Rys.1. Podstawowa klasyfikacja sygnałów

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rys.1. Podstawowa klasyfikacja sygnałów"

Transkrypt

1 Kaedra Podsaw Sysemów echnicznych - Podsawy merologii - Ćwiczenie 1. Podsawowe rodzaje i ocena sygnałów Srona: 1 1. CEL ĆWICZENIA Celem ćwiczenia jes zapoznanie się z podsawowymi rodzajami sygnałów, ich właściwościami oraz zdobycie umiejęności generowania prosych przebiegów sygnałów zdeerminowanych i losowych, a akże ich właściwej analizy - oceny i inerpreacji.. WPROWADZENIE.1. POJĘCIE SYGNAŁU Sygnał jes inaczej mówiąc nośnikiem informacji. Każdy z nas zna wiele rodzajów sygnałów, kóre niosą ze sobą informację, np. sygnał dźwiękowy w samochodzie osrzeżenie, sygnał świelny na skrzyżowaniu informacja o kierunku przepływu srumienia pojazdów, id. Powyższe przykłady pozwalają na prose przedsawienie idei sygnału. W prakyce znamy wiele rozwiązań różnych urządzeń dosarczających informacji o zmianie lub zaisnieniu pewnych zjawisk fizycznych (np. ermomer, ciśnieniomierz, ip.). Jeżeli naomias pierwoną posać ej informacji (emperaura, ciśnienie, przemieszczenie) zamienimy na bezpośrednio z nią związaną wielkość elekryczną (np. napięcie, prąd, id.), o ę wielkość elekryczną można nazwać sygnałem [1]. W celu pełnego zobrazowania pojęcia sygnału poniżej przyoczono fragmen definicji zaczerpnięej z Encyklopedii Mulimedialnej PWN: Sygnał, nośnik wiadomości (informacji) umożliwiający jej przesyłanie na odległość lub w czasie (rejesrację); może mieć posać umownego znaku (np. rysunku, lier) lub przebiegu wielkości fizycznej, kórego co najmniej jeden paramer (np. kszał, częsoliwość, ampliuda) zależy od przesyłanej nim wiadomości; rozróżnia się sygnały elekryczne (np. zmieniające się napięcie lub naężenie prądu), akusyczne (zmieniająca się częsoliwość dźwięku), opyczne (zmieniające się naężenie lub barwa świała), id... KLASYFIKACJA SYGNAŁÓW Wszyskie sygnały możemy podzielić w sposób przedsawiony na Rys.1. Ponieważ w ramach ćwiczenia nie będziemy zajmować się analizą sygnałów losowych (z wyjąkiem generowania sygnału szumu), dlaego eż podział sygnałów losowych nie zosał rozwinięy. SYGNAŁY Zdeerminowane Losowe Okresowe Nieokresowe Harmoniczne Poliharmoniczne Rys.1. Podsawowa klasyfikacja sygnałów Sygnały zdeerminowane o akie, kórych przebiegi można w sposób jednoznaczny opisać za pomocą funkcji maemaycznych, przy czym opis en nie może zawierać wielkości losowych. Innymi słowy sygnałowi ego ypu można przyporządkować model maemayczny, będący funkcją czasu, prędkości, położenia, id. Sygnały losowe o akie, kórych nie można jednoznacznie opisać za pomocą funkcji maemaycznych, W celu dokonania opisu sygnałów losowych należy użyć meod saysycznych.

2 Kaedra Podsaw Sysemów echnicznych - Podsawy merologii - Ćwiczenie 1. Podsawowe rodzaje i ocena sygnałów Srona: Sygnały okresowe o akie, kóre w dziedzinie czasu można opisać funkcją x() aką, że isnieje należące do przedziału 0<<+, że dla każdej chwili czasu zachodzi równość: przy czym warość nazywa się okresem sygnału. x(+) x(), Sygnały nieokresowe sygnały, dla kórych nie jes spełniony warunek okresowości. Sygnały harmoniczne o akie, kóre w dziedzinie czasu można opisać funkcją harmoniczną: gdzie: x() A cos ( π f o + ϕ) A ampliuda sygnału (np. w mm), f o częsoliwość (w Hz, czyli liczbie cykli na sekundę), π f o ω o częsoliwość kąowa (w rad/s), ϕ - przesunięcie fazowe (rad), rozparywana chwila czasu (s). Sygnały poliharmoniczne o akie, kóre są kombinacją liniową co najmniej dwóch sygnałów harmonicznych, zwanych sygnałami składowymi. Liczba składowych sygnału poliharmonicznego może być w ogólnym przypadku nieskończona. Poniżej przedsawiono przykład opisu maemaycznego sygnału poliharmonicznego złożonego z sumy dwóch składowych harmonicznych: x() A 1 cos ( π f o1 + ϕ 1 ) + A sin ( π f o + ϕ ) Aby sygnał mógł być uznany za poliharmoniczny, częsoliwość każdej jego składowej musi być całkowią wielokronością pewnej częsoliwości f zwanej częsoliwością podsawową. 1) ) 3) x() x() a) x() x() x() b) x() Rys.. Przykłady realizacji sygnałów: 1) nieokresowych, ) okresowych: a) harmonicznego, b) poliharmonicznego, 3) losowych.

