więc powyższy warunek będzie zapisany jako dy dt

Wielkość: px
Rozpocząć pokaz od strony:

Download "więc powyższy warunek będzie zapisany jako dy dt"

Transkrypt

1 Meo maemaczne w echnologii maeriałów Krzszof Szszkiewicz Wprowadzenie DEFINICJA. Równaniem różniczkowm zwczajnm rzędu pierwszego nazwam równanie posaci gdzie f : f (, ), () U jes daną funkcją. Rozwiązaniem równania () nazwam każdą funkcję : ( ab, ), kóra jes różniczkowalna i spełniania równośd ( ) f (, ( )) dla ( a, b). Rozwiązanie będziem oznaczad akże smbolem ( ), więc powższ warunek będzie zapisan jako ( ) f (, ( )) dla ( a, b). Pochodną oznacza się również smbolem d, a równanie () zapiszem we w posaci d f (, ). Równania różniczkowe zwczajne różnią się od równao różniczkowch cząskowch m, że niewiadoma funkcja jes funkcją jednej zmiennej (na ogół rzeczwisej ale wsępują eż równania o argumencie zespolonm). Zazwczaj zmienną ą oznaczam smbolem, co oczwiście sugeruje inerpreację ej zmiennej jako czasu. (Odpowiada o zasosowaniom, kóre będą nas głównie ineresował np. kineka chemiczna). Czasami zamias niewiadomej () użwa się x ( ), więc zamias () piszem x' f (, x). () Nie zawsze argumenem funkcji jednej zmiennej musi bd czas. Dlaego w niekórch opracowaniach argumen niewiadomej funkcji oznacza się po prosu smbolem x, a funkcję niewiadomą x ( ). We równanie () zapisane jes jako f ( x, ) lub f ( x, ). dx Przkład. Równanie, w kórm prawa srona f (, ), czli równanie różniczkowe zwczajne, (3) ma na przkład rozwiązanie ( ) e. Przekonujem się o m przez podsawienie ( ) ( e ) e, f (, ( )) ( ) e e,

2 Meo maemaczne w echnologii maeriałów Krzszof Szszkiewicz zaem ( ) f (, ( )) dla każdego. Widad, że w m przpadku funkcja ( ) e, kóra jes rozwiązaniem, jes określona na całej osi rzeczwisej ak musi bd.. Zobaczm dalej, że nie zawsze Podane rozwiązanie nie jes jene, gż na przkład funkcja ( ) eż spełnia równanie (3) ( ) ( ), oraz ( ) ( ) dla. ( ) ( ) Tak naprawdę mam u całą rodzinę funkcji, kóre są rozwiązaniami równania (3), gż każda funkcja posaci ( ) Ce, (4) gdzie C jes dowolną sałą rzeczwisą jes rozwiązaniem równania (3). Przkład. Rozważm nasępujące równanie różniczkowe zwczajne Jak widad prawa srona ego równania, czli. (5) f (, ) jes bardzo gładką funkcją (posiada pochodne względem dowolnego rzędu) i jes określona dla wszskich argumenów Przkładowm rozwiązaniem jes funkcja (). Sprawdzam o przez podsawienie czli ( ) ( ), ( ) ( ) ( ), ( ) ( ) ( ). Zauważm jednak, że rozwiązanie jes określone na odcinku (, ) odcinku (, ) ). W ogólnm przpadku rozwiązanie równania (5) ma posad i jes określone na odcinku (, C) lub ( C, ). ( ), C (, ). (lub na Podane przkła pokazują, że samo równanie różniczkowe zwczajne () nie gwaranuje isnienia lko jednej funkcji, kóra jes rozwiązaniem (jednoznaczności). Ab można bło oczekiwad akiej jednoznaczności, musim wprowadzid jeszcze jakiś dodakow warunek na rozwiązanie. Okazuje się, że dla równania posaci () akim warunkiem jes żądanie, ab rozwiązanie przjmowało zadaną warośd w wbranm punkcie. 0 Prowadzi nas o do pojęcia warunku począkowego dla równania różniczkowego zwczajnego (). DEFINICJA. Warunek posaci

3 Meo maemaczne w echnologii maeriałów Krzszof Szszkiewicz ( ), (6) 0 0 gdzie 0, 0 są zadanmi liczbami akimi, że ( 0, 0) U dom f nazwam warunkiem począkowm (warunkiem Cauch ego). Zagadnienie począkowe dla równania różniczkowego zwczajnego (zagadnienie Cauch ego) zapiswane smbolicznie nasępująco f (, ), ( 0) 0, oznacza, że szukana funkcja () ma spełniad równanie f (, ) i warunek począkow (6). Przkład 3. Jakie jes rozwiązanie nasępującego zagadnienia Cauch ego (7), (0). (8) Sprawdzam przez podsawienie, że rozwiązaniem równania jes dowolna funkcja posaci ( ) Ce. Ab bł spełnion warunek począkow (0) musi zachodzid C. Tak więc rozwiązaniem zagadnienia Cauch ego (8) jes funkcja () e. 0 Ce, czli Oczwiście o, że funkcja () e jes rozwiązaniem zagadnienia począkowego (8) nie oznacza jeszcze, że nie isnieją jakieś inne funkcje, kóre są rozwiązaniem ego problemu. Poniższ przkład ilusruje, że zagadnienie Cauch eago (7) może mied wiele rozwiązao (niejednoznaczność). Przkład 4. Rozważm nasępując problem począkow Cauch ego 3, (0) 0. (9) Widad, że funkcja ożsamościowo równa zero, ( ) 0 dla każdego, spełnia o równanie oraz warunek począkow. Ale akże funkcja 3 () 7 jes rozwiązaniem zagadnienia (9), gż ( ) oraz ( ( )) ( ) ( ) ( ( )), oraz warunek począkow Funkcje /3 (0) ( ) 0, ( ) są różne (i o w dowolnm ooczeniu punku 0 0 ), ak więc rozwiązanie problemu (9) nie jes jednoznaczne! Wkres ch dwóch rozwiązao pokazano na Rs..

