Ćwiczenie 361 Badanie układu dwóch soczewek
|
|
- Bronisław Pawłowski
- 9 lat temu
- Przeglądów:
Transkrypt
1 Nazwisko... Data... Wdział... Imię... Dzień tg.... Godzina... Ćwiczenie 36 Badanie układu dwóch soczewek Wznaczenie ogniskowch soczewek metodą Bessela Odległość przedmiotu od ekranu (60 cm 0 cm) l Soczewka Obraz powiększon Odległość przedmiotu od soczewki obraz:.. Obraz pomniejszon Odległość przedmiotu od soczewki obraz:... d d d Ogniskowa l d Δ - dokładność = Δ = = Δ = Wznaczenie położenia obrazu w układzie dwóch soczewek A. Soczewki rozstawione na odległość Odległość przedmiotu od soczewki (5 cm 35 cm) Odległość międz soczewkami (40 cm 55 cm) Odległość obrazu od soczewki obraz:.. B. Soczewki blisko siebie Odległość obrazu od soczewki obraz:.. s wartość zmierzona wartość zmierzona wartość obliczona s Δ - dokładność = Δ = wartość obliczona Δ - dokładność = Δ =
2 Wstęp teoretczn Soczewki serczne ograniczone są dwiema kulistmi powierzchniami, które mogą bć wklęsłe lub wpukłe. Światło przechodząc z powietrza do szkła (jeśli soczewka jest wkonana ze szkła), a następnie ze szkła do powietrza, załamuje się na obu granicach ośrodków. Kierunek tego załamania zależ od ośrodka z którego światło wchodzi i do którego wchodzi (a dokładniej zależ od stosunku współcznnika załamania ośrodka, z którego światło wchodzi do współcznnika załamania ośrodka, do którego światło wchodzi). Jeżeli prostą prostopadłą do powierzchni soczewki nazwiem normalną, to światło przechodząc z powietrza do szkła załamie się w kierunku normalnej, a przechodząc ze szkła do powietrza załamie się od normalnej. Kierunek załamania światła zależ też od kształtu granic ośrodków. Np. światło przechodząc z powietrza do szkła przez wklęsłą powierzchnię soczewki załamie się w kierunku przeciwnm do głównej osi optcznej soczewki (rs.), a przechodząc przez wpukłą powierzchnię załamie się w kierunku głównej osi optcznej. Normalna Promień świetln Główna oś optczna Powierzchnia wklęsła soczewki Powierzchnia wpukła soczewki W eekcie, w zależności od kształtu dostajem soczewki skupiające lub rozpraszające. W soczewce skupiającej wszstkie promienie padające na powierzchnię soczewki równolegle do głównej osi optcznej, po wjściu z soczewki przechodzą przez jeden punkt nazwan ogniskiem F (rs.). W soczewce rozpraszającej promienie padające równolegle, po wjściu z soczewki nie przecinają się. Natomiast przecinają się przedłużenia promieni wchodzącch z soczewki, w punkcie nazwanm ogniskiem pozornm. Odległość ogniska od soczewki nazwam ogniskową. Ogniskowa soczewki rozpraszającej ma wartość ujemną (<0). W okulistce użwa się również pojęcia dioptrii. Jest to jednostka zdolności skupiającej, która jest odwrotnością ogniskowej. Jednostka m nazwana jest dioptrią. Jeżeli po jednej stronie soczewki umieścim przedmiot, to w pewnej określonej odległości od soczewki powstanie ostr obraz tego przedmiotu. Obraz może bć rzeczwist lub pozorn. Obraz rzeczwist powstaje po drugiej stronie soczewki niż przedmiot, i można go zobaczć na ekranie. Obraz pozorn powstaje z przedłużenia promieni wchodzącch z soczewki, po tej samej stronie soczewki co przedmiot. Dlatego obrazu pozornego nie możem