3 Kaedra Podsaw Sysemów echnicznych - Podsawy merologii - Ćwiczenie 1. Podsawowe rodzaje i ocena sygnałów Srona: 3.3. POJĘCIE CZASU, DZIEDZINA CZASU Dziedzina czasu, sanowi obszar obserwacji i opisu sygnału. Jeżeli obserwujemy przebieg pewnej wielkości fizycznej, kóry jes obserwowany lub rejesrowany w pewnych odsępach czasowych (np. pomiar warości skuecznej przyspieszeń drgań mierzony na obudowie łożyska urbozespołu i próbkowany z pewną sałą częsoliwością) o en przebieg da się przedsawić jako funkcję czasu. Jeżeli sygnał en będziemy zapisywać sosując odpowiedni rejesraor, o orzymamy przebieg czasowy przyspieszeń drgań w dziedzinie czasu. Przebieg aki nosi nazwę realizacji sygnału. ak więc wszyskie sygnały obserwowane w dziedzinie czasu dosarczają informacji o czasowej realizacji (czasowym przebiegu) sygnału. Podsawowym pojęciem w powyższych rozważaniach jes czas. Czas w ujęciu diagnosycznym można podzielić na czas mikro i czas makro. Czas mikro jes o czas w kórym dokonuje się obserwacji realizacji sygnału wyrażany w ms, µs, s, naomias czas makro jes czasem życia obieku lub czasem wysępowania pewnych rzadkich zjawisk wyrażany np. w dniach, miesiącach, laach, id..4. SYGNAŁY CIĄGŁE I DYSKRENE Z rejesracją sygnałów wiążą się pojęcia sygnału ciągłego i dyskrenego. Różnica pomiędzy nimi polega na zapisie i przechowywaniu realizacji sygnału. Przyjrzyjmy się poniższym definicjom [4] i komenarzom: Sygnał ciągły jes sygnałem analogowym, kórego warości należą do ciągłego (nieprzeliczalnego) zbioru i mogą się zmieniać w dowolnej chwili. Sygnał ciągły można uzyskać w wyniku rejesracji na aśmie magneofonowej dowolnego przebiegu wielkości fizycznej w czasie rzeczywisym. Jego zaleą jes o, że zawiera on wszelkie informacje o zmianie wielkości mierzonej w czasie Sygnał dyskreny sygnał, kórego warości należą do zbioru przeliczalnego (dyskrenego). Jes o inaczej sygnał, kóry uzyskamy w wyniku ciągłego prowadzenia pomiaru i zapisu warości sygnału w pewnych odsępach czasowych np. co 10 s. Sygnał cyfrowy sygnał dyskreny, kórego warości nalezą do zbioru skończonego. Jes o sygnał, kórego reprezenację czasową zapisuje się za pomocą cyfrowych urządzeń, w wyniku czego z uwagi na skończoną wielkość pamięci można zapisać ylko określoną liczbę warości realizacji czasowej sygnału, np. 5,6 kb próbek sygnału. Sygnał ciągły można rakować jako sygnał dyskreny o nieskończenie małej rozdzielczości częsoliwościowej, czyli o nieskończenie małym czasie pomiędzy zanoowanymi dwoma kolejnymi warościami sygnału..5. SYGNAŁY HARMONICZNE Na Rys.. przedsawiono przykładowy przebieg sinusoidalnego sygnału harmonicznego, przy czym: A reprezenuje ampliudę przebiegu, a ϕ - jes przesunięciem fazowym mierzonym w [rad] od począku osi czasu. Rozparywany sygnał jes okresowy, a więc powarza się co jeden pełny okres (cykl). Liczba okresów sygnału w jednosce czasu, zliczona w czasie 1 sekundy realizacji sygnału, nosi nazwę częsoliwości sygnału f o i wyrażana jes w Hz. Zależność pomiędzy okresem sygnału a częsoliwością jes nasępująca: 1 f o

4 Kaedra Podsaw Sysemów echnicznych - Podsawy merologii - Ćwiczenie 1. Podsawowe rodzaje i ocena sygnałów Srona: 4 x() A + P-P ϕ Rys.. Przykładowy przebieg sygnału harmonicznego (funkcja sinusoidalna) Sygnały harmoniczne opisywane są również za pomocą cech liczbowych. Są o: Warość średnia (): o+ 1 x( ) d A 0, 637 A π o Warość skueczna (): - jes o pierwiasek z warości średniej podniesionej do kwadrau A x 707 Warość szczyowa dodania i ujemna (+, -): Warość międzyszczyowa (szczy-szczy; P-P): 0 () d 0, A + max x( ) A min x( ) P P + A A Pomiędzy przedsawionymi powyżej wielkościami zachodzą związki, kóre przedsawiono poniżej w posaci współczynników. Należy również podkreślić, że podane we wzorach warości liczbowe doyczą sygnałów harmonicznych. Współczynnik kszału (K): K π 1,111 Współczynnik szczyu (C): C 1,414 Współczynnik impulsowości (I): π I 1,571