4 Meo maemaczne w echnologii maeriałów Krzszof Szszkiewicz Rs.. Wkres dwóch przkładowch różnch rozwiązao zagadnienia począkowego (9). Jeżeli jednak funkcja f f (, ) spełnia pewne dośd ogólne założenia, o problem (7) ma rozwiązanie i o dokładnie jedno. TWIERDZENIE (Picarda-Lindelöfa). Niech funkcja spełnia warunek Lipschiza względem zmiennej, j. f f (, ) : będzie funkcją ciągłą oraz niech f (, ) f (, ) L, (0) dla pewnej sałej L 0. We zagadnienie Cauch ego f (, ), ( 0) 0, ma jednoznaczne rozwiązanie, określone w pewnm przedziela ( a, b ) zawierającm 0. Uwaga. Podane wierdzenie jes uproszczoną wersją bardziej ogólnego wierdzenia spokanego w maemacznch książkach. Na ogół podaje się jeszcze w ezie wierdzenia zależnośd przedziału ( a, b ) od sałch charakerzującch funkcję f, akich jak sała Lipschiza L oraz ograniczenia funkcji: M sup{ f (, ): (, ) Q}, gdzie Q {(, ) :, }. 0 0 Dalej zajmiem się kilkoma meodami znajdowania analicznej posaci rozwiązao zagadnienia Cauch ego. Meoda rozdzielania zmiennch Równanie różniczkowe posaci f ( ) g( ) () nazwam równaniem o rozdzielonch zmiennch. Okazuje się, że analiczne rozwiązwanie ego równania sprowadza się do obliczania odpowiednich całek. Smbolicznie możem posępowanie prowadzące do rozwiązania zapisad ak

5 Meo maemaczne w echnologii maeriałów Krzszof Szszkiewicz f ( ) g( ), d f ( ) d, g( ) () f ( ) d C lub f ( ) d. g( ) g( ) 0 0 Obliczając całki, f ( ) d g( ) uzskujem rozwiązanie () w posaci uwikłanej. Czasami możem obliczd e całki i rozwikład odpowiednią równośd uzskując rozwiązanie w posaci jawnej. Przkład 5. Rozwiązad równanie (sin ). Posępujem jak powżej d (sin ), sin d, sin d, co daje równośd cos C, więc ogólne rozwiązanie ma posad ( ), cos C gdzie C jes dowolną sałą. Gbśm mieli do rozwiązania zagadnienie począkowe (0), (sin ), () o lko musim jeszcze wliczd sałą C z warunku (0), Rozwiązaniem jes więc funkcja (0), C. cos0 C ( ). cos / cos

6 Meo maemaczne w echnologii maeriałów Krzszof Szszkiewicz Zauważm ponado, że największm przedziałem na kórm jes określone o rozwiązanie jes przedział ( ab, ) (, ). 3 3 Wbraliśm en przedział jako dziedzinę rozwiązania, gż musi on zawierad warunek począkow 0 0. Zaem rozwiązaniem wsconm zagadnienia () jes funkcja Przkład 6. Rozwiązad problem Cauch ego : (, ). 3 3 cos x, (0). (Zauważm, że m razem zmienną niezależną oznaczono smbolem x zamias.) Rozwiązanie: zaem x ( ) ( x ) dx, ( ) ( x ) dx, dx x x C. Warośd sałej całkowania C obliczm z warunku począkowego (0). Skąd mam: 0 0 C, czli C 4. W en sposób uzskujem rozwiązanie ( x) w posaci uwikłanej: x x 4. W m konkrenm przpadku nie ma problemu z rozwiązaniem ( rozwikłaniem ) ej zależności względem, gż jes o prose równanie kwadraowe na x ( ) : skąd x x 4 x 4x 8 0, 4 4( x 4x 8) 4x 6x 36, x 4x 9, x 4x 9 ( ) 4 9, x x x x 4x 9 ( ) 4 9. x x x Z ch dwóch funkcji lko pierwsza spełnia warunek począkow (0). Tak więc rozwiązaniem problemu jes x x x ( ) 4 9. Zauważm eż, że dziedziną ej funkcji jes cał zbiór dodanie dla każdego x., gż wrażenie pod pierwiaskiem jes