3 zobaczć na ekranie. Soczewki rozpraszające dają tlko obraz pozorne. Soczewki skupiające dają obraz pozorne tlko wted, gd przedmiot jest bardzo blisko soczewki, np. tak jak wted gd patrzm przez lupę (w odległości mniejszej niż ogniskowa). W pozostałch stuacjach, soczewki skupiające dają obraz rzeczwiste. Obraz może bć prost lub odwrócon. Soczewki rozpraszające dają tlko proste obraz. Soczewki skupiające dają proste obraz tlko wted, gd przedmiot umieszczon jest bardzo blisko soczewki (w odległości mniejszej niż ogniskowa). W pozostałch przpadkach obraz są odwrócone. Obraz może bć powiększon lub pomniejszon w porównaniu z przedmiotem. Soczewki rozpraszające zawsze pomniejszają. W soczewkach skupiającch zależ to od odległości soczewki od przedmiotu. Soczewka skupiająca pomniejsza, gd przedmiot jest daleko od soczewki (w odległości większej niż podwójna ogniskowa). Gd przedmiot znajduje się w odległości mniejszej niż podwójna ogniskowa, obraz jest powiększon. Gd przedmiot znajduje się w odległości równej podwójnej ogniskowej obraz jest tej samej wielkości co przedmiot, a w odległości równej ogniskowej obraz w ogóle nie powstaje. Ogniskową soczewki możem obliczć z prostego wzoru soczewkowego: mierząc odległość przedmiotu od soczewki i odległość ostrego obrazu od soczewki. W ćwiczeniu posłużm się jednak dokładniejszą metodą Bessela. W metodzie tej ustalam stałą odległość przedmiotu od ekranu l, a następnie ustawiam soczewkę tak, ab na ekranie uzskać najpierw ostr obraz powiększon, a potem obraz pomniejszon. W obu przpadkach odcztujem odległości soczewki od przedmiotu i i obliczam różnicę położeń soczewki d. Wzór soczewkow dla obrazu powiększonego oraz dla obrazu pomniejszonego ma postać : oraz,prz czm = oraz =. Stąd uzskujem :. Następnie z zależności l określam : l, a z d l określam l d. Stąd : l d l d l. Podstawiam wzor do równania :. l d l d l d Ostatecznie uzskujem wzór na ogniskową : l d. Soczewki skupiające i rozpraszające można zestawiać w układ. Układ takie mają szerokie zastosowanie praktczne, np. w okulistce. Soczewka okularów z soczewką oka tworzą układ o ogniskowej odpowiedniej do ostrego widzenia bliskich lub dalekich przedmiotów. Położenie ostrego obrazu w układzie dwóch soczewek możem obliczć
4 korzstając ze wzoru soczewkowego. Dla pierwszej i drugiej soczewki wzór soczewkow wgląda następująco : i. Po przekształceniu dostaniem : oraz. Ze wzoru dla pierwszej soczewki możem wprowadzić :. W układzie soczewek obraz otrzmwan z pierwszej soczewki staje się przedmiotem dla drugiej soczewki. Dlatego odległość międz soczewkami możem wrazić jako s, stąd : s s. Po podstawieniu do wzoru dla drugiej soczewki dostajem :. s Gd soczewki ustawim bardzo blisko siebie, możem zastosować wzór dla układu soczewek:. Jeżeli zastosujem wzór soczewkow dla całego układu : u, z połączenia obu równań uzskam :. u Stąd : Wkonanie ćwiczenia. Na ławie optcznej umieszczone jest źródło światła, przedmiot (płtka z wciętm otworem) oraz ekran. Ustaw odległość l międz przedmiotem a ekranem w zakresie 60 0 cm i wpisz ją do tabeli pomiarowej.. Obejrzj soczewkę i. W jaki sposób można ustalić, cz są to soczewki skupiające cz rozpraszające? 3. Umieść na ławie soczewkę i przesuwając nią znajdź ostr, powiększon obraz. Odcztaj odległość przedmiotu od soczewki. Cz obraz jest prost cz odwrócon? Zapisz obserwację w tabeli pomiarowej. 4. Znajdź ostr, pomniejszon obraz. Odcztaj odległość przedmiotu od soczewki. Cz obraz jest prost, cz odwrócon? Zapisz obserwację w tabeli pomiarowej. 5. Zdejmij z ław soczewkę i wkonaj takie same pomiar z soczewką. 6. Oblicz ogniskowe obu soczewek. Porównaj je z abrcznmi wartościami zdolności zbierającch podanmi na soczewkach (oblicz ogniskową na podstawie zdolności zbierającej, wartość zmierzona metodą Bessela nie powinna różnić się więcej niż cm od wartości abrcznej). 7. Umieść na ławie obie soczewki. Zachowaj kolejność soczewek (od lewej stron: przedmiot, soczewka, soczewka, ekran). Ustaw odległość międz przedmiotem a soczewką w zakresie 5 35 cm, oraz odległość s międz soczewką a soczewką w zakresie cm. Zapisz te odległości w tabeli pomiarowej.
