecioweo, eneraora o reuowanej częsoiwości i oscoskopu. Oscoskop pracuje w rbie XY. Snał z ransformaora siecioweo jes podan np. do wzmacniacza odchania pionoweo (osi Y) oscoskopu, a wed snał z eneraora do wzmacniacza odchania poziomeo (osi X). Częsoiwość snału może bć, w szerokim zakresie, reuowana w sposób ciął, co pozwaa na dobranie odpowiednich sosunków częsoiwości obu snałów i obserwację krzwch Lissajousa. Wprowadzenie wzoru Wahadło prose Gd kukę o masie m zawieszoną na nierozciąiwej nici wchim z położenia równowai o niewieki ką, o będą na nią działał dwie sił: siła rawiacji F, czi przciąanie przez kuę ziemską, oraz siła reakcji F R na nacią nici. Wzędem punku zamocowania na masę m działa wpadkow momen sił równ r F r F r m m sin k R dzie r jes wekorem poprowadzonm od osi obrou do mas m, jeo dłuość jes równa r, zaś k jes wersorem osi z. Zauważm, że momen sił reakcji na nacią znika, bo r. F R Zodnie z druą zasadą dnamiki ruchu obrooweo momen sił nada masie m przspieszenie kąowe m sin k, I I dzie I jes momenem bezwładności kuki. Gd rozmiar kuki są bardzo małe, o rozkład mas wzędem osi obrou można zaniedbać i momen bezwładności jes równ I m. F R m F

3 Ruch kuki opisan jes równaniem Da małch wcheń, d d d sin zapiszem sin d d Jes o równanie oscaora harmoniczneo opisujące zmian kąa wchenia wahadła zachodzące periodcznie w czasie z jedną częsością a ponieważ, o okres drań wahadła zapiszem T T. Okres drań wahadła proseo jes proporcjonan do pierwiaska z dłuości wahadła, a nie zaeż ani od mas wahadła, ani od ampiud drań. Znajomość okresu drań i dłuości wahadła pozwaa wznaczć przspieszenie ziemskie ze wzoru 4. T Wahadło złożone Układ nici w kszałcie ier Y z zaczepioną do nich masą m może bć rakowan jako dwa wahadła o dłuościach i (parz rsunek). Gd kuka zosanie wchona pod kąem 45 zarówno do płaszczzn z, jak i do płaszczzn z, o wahadło o dłuości wahać się będzie równoee do osi (w płaszczźnie prosopadłej do płaszczzn wznaczonej przez nici) z częsością, a wahadło o dłuości równoee do osi z częsością (w płaszczźnie ier Y). Ruch kuki jes sumą dwóch niezaeżnch, prosopadłch do siebie drań cos, cos z m

4 dzie przesunięcia fazowe obu drań są równe zero, czi. Równania powższe są równaniami paramercznmi krzwej, kórą zakreśi masa m w czasie. Krzwa a nosi nazwę krzwej Lissajousa. Rozważm kika szczeónch przpadków. Gd, o położenie począkowe cos cos cos. Ponieważ zbiór arumenów jes oraniczon,, o na płaszczźnie masa m zakreśi odcinek inii prosej nachonej pod kąem do osi akim, że. Gd, o 4 cos cos cos. cos Ponieważ zbiór arumenów jes oraniczon, o na płaszczźnie masa m zakreśi framen paraboi. Gd 3 3, o 9 3 cos3 4cos 3cos cos cos 3 4 3. 3 Ponieważ zbiór arumenów jes oraniczon, o na płaszczźnie masa m zakreśi framen 3 krzwej rzecieo sopnia o miejscach zerowch oraz. położenie począkowe położenie począkowe