7 Meo maemaczne w echnologii maeriałów Krzszof Szszkiewicz Przkład 7. Rozwiązad równanie różniczkowe x lim x ( ). x, Nie jes o pow problem począkow, gż dodakow warunek zosał sformułowan w posaci żądania, ab granica rozwiązania w wnosiła. W m przkładzie zasosowano oznaczenie zmiennej niezależnej smbolem x zamias. Tak więc szukana funkcja zależ od x, j. ( x). Mimo, że ściśle rzecz biorąc nie jes o problem Cauch ego, ale z zapisu problemu jednoznacznie widad jakie zależności musi spełniad rozwiązanie. Sosując rozdzielanie zmiennch mam dx dx dx x x x cons. Ponieważ ln cons, zaem ln ln x cons, można przepisad ak co Cx. Z warunku począkowego ( ) znajdujem sałą całkowania C, co prowadzi do rozwiązania x. w posaci uwikłanej. W m przpadku można rozwikład je względem co daje x ( x) dla x. x (3) Rs.. Wkres rozwiązania problemu z Przkładu 7.

8 Meo maemaczne w echnologii maeriałów Krzszof Szszkiewicz Równania liniowe skalarne DEFINICJA. Równanie posaci p( ) q( ), (4) gdzie p () i q () są danmi funkcjami dla ( a, b), nazwa się równaniem różniczkowm liniowm. Jeżeli q ( ) 0, o równanie nazwam równaniem liniowm jednorodnm. Jednm ze sposobów rozwiązwania równania (4) jes meoda uzmienniania sałej. Zacznam od rozwiązwania równania jednorodnego (zn. opuszczam w równaniu (4) funkcję q ( )). czli skąd p( ) d, p( ), p( ), d p( ) d, ln p( ) d cons, czli ( ) Ce p s ds ( ). (5) Teraz rakujem sałą C ak, jakb o bła funkcja ( uzmiennienie sałej ) i poszukujem jakiegokolwiek rozwiązania równania niejednorodnego, zn. szukam dowolnego rozwiązania równania (4), kóre ma w posad p( s) ds ( ) C( ) e. (6) s Powszechnie użwa się określenie rozwiązanie szczególne, sąd indeks s. Podsawiam funkcję (6) do (4), co prowadzi do równania na C ( ). Przkład 8. Znaleźd rozwiązanie ogólne równania różniczkowego e sin. (7) Najpierw rozwiązujem równanie jednorodne, co daje d ( ) Ce Ce. (8) Teraz szukam rozwiązania szczególnego w posaci do (7): s C( ) e, zaem podsawiam o wrażenie / / / / Ce C ( ) e Ce e sin, s s / / Ce e sin, C sin.

9 Meo maemaczne w echnologii maeriałów Krzszof Szszkiewicz Z osaniego równania mam oczwiście C( ) cos, co po podsawieniu daje / ( ) e cos. Zgodnie z eorią ogólne rozwiązanie równania niejednorodnego jes sumą s ogólnego rozwiązania równania jednorodnego i jakiegoś dowolnego ( szczególnego ) rozwiązania równania niejednorodnego, zaem / / ( ) Ce e cos. (9) Jeżeli równanie (7) uzupełnid o warunek począkow, na przkład (0) 3, rozwiązanie akiego problemu Cauch ego orzmam wliczając sałą C ze wzoru (9) wsawiając warunek począkow: Ce e C C 0 0 (0) cos Tak więc problem począkow e sin, (0) 3, ma rozwiązanie / / / ( ) 4e e cos e (4 cos ). RÓWNANIE BERNOULLIEGO Isnieją pewne p równao, kóre nie są liniowe, ale można je do akiej posaci sprowadzid. Jako jeden z przkładów rozważm równanie nieliniowe n p( ) q( ) 0. (0) Równanie o nazwa się równaniem Bernoulliego, a liczbę n nazwam wkładnikiem Bernoulliego. Dla n 0 lub n równanie (0) jes równaniem liniowm. Dlaego ineresowad nas będzie przpadek, g n {0, }. Sosujem nasępujące podsawienie z n zn. będziem chcieli uzskad równanie na funkcję, () n n z( ) ( ). Mam z( n), więc mnożąc równanie (0) przez czli równanie liniowe n orzmujem n n p( ) q( ) 0, z p( ) z q( ) 0, n z ( n) p( ) z ( n) q( ) 0, () na funkcję z z( ). Przkład 9. Rozwiązad równanie. (3)

10 Meo maemaczne w echnologii maeriałów Krzszof Szszkiewicz Jes o przkład równania Bernoulliego z wkładnikiem n. Sosujem zaem podsawienie z. Mam więc po wsawieniu do () orzmujem co daje równanie liniowe z z. Przkład 0. Znaleźd rozwiązanie ogólne równania Sosujem podsawienie () dla n, czli z z, z, z z z ln (4) 0. z, co daje liniowe równanie ln z z 0. dz d Rozwiązujem najpierw równanie jednorodne z z 0, czli, z więc ln z ln cons, skąd z( ) C. Nasępnie sosujem uzmiennianie sałej, z( ) C( ). Wsawiam do równania niejednorodnego ln Całkujem C : ln ln C C C 0 C 0. ln ln ln C( ) d ln d (ln ) d d ln ln d. ln To daje rozwiązanie szczególne zs( ) C( ) ln. Tak więc rozwiązanie ogólne równania na z z() jes nasępujące z( ) C ln.