5 8. Przesuwając ekran spróbuj znaleźć najostrzejsz obraz i zanotuj jego odległość od soczewki. Cz obraz jest prost cz odwrócon? Cz obraz jest powiększon cz pomniejszon? Zapisz obserwację w tabeli pomiarowej. 9. Oblicz odległość obrazu od soczewki. 0. Dostaw soczewkę do soczewki (nie zmieniam położenia soczewki ). Przesuwając ekran (soczewek nie ruszam) znajdź nowe położenie ostrego obrazu i zanotuj odległość ekranu od soczewki. Cz obraz jest prost cz odwrócon? Cz obraz jest powiększon cz pomniejszon? Zapisz obserwację w tabeli pomiarowej.. Oblicz odległość obrazu od soczewki. Rachunek błędu: W ćwiczeniu wkonujem jeden rodzaj pomiarów: mierzm odległości za pomocą linijki z podziałką milimetrową. Odczt położenia wkonujem z ograniczoną dokładnością, zatem wniki końcowe jakie otrzmujem, czli wartości ogniskowch i obliczane odległości obrazu od soczewki, również mają pewną niedokładność. Do przbliżonego oszacowania dokładności metod pomiarowej stosujem następujące wzor: ( l d) - dla wznaczenia obu ogniskowch: l, gdzie Δl to dokładność odcztu odległości przedmiotu od ekranu, można przjąć Δl=0,5 cm; - dla obliczenia wartości odległości obrazu od soczewki: ( ), gdzie Δ i to obliczone dokładności wznaczenia ogniskowch, a Δ to dokładność odcztu odległości przedmiotu od soczewki, można przjąć Δ =0,5 cm. Wzór ten stosujem zarówno dla soczewek rozstawionch, jak i soczewek zsuniętch. Wartości obliczonch dokładności wpisujem w odpowiednich miejscach tabeli, zaokrąglone do gór do pierwszej cr znaczącej. Ptania do dskusji:. W jaki sposób można ustalić, cz soczewka jest skupiająca cz rozpraszająca?. W układzie dwóch soczewek, w zależności od odległości pomiędz soczewkami, można uzskać zarówno obraz proste jak i odwrócone. Dlaczego? 3. Cz zmierzona i obliczona odległość obrazu od soczewki w układzie rozstawionch soczewek jest podobna cz różna? Uzasadnij wkorzstując obliczoną w rachunku błędu dokładność metod pomiarowej Δ. 4. Cz zmierzona i obliczona odległość obrazu od soczewki w układzie zsuniętch soczewek jest podobna cz różna? Uzasadnij wkorzstując obliczoną w rachunku błędu dokładność metod pomiarowej Δ. 5. Czm układ dwóch soczewek zastosowan w ćwiczeniu różni się od lunet Keplera?
Doświadczalne wyznaczanie ogniskowej cienkiej soczewki skupiającej
Doświadczalne wyznaczanie ogniskowej cienkiej skupiającej Wprowadzenie Soczewka ciało przezroczyste dla światła ograniczone zazwyczaj dwiema powierzchniami kulistymi lub jedną kulistą i jedną płaską 1.
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone
Pomiar ogniskowych soczewek metodą Bessela
Ćwiczenie O4 Pomiar ogniskowych soczewek metodą Bessela O4.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie ogniskowych soczewek skupiających oraz rozpraszających z zastosowaniem o metody Bessela. O4.2.
Optyka 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Optka Projekt współinansowan przez Unię Europejską w ramach Europejskiego Funuszu Społecznego Optka II Promień świetln paając na powierzchnię zwierciała obija się zgonie z prawem obicia omówionm w poprzeniej
LABORATORIUM OPTYKI GEOMETRYCZNEJ
LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR OGNISKOWYCH SOCZEWEK CIENKICH 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania ogniskowych soczewek cienkich. 2. Zakres wymaganych zagadnieo: Prawa odbicia
Ć W I C Z E N I E N R O-3
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-3 WYZNACZANIE OGNISKOWYCH SOCZEWEK ZA POMOCĄ METODY BESSELA I.
Materiały pomocnicze 14 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 4 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej. Zwierciadło płaskie. Zwierciadło płaskie jest najprostszym przyrządem optycznym. Jest to wypolerowana płaska powierzchnia
OPTYKA GEOMETRYCZNA Własności układu soczewek
OPTYKA GEOMETRYCZNA Własności układu soczewek opracował: Dariusz Wardecki Wstęp Soczewką optyczną nazywamy bryłę z przezroczystego materiału, ograniczoną (przynajmniej z jednej strony) zakrzywioną powierzchnią
Państwowa Wyższa Szkoła Zawodowa w Kaliszu
Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 6 Wyznaczanie ogniskowych soczewek ze wzoru soczewkowego i metodą Bessela Kalisz, luty 2005 r. Opracował: Ryszard
35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2
Włodzimierz Wolczyński Załamanie światła 35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2 ZAŁAMANIE ŚWIATŁA. SOCZEWKI sin sin Gdy v 1 > v 2, więc gdy n 2 >n 1, czyli gdy światło wchodzi do ośrodka gęstszego optycznie,
Zadania do rozdziału 10.