5 Da dowoneo sosunku częsości krzwą zakreśaną przez masę m na płaszczźnie można znaeźć meodą raficzną (parz A. Piekara, Mechanika oóna, rozdz., 3). Wkonanie ćwiczenia Wniki wszskich pomiarów muszą bć zapisane w sprawozdaniu, oparzone odpowiednimi jednoskami i podpisane przez assena.. Wahadło prose a) Do pręa w ścianie pracowni mocujem pojedncz ściskacz nici. b) W kierunku prosopadłm do ścian usawiam układ oświeacza i fookomórki. c) Położenie ściskacza reuujem ak, b da odmierzonej dłuości wahadła, kuka zaczepiona do druieo końca nici, zasłoniła świało aarki skierowane na fookomórkę (parz rsunek na sronie ). Dłuość nici powinna bć większa niż,5 m. d) Wcham wahadło z położenia równowai, prz czm ką wchenia nie powinien przekraczać 5. Naeż zwrócić uwaę na o, b płaszczzna drań wahadła bła równoeła do ścian. e) Uruchamiam icznik naciskając kawisze + i jednocześnie. f) Soperem mierzm kikakronie czas pełnch wahnięć wahadła. ) Pomiar wkonujem da co najmniej rzech dłuości wahadła. h) Powarzam ck pomiarów zaczepiając na końcu wahadła różne kuki. Propozcja zapisu wników: Rodzaj kuki:... 3 [jednoska] =... dzie jes błędem ssemacznm wnikającm z dokładności przrządu.. Drania złożone Drania złożone mechaniczne a) Wmieniam pojedncz ściskacz na prę z dwoma zaciskami. b) Reuując nici kui zaoparzonej w owór dobieram odpowiednie dłuości wahadeł i b orzmać żądaną krzwą Lissajousa. c) Zakam owór w kui pacem i napełniam wdrążenie proszkiem. Kuę wcham o niewieki ką, ak b znaazła się w płaszczźnie wchonej pod kąem 45 do płaszczzn wznaczonej przez nici w sanie równowai. d) Na karce umieszczonej pod wahadłem rejesrujem śad pozosawione przez proszek w czasie jedneo pełneo drania. Ścieżki pozosawione przez proszek urwaam

6 zaznaczając w pewnch odsępach piórem ub dłuopisem ich śad na karce po czm proszek zspujem do pojemnika. e) Rejesrację wkonujem da kiku sosunków częsości drań. Drania złożone eekrczne Sprawdzam usawienia wsępne: zakres 3V 5V na zasiaczu sieciowm V 5Hz; rb prac XY na oscoskopie; napięcie wejściowe 3V na eneraorze dekadowm. Po włączeniu zasiania przez assena na eneraorze dekadowm usawiam akie częsoiwości snału, b na ekranie oscoskopu orzmać obraz żądanch krzwch Lissajousa. Pokręło dosrojenie pozwaa na sabiizację obrazu na ekranie. Opracowanie wników a) Da każdej kuki i da każdej dłuości wahadła obiczam warości średnie okresu drań. Błęd obiczam uwzędniając niepewność osową i ssemaczną. b) Na papierze miimerowm sporządzam wkres funkcji, odkładając kwadra średnich okresów drań na osi poziomej, a dłuości wahadeł pomnożone przez 4 na osi pionowej. Zaznaczam również przedział błędów T oraz 4.(Wkres można sporządzić wkorzsując proram kompuerowe). c) Meodą najmniejszch kwadraów (reresji iniowej) wznaczam współcznnik A (A = ) nachenia prosej najepiej dopasowanej do punków pomiarowch (B = ). Nanosim ę prosą na wkres. Wznaczam również błąd A (A = ). d) We wnioskach spróbujm ocenić cz wniki pomiarów powierdzają niezaeżność okresu drań od mas wahadła; cz wniki pomiarów powierdzają iniową zaeżność kwadrau okresu drań od dłuości wahadła; cz orzmana warość przspieszenia ziemskieo jes zodna w ranicach błędów doświadczanch z warością abicową; cz kszał obserwowanch krzwch Lissajousa, orzmane ze złożenia drań mechanicznch o okreśonm sosunku częsości, pokrwają się z krzwmi orzmanmi ze złożenia drań eekrcznch.