11 Meo maemaczne w echnologii maeriałów Krzszof Szszkiewicz Wracając do funkcji, poprzez podsawienie równania (4) jako Zadania z, orzmujem osaecznie rozwiązanie ogólne ( ). C ln Zad. ) Sprawdzid, że podane funkcje są rozwiązaniami podanch równao różniczkowch a) 3, ( x) e. 3 3 x, ( x) x C. 3x 3 dx b) 3 dx x x c) d 0, ( x) C sinx Ccos x. dx d) d x 3x 5 6 0, ( x) C e Ce. dx dx Zad. ) Sprawdź, że podane funkcje spełniają równanie różniczkowe, a nasępnie wznacz sałą C z podanego warunku począkowego. a), () 4, dx x ( x) Cx. b) x xe, dx (0), x x ( ) x e. Zad. 3) Rozwiąż zagadnienia począkowe: a) dx (). 4 x, b) x e, dx (0) 0. c)* 3x, dx (0). d) ( ), dx (0). x Wsk. W punkcie b) ( x) ln( e ) ln. Rozwiązanie jes określone dla x(, ln ). x e Naomias w punkcie c) rozwiązanie wraża się poprzez zw. funkcję błędu, erf.

Krzywe na płaszczyźnie.

Krzywe na płaszczyźnie. Krzwe na płaszczźnie. Współrzędne paramerczne i biegunowe. Współrzędne biegunowe. Dan jes punk O, zwan biegunem, kór sanowi począek półprosej, zwanej półosią. Dowoln punk P na płaszczźnie można opisać

Bardziej szczegółowo

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx 5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

oznacza przyrost argumentu (zmiennej niezależnej) x 3A82 (Definicja). Granicę (właściwą) ilorazu różnicowego funkcji f w punkcie x x x e x lim x lim

oznacza przyrost argumentu (zmiennej niezależnej) x 3A82 (Definicja). Granicę (właściwą) ilorazu różnicowego funkcji f w punkcie x x x e x lim x lim WYKŁAD 9 34 Pochodna nkcji w pnkcie Inerpreacja geomerczna pochodnej Własności pochodnch Twierdzenia Rolle a Lagrange a Cach ego Regla de lhôspiala Niech ( ) O( ) będzie nkcją określoną w pewnm ooczeni

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 5

RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 Równania różniczkowe rzędu drugiego Równania rzędu drugiego sprowadzalne do równań rzędu pierwszego Równanie różniczkowe rzędu drugiego postaci F ( x, ', ") 0 ( nie wstępuje

Bardziej szczegółowo

Równania różniczkowe cząstkowe

Równania różniczkowe cząstkowe Równania różniczkowe cząstkowe Definicja: Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch

Bardziej szczegółowo

Metody matematyczne w technologii materiałów Krzysztof Szyszkiewicz

Metody matematyczne w technologii materiałów Krzysztof Szyszkiewicz Kinetka formalna jest działem kinetki chemicznej zajmującm się opisem przebiegu reakcji chemicznch za pomocą równao różniczkowch. W przpadku reakcji homogenicznch (w objętości), g skład jest jednorodn

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma

Bardziej szczegółowo

Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona

Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona Całka nieoznaczona Andrzej Musielak Sr Całka nieoznaczona Całkowanie o operacja odwrona do liczenia pochodnych, zn.: f()d = F () F () = f() Z definicji oraz z abeli pochodnych funkcji elemenarnych od razu

Bardziej szczegółowo

Równania różniczkowe cząstkowe

Równania różniczkowe cząstkowe Równania różniczkowe cząstkowe Definicja Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Marian Gewer Zbigniew Skoczlas RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Teoria, przkład, zadania Wdanie pięnase zmienione GiS Oficna Wdawnicza GiS Wrocław 2016 Marian Gewer Wdział

Bardziej szczegółowo

Równania różniczkowe

Równania różniczkowe Równania różniczkowe I rzędu Andrzej Musielak Równania różniczkowe Równania różniczkowe I rzędu Równanie różniczkowe pierwszego rzędu to równanie w którm pojawia się zmienna x, funkcja tej zmiennej oraz

Bardziej szczegółowo

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych Ekonomia matematczna II Ekonomia matematczna II Prowadząc ćwiczenia Programowanie nieliniowe optmalizacja unkcji wielu zmiennch Modele programowania liniowego często okazują się niewstarczające w modelowaniu

Bardziej szczegółowo

12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej

12. FUNKCJE WIELU ZMIENNYCH. z = x + y jest R 2, natomiast jej 1. FUNKCJE WIELU ZMIENNYCH 1.1. FUNKCJE DWÓCH ZMIENNYCH Funkcją dwóch zmiennch określoną w zbiorze D R nazwam przporządkowanie każdej parze liczb () D dokładnie jednej liczb rzeczwistej z. Piszem prz tm

Bardziej szczegółowo

RZĘDU PIERWSZEGO. RÓWNANIE BERNOULLIEGO. RÓWNANIE JEDNORODNE. KRZYWE ORTOGONALNE. RÓWNANIE BERNOULLIEGO. Nieliniowe równanie różniczkowe Bernoulliego