Zadania do rozdziału 0. Zad.0.. Jaką wsokość musi mieć pionowe zwierciadło ab osoba o wzroście.80 m mogła się w nim zobaczć cała. Załóżm, że ocz znajdują się 0 cm poniżej czubka głow. Ab prawidłowo rozwiązać
POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK
ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Cel ćwiczenia: 1. Poznanie zasad optyki geometrycznej, zasad powstawania i konstrukcji obrazów w soczewkach cienkich. 2. Wyznaczanie odległości ogniskowych
SCENARIUSZ LEKCJI Z WYKORZYSTANIEM TIK
SCENARIUSZ LEKCJI Z WYKORZYSTANIEM TIK Temat: Soczewki. Zdolność skupiająca soczewki. Prowadzący: Karolina Górska Czas: 45min Wymagania szczegółowe podstawy programowej (cytat): 7.5) opisuje (jakościowo)
POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza
ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Instrukcja wykonawcza 1. Wykaz przyrządów Ława optyczna z podziałką, oświetlacz z zasilaczem i płytka z wyciętym wzorkiem, ekran Komplet soczewek z oprawkami
Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.
Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,
Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.
Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować
WYZNACZANIE OGNISKOWYCH SOCZEWEK
WYZNACZANIE OGNISKOWYCH SOCZEWEK Cel ćwiczenia:. Wyznaczenie ogniskowej cienkiej soczewki skupiającej.. Wyznaczenie ogniskowej cienkiej soczewki rozpraszającej (za pomocą wcześniej wyznaczonej ogniskowej
Ćwiczenie 53. Soczewki
Ćwiczenie 53. Soczewki Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej.
Załamanie na granicy ośrodków
Załamanie na granicy ośrodków Gdy światło napotyka na granice dwóch ośrodków przezroczystych ulega załamaniu tak jak jest to przedstawione na rysunku obok. Dla każdego ośrodka przezroczystego istnieje
+OPTYKA 3.stacjapogody.waw.pl K.M.
Zwierciadło płaskie, prawo odbicia. +OPTYKA.stacjapogody.waw.pl K.M. Promień padający, odbity i normalna leżą w jednej płaszczyźnie, prostopadłej do płaszczyzny zwierciadła Obszar widzialności punktu w
Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej Wstęp Jednym z najprostszych urządzeń optycznych
Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych.
msg O 7 - - Temat: Badanie soczewek, wyznaczanie odległości ogniskowej. Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów
Dodatek 1. C f. A x. h 1 ( 2) y h x. powrót. xyf
B Dodatek C f h A x D y E G h Z podobieństwa trójkątów ABD i DEG wynika z h x a z trójkątów DC i EG ' ' h h y ' ' to P ( ) h h h y f to ( 2) y h x y x y f ( ) i ( 2) otrzymamy to yf xy xf f f y f h f yf
Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela.
Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. I LO im. Stefana Żeromskiego w Lęborku 20 luty 2012 Stolik optyczny
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki
Nazwisko i imię: Zespół: Data: Ćwiczenie nr : Soczewki Cel ćwiczenia: Wyznaczenie ogniskowych soczewki skupiającej i układu soczewek (skupiającej i rozpraszającej) oraz ogniskowej soczewki rozpraszającej
Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:
Fale świetlne Światło jest falą elektromagnetyczną, czyli rozchodzącymi się w przestrzeni zmiennymi i wzajemnie przenikającymi się polami: elektrycznym i magnetycznym. Szybkość światła w próżni jest największa
SCENARIUSZ LEKCJI Temat lekcji: Soczewki i obrazy otrzymywane w soczewkach
Scenariusz lekcji : Soczewki i obrazy otrzymywane w soczewkach Autorski konspekt lekcyjny Słowa kluczowe: soczewki, obrazy Joachim Hurek, Publiczne Liceum Ogólnokształcące z Oddziałami Dwujęzycznymi w
f = -50 cm ma zdolność skupiającą
19. KIAKOPIA 1. Wstęp W oku miarowym wymiary struktur oka, ich wzajemne odległości, promienie krzywizn powierzchni załamujących światło oraz wartości współczynników załamania ośrodków, przez które światło
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2. ZAŁAMANIE ŚWIATŁA. SOCZEWKI
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2. ZAŁAMANIE ŚWIATŁA. SOCZEWKI Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie
Katedra Fizyki i Biofizyki UWM, Instrukcje do ćwiczeń laboratoryjnych z biofizyki. Maciej Pyrka wrzesień 2013