RZĘDU PIERWSZEGO. RÓWNANIE BERNOULLIEGO. RÓWNANIE JEDNORODNE. KRZYWE ORTOGONALNE. RÓWNANIE BERNOULLIEGO. Nieliniowe równanie różniczkowe Bernoulliego NIELINIOWE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RZĘDU PIERWSZEGO. RÓWNANIE BERNOULLIEGO. RÓWNANIE JEDNORODNE. KRZYWE ORTOGONALNE. RÓWNANIE BERNOULLIEGO. Nieliniowe równanie różniczkowe Bernoulliego ma postać:

Bardziej szczegółowo

Związek między ruchem harmonicznym a ruchem jednostajnym po okręgu

Związek między ruchem harmonicznym a ruchem jednostajnym po okręgu Związek międz ruchem harmonicznm a ruchem jednosajnm po okręgu Rozważm rzu Q i R punku P na osie i : Q cos v r R sin R Q P δ Q cos ( δ ) R sin ( δ ) Jeżeli punk P porusza się ruchem jednosajnm po okręgu,

Bardziej szczegółowo

f x f y f, jest 4, mianowicie f = f xx f xy f yx

f x f y f, jest 4, mianowicie f = f xx f xy f yx Zestaw 14 Pochodne wŝszch rzędów Niech będzie dana funkcja x f określona w pewnm obszarze D Przpuśćm Ŝe f x istnieją pochodne cząstkowe tej funkcji x x Pochodne cząstkowe tch pochodnch jeŝeli istnieją

Bardziej szczegółowo

RACHUNEK CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ

RACHUNEK CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ RACHUNEK CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ Wykorzysano: M A T E M A T Y K A Wykład dla sudenów Część Krzyszo KOŁOWROCKI, ZBIÓR ZADAŃ Z RACHUNKU CAŁKOWEGO Krzyszo PISKÓRZ Deinicja CAŁKA NIEOZNACZONA Funkcję

Bardziej szczegółowo

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się: Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne

1 Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem

Bardziej szczegółowo

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie Wykład 14 i 15 Równania różniczkowe Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (x, y, y, y,..., y (n) ) = 0 (1) gdzie: y = y(x) niewiadoma funkcja zmiennej rzeczywistej

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1) Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

ROZWIĄZANIA I ODPOWIEDZI

ROZWIĄZANIA I ODPOWIEDZI Zastosowania matematki w analitce medcznej zestaw do kol. semestr. - rozwiązania i odpowiedzi (część I). ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. a) Rozważając dwa przpadki ze względu na moduł mam: skąd ostatecznie,3>.

Bardziej szczegółowo

Wygładzanie metodą średnich ruchomych w procesach stałych

Wygładzanie metodą średnich ruchomych w procesach stałych Wgładzanie meodą średnich ruchomch w procesach sałch Cel ćwiczenia. Przgoowanie procedur Średniej Ruchomej (dla ruchomego okna danch); 2. apisanie procedur do obliczenia sandardowego błędu esmacji;. Wizualizacja

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci

Bardziej szczegółowo

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego Matematyka 2 Równania różniczkowe zwyczajne rzędu drugiego Równania różniczkowe liniowe rzędu II Równanie różniczkowe w postaci y + a 1 (x)y + a 0 (x)y = f(x) gdzie a 0 (x), a 1 (x) i f(x) są funkcjami

Bardziej szczegółowo

Równania różniczkowe zwyczajne

Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne zadań dla sudenów kierunku Auomayka i roboyka WEAIiIB AGH Michał Góra Wydział Maemayki Sosowanej AGH I. Równania o zmiennych rozdzielonych: y = f (y)f () Zadanie. Rozwiąż

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

Prognozowanie i symulacje

Prognozowanie i symulacje Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez

Bardziej szczegółowo

Lista nr Znaleźć rozwiązania ogólne następujących równań różniczkowych: a) y = y t,

Lista nr Znaleźć rozwiązania ogólne następujących równań różniczkowych: a) y = y t, RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE B Lisa nr 1 1. Napisać równanie różniczkowe, jakie spełnia napięcie u = u() na okładkach kondensaora w obwodzie zawierającym połączone szeregowo oporność R i pojemność C,

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

Równania różniczkowe zwyczajne MAP 3014, 3062

Równania różniczkowe zwyczajne MAP 3014, 3062 Równania różniczkowe zwczajne MAP 34, 36 Opracowanie: dr Marian Gewer, dr Zbigniew Skoczlas Lisazadań.Zpewnejsubsancjiradioakwnejpoupłwie4lazosałogram,apoupłwiedalszch4lalko 4 gram. Wznaczć masę subsancji

Bardziej szczegółowo

III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE 1. Pojęcia wstępne Przykład 1.1. (Rozpad substancji promieniotwórczej ) Z doświadczeń wiadomo, że prędkość rozpa pierwiastka promieniotwórczego jest ujemna i proporcjonalna

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 1

RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 Przedmiot realizowany w układzie wykład 2 godz. tygodniowo ćwiczenia 2 godz. tygodniowo Regulamin zaliczeń www.mini.pw.edu.pl/~figurny 2 Program zajęć Równania różniczkowe

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

( ) ( ) ( τ) ( t) = 0

( ) ( ) ( τ) ( t) = 0 Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany

Bardziej szczegółowo

ROZWIĄZANIA I ODPOWIEDZI

ROZWIĄZANIA I ODPOWIEDZI ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. =1+cos a) = =2cos( sin) = = sin2 = ln += =sin2 = ln 1+cos +. b) sin(+3)= =+3 = 3 =( 3) = sin= =( 6+9) sin= sin 6 sin+9sin. Obliczamy teraz pierwszą całkę: sin= ()=

Bardziej szczegółowo

Wykład 4 Metoda Klasyczna część III

Wykład 4 Metoda Klasyczna część III Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Marta Zelmańska

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Marta Zelmańska RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Marta Zelmańska Toruń 009 1 Rozdział 1 Wstęp Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie: F (t, x, x, x,..., x (n) ) = 0 (1.1) Rozwiązaniem równania

Bardziej szczegółowo

Wstęp do równań różniczkowych

Wstęp do równań różniczkowych Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych

Bardziej szczegółowo

Wykład Analiza jakościowa równań różniczkowych

Wykład Analiza jakościowa równań różniczkowych Na podstawie książki J. Rusinka, Równania różniczkowe i różnicowe w zarządzaniu, Oficna Wdawnicza WSM, Warszawa 2005. 21 maja 2012 Definicja Stabilność Niech = F (x, ) będzie równaniem różniczkowm. Rozwiązanie

Bardziej szczegółowo

Równania różniczkowe zwyczajne A

Równania różniczkowe zwyczajne A Lisa pierwsza Równania różniczkowe zwczajne A Lis zadań..zpewnejsubsancjiradioakwnejpoupłwie4lazosało20gram,apoupłwiedalszch4lalko 4 gram. Wznaczć masę subsancji w chwili począkowej. b) Polon-20 ma okres

Bardziej szczegółowo

Równania różniczkowe liniowe II rzędu

Równania różniczkowe liniowe II rzędu Równania różniczkowe liniowe II rzędu Definicja równania różniczkowego liniowego II rzędu Warunki początkowe dla równania różniczkowego II rzędu Równania różniczkowe liniowe II rzędu jednorodne (krótko

Bardziej szczegółowo

Równania różniczkowe wyższych rzędów

Równania różniczkowe wyższych rzędów Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1. Rozwiązanie ogólne............................... 1.3 Obniżanie rzędu

Bardziej szczegółowo

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp

Bardziej szczegółowo

Analiza matematyczna dla informatyków 3 Zajęcia 14

Analiza matematyczna dla informatyków 3 Zajęcia 14 Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:

Bardziej szczegółowo

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) = Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,

Bardziej szczegółowo

KURS FUNKCJE WIELU ZMIENNYCH

KURS FUNKCJE WIELU ZMIENNYCH KURS FUNKCJE WIELU ZMIENNYCH Lekcja 1 Pochodne cząstkowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tlko jedna jest prawdziwa). Ptanie 1 Funkcja dwóch zmiennch a)

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej F (x, y(x), y (1) (x), y () (x),..., y (n) (x)) = 0, gdzie y (k) (x) to k ta

Bardziej szczegółowo

Cechy szeregów czasowych

Cechy szeregów czasowych energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas

Bardziej szczegółowo

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia Maemayka A kolokwium maja rozwia zania Należy przeczyać CA LE zadanie PRZED rozpocze ciem rozwia zywania go!. Niech M. p. Dowieść że dla każdej pary liczb ca lkowiych a b isnieje aka para liczb wymiernych

Bardziej szczegółowo

Wstęp do równań różniczkowych

Wstęp do równań różniczkowych Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera.

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera. 7. Całka Fouriera w posaci rzeczywisej. Wykład VII Przekszałcenie Fouriera. Doychczas rozparywaliśmy szeregi Fouriera funkcji w ograniczonym przedziale [ l, l] lub [ ] Teraz pokażemy analogicznie przedsawienie

Bardziej szczegółowo

Ekstrema funkcji dwóch zmiennych

Ekstrema funkcji dwóch zmiennych Wkład z matematki inżnierskiej Ekstrema funkcji dwóch zmiennch JJ, IMiF UTP 18 JJ (JJ, IMiF UTP) EKSTREMA 18 1 / 47 Ekstrema lokalne DEFINICJA. Załóżm, że funkcja f (, ) jest określona w pewnm otoczeniu

Bardziej szczegółowo

5. Równania różniczkowe zwyczajne pierwszego rzędu

5. Równania różniczkowe zwyczajne pierwszego rzędu 5. Równania różniczkowe zwyczajne pierwszego rzędu 5.1. Wstęp. Definicja 5.1. Niech V R 3 będzie obszarem oraz F : V R. Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci Równanie

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych 2. Równania o rozdzielonych zmiennych 2 1 2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równaniem różniczkowym zwyczajnym pierwszego rzędu o rozdzielonych zmiennych nazywamy równanie różniczkowe

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 7 320 320

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 13

RÓWNANIA RÓŻNICZKOWE WYKŁAD 13 RÓWNANIA RÓŻNICZKOWE WYKŁAD 13 Geomeria różniczkowa Geomeria różniczkowa o dział maemayki, w kórym do badania obieków geomerycznych wykorzysuje się meody opare na rachunku różniczkowym. Obieky geomeryczne

Bardziej szczegółowo

Równania różniczkowe wyższych rzędów

Równania różniczkowe wyższych rzędów Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1.2 Rozwiązanie ogólne............................... 2 1.3 Obniżanie rzędu

Bardziej szczegółowo

Sformułowanie Schrödingera mechaniki kwantowej. Fizyka II, lato

Sformułowanie Schrödingera mechaniki kwantowej. Fizyka II, lato Sformułowanie Schrödingera mechaniki kwanowej Fizyka II, lao 018 1 Wprowadzenie Posać funkcji falowej dla fali de Broglie a, sin sin k 1 Jes o przypadek jednowymiarowy Posać a zosała określona meodą zgadywania.