M Wyznaczanie zdolności skupiającej soczewek za pomocą ławy optycznej. Model oka. Zagadnienia. Podstawy optyki geometrycznej: Falowa teoria światła. Zjawisko załamania i odbicia światła. Prawa rządzące
Optyka. Wykład X Krzysztof Golec-Biernat. Zwierciadła i soczewki. Uniwersytet Rzeszowski, 20 grudnia 2017
Optyka Wykład X Krzysztof Golec-Biernat Zwierciadła i soczewki Uniwersytet Rzeszowski, 20 grudnia 2017 Wykład X Krzysztof Golec-Biernat Optyka 1 / 20 Plan Tworzenie obrazów przez zwierciadła Równanie zwierciadła
Ćw. nr 41. Wyznaczanie ogniskowych soczewek za pomocą wzoru soczewkowego
1 z 7 JM-test-MathJax Ćw. nr 41. Wyznaczanie ogniskowych soczewek za pomocą wzoru soczewkowego Korekta 24.03.2014 w Błąd maksymalny (poprawione formuły na niepewności maksymalne dla wzorów 41.1 i 41.11)
Scenariusz lekcji Zwierciadła i obrazy w zwierciadłach
Scenariusz lekcji. Temat lekcji: Zwierciadła i obraz w zwierciadłach 2. Cele: a) Cele poznawcze: Uczeń wie: - co to jest promień świetln, - Ŝe światło rozchodzi się prostoliniowo, - na czm polega zjawisko
Optyka 2012/13 powtórzenie
strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Słońce w ciągu dnia przemieszcza się na niebie ze wschodu na zachód. W którym kierunku obraca się Ziemia? Zadanie 2. Na rysunku przedstawiono
Badamy jak światło przechodzi przez soczewkę - obrazy. tworzone przez soczewki.
1 Badamy jak światło przechodzi przez soczewkę - obrazy tworzone przez soczewki. Czas trwania zajęć: 2h Określenie wiedzy i umiejętności wymaganej u uczniów przed przystąpieniem do realizacji zajęć: Uczeń:
Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R 1 i R 2.
Optyka geometryczna dla soczewek Autorzy: Zbigniew Kąkol, Piotr Morawski Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R i R 2. Nasze rozważania własności
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Raał Kasztelanic Wykład 4 Obliczenia dla zwierciadeł Równanie zwierciadła 1 1 2 1 s s r s s 2 Obliczenia dla zwierciadeł
TABELA INFORMACYJNA Imię i nazwisko autora opracowania wyników: Klasa: Ocena: Numery w dzienniku
TABELA INFORMACYJNA Imię i nazwisko autora opracowania wyników: Klasa: Ocena: Numery w dzienniku Imiona i nazwiska pozostałych członków grupy: Data: PRZYGOTOWANIE I UMIEJĘTNOŚCI WEJŚCIOWE: Należy posiadać
POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK CIENKICH
Ćwiczenie 77 E. Idczak POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK CIENKICH Cel ćwiczenia: zapoznanie się z procesem wytwarzania obrazów przez soczewki cienkie oraz z metodami wyznaczania odległości ogniskowych
LABORATORIUM Z FIZYKI
Projekt Plan rozwoj Politechniki Częstochowskiej współinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Nmer Projekt: POKL.04.0.0-00-59/08 INSTYTUT FIZYKI WYDZIAŁINśYNIERII
Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła
Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1
POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak
POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło
- pozorny, czyli został utworzony przez przedłużenia promieni świetlnych.
Zjawisko odbicia Zgodnie z zasadą Fermata światło zawsze wybiera taką drogę między dwoma punktami, aby czas potrzebny na jej przebycie był najkrótszy (dla ścisłości: lub najdłuższy). Konsekwencją tego
Różne sposoby widzenia świata materiał dla ucznia, wersja z instrukcją
CZĘŚĆ A CZŁOWIEK Pytania badawcze: Różne sposoby widzenia świata materiał dla ucznia, wersja z instrukcją Czy obraz świata jaki rejestrujemy naszym okiem jest zgodny z rzeczywistością? Jaki obraz otoczenia
Zasady konstrukcji obrazu z zastosowaniem płaszczyzn głównych
Moc optyczna (właściwa) układu soczewek Płaszczyzny główne układu soczewek: - płaszczyzna główna przedmiotowa - płaszczyzna główna obrazowa Punkty kardynalne: - ognisko przedmiotowe i obrazowe - punkty
OPTYKA W INSTRUMENTACH GEODEZYJNYCH
OPTYKA W INSTRUMENTACH GEODEZYJNYCH Prawa Euklidesa: 1. Promień padający i odbity znajdują się w jednej płaszczyźnie przechodzącej przez prostopadłą wystawioną do powierzchni zwierciadła w punkcie odbicia.
Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO
Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki Specjalność: Fizyka Medyczna WYZNAZANIE MAIERZY [ABD] UKŁADU OPTYZNEGO Zadanie II Zakład Optoelektroniki
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 7 Temat: Pomiar kąta załamania i kąta odbicia światła. Sposoby korekcji wad wzroku. 1. Wprowadzenie Zestaw ćwiczeniowy został
Człowiek najlepsza inwestycja FENIKS
FENIKS - długoalowy program odbudowy, popularyzacji i wsagania izyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i inormatycznych uczniów Pracownia Fizyczna
Optyka. Matura Matura Zadanie 24. Soczewka (10 pkt) 24.1 (3 pkt) 24.2 (4 pkt) 24.3 (3 pkt)
Matura 2006 Zadanie 24. Soczewka (10 pkt) Optyka W pracowni szkolnej za pomocą cienkiej szklanej soczewki dwuwypukłej o jednakowych promieniach krzywizny, zamontowanej na ławie optycznej, uzyskiwano obrazy
Wykład XI. Optyka geometryczna
Wykład XI Optyka geometryczna Jak widzimy? Aby przedmiot był widoczny, musi wysyłać światło w wielu kierunkach. Na podstawie światła zebranego przez oko mózg lokalizuje położenie obiektu. Niekiedy promienie
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 33 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1. ZWIERCIADŁA
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 33 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1. ZWIERCIADŁA Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU
Sposób wykonania ćwiczenia. Płytka płasko-równoległa. Rys. 1. Wyznaczanie współczynnika załamania materiału płytki : A,B,C,D punkty wbicia szpilek ; s
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Cel ćwiczenia: 1. Zapoznanie z budową i zasadą działania mikroskopu optycznego.. Wyznaczenie współczynnika załamania światła
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 3 Pryzmat Pryzmaty w aparatach fotograficznych en.wikipedia.org/wiki/pentaprism luminous-landscape.com/understanding-viewfinders
Soczewki konstrukcja obrazu. Krótkowzroczność i dalekowzroczność.
Soczewki konstrukcja obrazu Krótkowzroczność i dalekowzroczność. SOCZEWKA jest to przezroczyste ciało ograniczone powierzchniami kulistymi Soczewki mogą być Wypukłe Wklęsłe i są najczęściej skupiające
Ćwiczenie 362. Wyznaczanie ogniskowej soczewek metodą Bessela i pomiar promieni krzywizny za pomocą sferometru. Odległość przedmiotu od ekranu, [m] l
Nazwisko Data Nr na liśie Imię Wydział Ćwizenie 36 Dzień tyg Godzina Wyznazanie ogniskowej sozewek metodą Bessela i pomiar promieni krzywizny za pomoą serometr I Wyznazanie ogniskowej sozewki skpiająej
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Cel ćwiczenia: 1. Zapoznanie z budową i zasadą działania mikroskopu optycznego. 2. Wyznaczenie współczynnika załamania
Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje.
Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Działanie obrazujące soczewek lub układu soczewek wygodnie
WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ METODĄ GRAFICZNĄ I ANALITYCZNĄ
WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ METODĄ GRAFICZNĄ I ANALITYCZNĄ I. Cel ćwiczenia: wyznaczanie ogniskowej soczewki skupiającej i rozpraszającej, zapoznanie z metodą graiczną i analityczną wyznaczania
Optyka geometryczna. Podręcznik zeszyt ćwiczeń dla uczniów
Podręcznik zeszyt ćwiczeń dla uczniów Optyka geometryczna Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl
Konkurs fizyczny szkoła podstawowa. 2018/2019. Etap wojewódzki
UWAGA: W zadaniach o numerach od 1 do 4 spośród podanych propozycji odpowiedzi wybierz i zaznacz tą, która stanowi prawidłowe zakończenie ostatniego zdania w zadaniu. Zadanie 1. (0 1pkt.) Podczas zbliżania
pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura
12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17
Ćwiczenie nr 53: Soczewki
Wydział Imię i nazwisko.. Rok Grupa Zespół PRACOWNIA Temat: Nr ćwiczenia FIZYCZNA WFiIS AGH Data wykonania Data oddania Zwrot do popr. Data oddania Data zaiczenia OCENA Ćwiczenie nr : Soczewki Ce ćwiczenia
4.8 Wyznaczanie ogniskowych soczewek i badanie wad soczewek(o2)
204 Fale 4.8 Wyznaczanie ogniskowych soczewek i badanie wad soczewek(o2) Celem ćwiczenia jest pomiar ogniskowych soczewek skupiających i rozpraszających oraz badanie wad soczewek: aberracji sferycznej,
34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1
Włodzimierz Wolczyński 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1 ODBICIE ŚWIATŁA. ZWIERCIADŁA Do analizy obrazów w zwierciadle sferycznym polecam aplet fizyczny http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=48
Soczewki. Ćwiczenie 53. Cel ćwiczenia
Ćwiczenie 53 Soczewki Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej. Obserwacja i pomiar wad odwzorowań
Ława optyczna. Podręcznik dla uczniów
Podręcznik dla uczniów Ława optyczna Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza /2, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl
12.Opowiedz o doświadczeniach, które sam(sama) wykonywałeś(aś) w domu. Takie pytanie jak powyższe powinno się znaleźć w każdym zestawie.
Fizyka Klasa III Gimnazjum Pytania egzaminacyjne 2017 1. Jak zmierzyć szybkość rozchodzenia się dźwięku? 2. Na czym polega zjawisko rezonansu? 3. Na czym polega zjawisko ugięcia, czyli dyfrakcji fal? 4.
Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne
Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek
Ława optyczna. Podręcznik zeszyt ćwiczeń dla uczniów
Podręcznik zeszyt ćwiczeń dla uczniów Ława optyczna Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza /2, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl
Optyka geometryczna MICHAŁ MARZANTOWICZ
Optyka geometryczna Optyka geometryczna światło jako promień, opis uproszczony Optyka falowa światło jako fala, opis pełny Fizyka współczesna: światło jako cząstka (foton), opis pełny Optyka geometryczna
20. Na poniŝszym rysunku zaznaczono bieg promienia świetlnego 1. Podaj konstrukcję wyznaczającą kierunek padania promienia 2 na soczewkę.
Optyka stosowana Załamanie światła. Soczewki 1. Współczynnik załamania światła dla wody wynosi n 1 = 1,33, a dla szkła n 2 = 1,5. Ile wynosi graniczny kąt padania dla promienia świetlnego przechodzącego
Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne
Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek
Plan wynikowy (propozycja)
Plan wynikowy (propozycja) 2. Optyka (co najmniej 12 godzin lekcyjnych, w tym 1 2 godzin na powtórzenie materiału i sprawdzian bez treści rozszerzonych) Zagadnienie (tematy lekcji) Światło i jego właściwości
Laboratorium Optyki Geometrycznej i Instrumentalnej
aboratorium Optyki Geometrycznej i Instrumentalnej Budowa układów optycznych 1. Cel aboratorium Celem ćwiczenia jest zapoznanie studentów z budowa podstawowych układów optycznych lupy, lunety Keplera i
Ć W I C Z E N I E N R O-4
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-4 BADANIE WAD SOCZEWEK I Zagadnienia do opracowania Równanie soewki,
17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.
OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o
POMIARY OPTYCZNE Pomiary ogniskowych. Damian Siedlecki
POMIARY OPTYCZNE 1 { 11. Damian Siedlecki POMIARY OPTYCZNE 1 { 3. Proste przyrządy optyczne Damian Siedlecki POMIARY OPTYCZNE 1 { 4. Oko Damian Siedlecki POMIARY OPTYCZNE 1 { 5. Lunety. Mikroskopy. Inne
- 1 - OPTYKA - ĆWICZENIA
- 1 - OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C.
Ćwiczenie: "Zagadnienia optyki"
Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.
Optyka geometryczna. Podręcznik metodyczny dla nauczycieli
Podręcznik metodyczny dla nauczycieli Optyka geometryczna Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl
WOJSKOWA AKADEMIA TECHNICZNA
1 WOJSKOWA AKADEMIA TECHNICZNA WYDZIAŁ NOWYCH TECHNOLOGII I CHEMII FIZYKA Ćwiczenie laboratoryjne nr 43 WYZNACZANIE ABERRACJI SFERYCZNEJ SOCZEWEK I ICH UKŁADÓW Autorzy: doc. dr inż. Wiesław Borys dr inż.
Optyka. Wykład XI Krzysztof Golec-Biernat. Równania zwierciadeł i soczewek. Uniwersytet Rzeszowski, 3 stycznia 2018
Optyka Wykład XI Krzysztof Golec-Biernat Równania zwierciadeł i soczewek Uniwersytet Rzeszowski, 3 stycznia 2018 Wykład XI Krzysztof Golec-Biernat Optyka 1 / 16 Plan Równanie zwierciadła sferycznego i
Problemy optyki geometrycznej. Zadania problemowe z optyki
. Zadania problemowe z optyki I LO im. Stefana Żeromskiego w Lęborku 3 lutego 2012 Zasada Fermata Sens fizyczny zasady Zasada, sformułowana przez Pierre a Fermata w 1650 roku dotyczy czasu przejścia światła
Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2.