Bardziej szczegółowo

2. Kombinacja liniowa rozwiązań zeruje się w pewnym punkcie wtedy i tylko wtedy, gdy zeruje się w każdym punkcie.

2. Kombinacja liniowa rozwiązań zeruje się w pewnym punkcie wtedy i tylko wtedy, gdy zeruje się w każdym punkcie. Wniosek 1 Rozpatrzmy układ równań postaci: y 1 = a 11 (x)y 1 + + a 1n (x)y n y 2 = a 21 (x)y 1 + + a 2n (x)y n y n = a n1 (x)y 1 + + a nn (x)y n (1) o współczynnikach ciągłych w przedziale J 1 Rozwiązanie

Bardziej szczegółowo

Równania różniczkowe. Analiza Matematyczna. Aleksander Denisiuk

Równania różniczkowe. Analiza Matematyczna. Aleksander Denisiuk Analiza Matematyczna Równania różniczkowe Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Analiza

Bardziej szczegółowo

WYKŁAD FIZYKAIIIB 2000 Drgania tłumione

WYKŁAD FIZYKAIIIB 2000 Drgania tłumione YKŁD FIZYKIIIB Drgania łumione (gasnące, zanikające). F siła łumienia; r F r b& b współczynnik łumienia [ Nm s] m & F m & && & k m b m F r k b& opis różnych zjawisk izycznych Niech Ce p p p p 4 ± Trzy

Bardziej szczegółowo

BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI

BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Wkład z matematki inżnierskiej BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI IMiF UTP 06 przed wkonaniem wkresu... BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Wkonujem wkres funkcji wznaczaja c wcześniej: 1 dziedzinȩ

Bardziej szczegółowo

Całkowanie przez podstawianie i dwa zadania

Całkowanie przez podstawianie i dwa zadania Całkowanie przez podstawianie i dwa zadania Antoni Kościelski Funkcje dwóch zmiennch i podstawianie Dla funkcji dwóch zmiennch zachodzi następując wzór na całkowanie przez podstawianie: f(x(a, b), (a,

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Elementy równań różniczkowych

Analiza matematyczna i algebra liniowa Elementy równań różniczkowych Analiza matematyczna i algebra liniowa Elementy równań różniczkowych Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936

Bardziej szczegółowo

Równania różniczkowe zwyczajne. 1 Rozwiązywanie równań różniczkowych pierwszego rzędu

Równania różniczkowe zwyczajne. 1 Rozwiązywanie równań różniczkowych pierwszego rzędu Wydział Matematyki Stosowanej Zestaw zadań nr 13 Akademia Górniczo-Hutnicza w Krakowie WFiIS, informatyka stosowana, I rok Elżbieta Adamus 17 maja 2018r. Równania różniczkowe zwyczajne 1 Rozwiązywanie

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Lisa zadań 26/27 Opracowanie: dr Marian Gewer, doc. dr Zbigniew Skoczlas Lisa pierwsza. a)zpewnejsubsancjiradioakwnejpoupłwie4lazosało2gram,apoupłwiedalszch4la lko 4 gram.

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,

Bardziej szczegółowo

Podstawowe wyidealizowane elementy obwodu elektrycznego Rezystor ( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( τ ) i t i t u ( ) u t u t i ( ) i t. dowolny.

Podstawowe wyidealizowane elementy obwodu elektrycznego Rezystor ( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( τ ) i t i t u ( ) u t u t i ( ) i t. dowolny. Tema. Opracował: esław Dereń Kaedra Teorii Sygnałów Insyu Telekomunikacji Teleinformayki i Akusyki Poliechnika Wrocławska Prawa auorskie zasrzeżone Podsawowe wyidealizowane elemeny obwodu elekrycznego

Bardziej szczegółowo

,..., u x n. , 2 u x 2 1

,..., u x n. , 2 u x 2 1 . Równania różnickowe cąstkowe Definicja. Równaniem różnickowm cąstkowm (rrc) nawam równanie różnickowe, w którm wstępuje funkcja niewiadoma dwóch lub więcej miennch i jej pochodne cąstkowe. Ogólna postać

Bardziej szczegółowo

Fizyka dla Informatyki Stosowanej

Fizyka dla Informatyki Stosowanej Fizka dla Informaki Sosowanej Jacek Golak Semesr zimow 08/09 Wkład nr 7 Na poprzednim wkładzie zajmowaliśm się elemenami saki i dnamiki brł szwnej. Jes o z definicji zbiór punków maerialnch o ej własności

Bardziej szczegółowo

Lista zadań nr 2 z Matematyki II

Lista zadań nr 2 z Matematyki II Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2