Ia. OPTYKA GEOMETRYCZNA wprowadzenie Niemal każdy system optoelektroniczny zawiera oprócz źródła światła i detektora - co najmniej jeden element optyczny, najczęściej soczewkę gdy system służy do analizy
Zadanie 21. Stok narciarski
KLUCZ DO ZADAŃ ARKUSZA II Jeżeli zdający rozwiąże zadanie inną, merytorycznie poprawną metodą otrzymuje maksymalną liczbę punktów Numer zadania Zadanie. Stok narciarski Numer polecenia i poprawna odpowiedź.
Rysunek 4.1. Odwzorowanie przez soczewkę. PołoŜenie obrazu znajdziemy, korzystając z równania (3.41). Odpowiednio dla obu powierzchni mamy O C
Temat 4: Podstaw optki geometrcznej-3 Ilość godzin na temat wkładu: Zagadnienia: Cienka soczewka sferczna. Wzór soczewkow. Konstrukcja obrazu w soczewce cienkiej. Powiększenie soczewki cienkiej. Soczewka
Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B.
Imię i nazwisko Pytanie 1/ Zaznacz właściwą odpowiedź: Fale elektromagnetyczne są falami poprzecznymi podłużnymi Pytanie 2/ Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka
STOLIK OPTYCZNY 1 V Przyrząd jest przeznaczony do wykonywania ćwiczeń uczniowskich z optyki geometrycznej.
STOLIK OPTYCZNY 1 V 7-19 Przyrząd jest przeznaczony do wykonywania ćwiczeń uczniowskich z optyki geometrycznej. 6 4 5 9 7 8 3 2 Rys. 1. Wymiary w mm: 400 x 165 x 140, masa 1,90 kg. Na drewnianej podstawie
TEST nr 1 z działu: Optyka
Grupa A Testy sprawdzające TEST nr 1 z działu: Optyka imię i nazwisko W zadaniach 1. 17. wstaw krzyżyk w kwadracik obok wybranej odpowiedzi. klasa data 1 Gdy światło rozchodzi się w próżni, jego prędkć
Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową.
Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Lekcja organizacyjna. Omówienie programu nauczania i przypomnienie wymagań przedmiotowych Tytuł rozdziału
Ćw. nr 41. Wyznaczanie ogniskowych soczewek za pomocą wzoru soczewkowego
2019/02/13 14:12 1/10 Ćw. nr 41. Wyznaczanie ogniskowych soczewek za pomocą wzoru soczewkowego Ćw. nr 41. Wyznaczanie ogniskowych soczewek za pomocą wzoru soczewkowego 0.1. Cel ćwiczenia Wyznaczenie ogniskowej
Laboratorium Optyki Falowej
Marzec 2019 Laboratorium Optyki Falowej Instrukcja do ćwiczenia pt: Filtracja optyczna Opracował: dr hab. Jan Masajada Tematyka (Zagadnienia, które należy znać przed wykonaniem ćwiczenia): 1. Obraz fourierowski
ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II
ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II Piotr Ludwikowski XI. POLE MAGNETYCZNE Lp. Temat lekcji Wymagania konieczne i podstawowe. Uczeń: 43 Oddziaływanie
XLIII OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne
XLIII OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne ZADANIE D1 Nazwa zadania: Współczynnik załamania cieczy wyznaczany domową metodą Masz do dyspozycji: - cienkościenne, przezroczyste naczynie szklane
36P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do optyki geometrycznej)
Włodzimierz Wolczyński 36P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (od początku do optyki geometrycznej) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod
Optyka geometryczna - 2 Tadeusz M.Molenda Instytut Fizyki, Uniwersytet Szczeciński. Zwierciadła niepłaskie
Optyka geometryczna - 2 Tadeusz M.Molenda Instytut Fizyki, Uniwersytet Szczeciński Zwierciadła niepłaskie Obrazy w zwierciadłach niepłaskich Obraz rzeczywisty zwierciadło wklęsłe Konstrukcja obrazu w zwierciadłach
Optyka w fotografii Ciemnia optyczna camera obscura wykorzystuje zjawisko prostoliniowego rozchodzenia się światła skrzynka (pudełko) z małym okrągłym otworkiem na jednej ściance i przeciwległą ścianką
Prawa optyki geometrycznej
Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)