Bardziej szczegółowo

1 Równania różniczkowe drugiego rzędu

1 Równania różniczkowe drugiego rzędu Równania różniczkowe drugiego rzędu Najpierw zajmiemy się równaniami różniczkowymi rzędu drugiego, w których y nie występuje w sposób jawny, tzn. F (x, y, y ) = 0 (.) Równanie takie rozwiązujemy poprzez

Bardziej szczegółowo

22 Pochodna funkcji definicja

22 Pochodna funkcji definicja 22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica

Bardziej szczegółowo

RACHUNEK CAŁKOWY FUNKCJI DWÓCH ZMIENNYCH

RACHUNEK CAŁKOWY FUNKCJI DWÓCH ZMIENNYCH RACHUNEK CAŁKOWY FUNKCJI WÓCH ZMIENNYCH einicja całki podwójnej po prostokącie einicja Podziałem prostokąta R ={ : a b c d} inaczej: R = [a b] [c d] nazwam zbiór Pn złożon z prostokątów R R... Rn które

Bardziej szczegółowo

Metody Eulera i Eulera-Cauchy'ego rozwiązywania równań różniczkowych zwyczajnych. y 3 := x 2 (1) ( ) Rozwiązanie dokładne równania (1) (2)

Metody Eulera i Eulera-Cauchy'ego rozwiązywania równań różniczkowych zwyczajnych. y 3 := x 2 (1) ( ) Rozwiązanie dokładne równania (1) (2) euler-przkl_.xmcd Metod Eulera i Eulera-Cauch'ego rozwiązwania równań różniczkowch zwczajnch ' ( x, ) : x () + Rozwiązanie dokładne równania () ( x, C) : + C exp( atan( x) ) () Sprawdzenie: d dx ( x, C)

Bardziej szczegółowo

13. Równania różniczkowe - portrety fazowe

13. Równania różniczkowe - portrety fazowe 13. Równania różniczkowe - portrety fazowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - portrety fazowe 1 /

Bardziej szczegółowo

Pierwiastki kwadratowe z liczby zespolonej

Pierwiastki kwadratowe z liczby zespolonej Pierwiastki kwadratowe z liczb zespolonej Pierwiastkiem kwadratowm z liczb w C nazwam każdą liczbę zespoloną z C, dla której z = w. Zbiór wszstkich pierwiastków oznaczam smbolem w. Innmi słow w = {z C

Bardziej szczegółowo

Równania różniczkowe. Równania różniczkowe zwyczajne rzędun,n 2. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Równania różniczkowe. Równania różniczkowe zwyczajne rzędun,n 2. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równania różniczkowe zwyczajne rzędun,n 2 Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe str. 1/38 Równania różniczkowe zwyczajne

Bardziej szczegółowo

Silniki cieplne i rekurencje

Silniki cieplne i rekurencje 6 FOTO 33, Lao 6 Silniki cieplne i rekurencje Jakub Mielczarek Insyu Fizyki UJ Chciałbym Pańswu zaprezenować zagadnienie, kóre pozwala, rozważając emaykę sprawności układu silników cieplnych, zapoznać

Bardziej szczegółowo

Algebra WYKŁAD 9 ALGEBRA

Algebra WYKŁAD 9 ALGEBRA Algebra WYKŁAD 9 Krzwe sożkowe Definicja Prosa sczna do krzwej K w punkcie P jes o prosa, będąca granicznm położeniem siecznch s k przechodzącch przez punk P i P k gd punk P k dąż zbliża się do punku P

Bardziej szczegółowo

Równania różniczkowe. Notatki z wykładu.

Równania różniczkowe. Notatki z wykładu. Równania różniczkowe Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

Wektory. P. F. Góra. rok akademicki

Wektory. P. F. Góra. rok akademicki Wektor P. F. Góra rok akademicki 009-0 Wektor zwiazan. Wektorem zwiazanm nazwam parę punktów. Jeżeli parę tę stanowią punkt,, wektor przez nie utworzon oznaczm. Graficznie koniec wektora oznaczam strzałką.

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut Wojewódzki Konkurs Maemayczny dla uczniów gimnazjów. Eap szkolny 5 lisopada 2013 Czas 90 minu ZADANIA ZAMKNIĘTE Zadanie 1. (1 punk) Liczby A = 0, 99, B = 0, 99 2, C = 0, 99 3, D = 0, 99, E=0, 99 1 usawiono

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

"Potęga matematyki polega na pomijaniu wszystkich myśli zbędnych i cudownej oszczędności operacji myślowych." Ernst Mach. Funkcja wykładnicza

Potęga matematyki polega na pomijaniu wszystkich myśli zbędnych i cudownej oszczędności operacji myślowych. Ernst Mach. Funkcja wykładnicza "Poęga maemaki polega na pomijaniu wszskich mśli zbędnch i cudownej oszczędności operacji mślowch." Erns Mach Funkcja wkładnicza Def. Funkcją wkładniczą nazwam funkcję posaci f = a, gdzie a > i. Poęgę

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE A. RÓWNANIA RZĘDU PIERWSZEGO Uwagi ogólne Równanie różniczkowe zwyczajne rzędu pierwszego zawiera. Poza tym może zawierać oraz zmienną. Czyli ma postać ogólną Na przykład

Bardziej szczegółowo