5 Kaedra Podsaw Sysemów echnicznych - Podsawy merologii - Ćwiczenie 1. Podsawowe rodzaje i ocena sygnałów Srona: 5.6. POJĘCIE SZUMU Pojęcie szumu możemy inerpreować jako wszelkiego rodzaju zakłócenia wysępujące podczas obserwacji różnych sygnałów bądź zjawisk. Najprosszym przykładem jes prowadzenie rozmowy w parku. Sygnałem informacyjnym są fale dźwiękowe (mowa), naomias zakłóceniem jes szum liści. W pewnych przypadkach szum en może być ak silny, że będzie niemal całkowicie zakłócał sygnał mowy. Innym przykładem są szumy własne urządzeń elekronicznych, nośników magneycznych, urządzeń pomiarowych, ip. ak więc wysępowanie zakłóceń (szumów) jes zjawiskiem normalnym i bardzo częsym. W ujęciu diagnosycznym - cechą charakerysyczną szumu jes losowość (przypadkowość) przebiegu. Isnieją meody pozwalające na wyizolowanie sygnału od szumu j. korelacja, uśrednianie synchroniczne, filracja, czy eż zasosowanie algorymów wygładzania wykładniczego. Zasosowanie poszczególnych meod zależy przede wszyskim od ypu sygnału oraz od ego, co chcemy z sygnału uzyskać np. składową harmoniczną. Dla porzeb symulacji dyskrenych przebiegów szumu (realizowanej kompuerowo) wyróżnić można szum o rozkładzie: jednosajnym, kóry jes określony przez dolną i górną granicę zakresu liczb. Zmienne są generowane z równym prawdopodobieńswem spośród wszyskich warości zakresu, np. od 0 do 1. normalnym, kóry charakeryzują dwie wielkości: warość średnia i odchylenie sandardowe. W przypadku warości średniej równej 1 i odchyleniu równym 0 uzyskamy linie prosą o równaniu y1. dyskreny, określony przez warości i związane z nimi prawdopodobieńswa. Suma prawdopodobieńsw musi być równa 1. Bernoulliego oraz Poissona. LIERAURA: 1. K.G.Beauchamp: Przewarzanie sygnałów meodami analogowymi i cyfrowymi. WN Warszawa Cholewa W, Moczulski W.: Diagnosyka echniczna maszyn. Pomiary i analiza sygnałów. Skryp uczelniany Poliechniki Śląskiej nr1758. Gliwice 1993r. 3. Cholewa W., Kaźmierczak J.: Diagnosyka echniczna maszyn. Przewarzanie cech sygnałów. Skryp uczelniany Poliechniki Śląskiej nr Gliwice 199r. 4. Żółowski B., Ćwik Z.: Leksykon diagnosyki echnicznej. Wydawnicwa uczelniane AR Bydgoszcz. Warszawa 1996.

WYZNACZANIE CECH PUNKTOWYCH SYGNAŁÓW POMIAROWYCH

WYZNACZANIE CECH PUNKTOWYCH SYGNAŁÓW POMIAROWYCH PODSTAWY SYGNAŁÓW POMIAROWYCH I METROLOGII WYZNACZANIE CECH PUNKTOWYCH SYGNAŁÓW POMIAROWYCH WSTĘP TEORETYCZNY Sygnałem nazywamy przebieg dowolnej wielkości fizycznej mogącej być nośnikiem informacji Opis

Bardziej szczegółowo

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część I Napięcie, naężenie i moc prądu elekrycznego Sygnały elekryczne i ich klasyfikacja Rodzaje układów elekronicznych Janusz Brzychczyk IF UJ Elekronika Dziedzina nauki i echniki

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

Sygnały zmienne w czasie

Sygnały zmienne w czasie Sygnały zmienne w czasie a) b) c) A = A = a A = f(+) d) e) A d = A = A sinω / -A -A ys.. odzaje sygnałów: a)sały, b)zmienny, c)okresowy, d)przemienny, e)sinusoidalny Sygnały zmienne okresowe i ich charakerysyczne

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 5 PROSTOWNIKI DO UŻYTKU

Bardziej szczegółowo

Szeregi Fouriera. Powyższe współczynniki można wyznaczyć analitycznie z następujących zależności:

Szeregi Fouriera. Powyższe współczynniki można wyznaczyć analitycznie z następujących zależności: Trygonomeryczny szereg Fouriera Szeregi Fouriera Każdy okresowy sygnał x() o pulsacji podsawowej ω, spełniający warunki Dirichlea:. całkowalny w okresie: gdzie T jes okresem funkcji x(), 2. posiadający

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

Parametry czasowe analogowego sygnału elektrycznego. Czas trwania ujemnej części sygnału (t u. Pole dodatnie S 1. Pole ujemne S 2.

Parametry czasowe analogowego sygnału elektrycznego. Czas trwania ujemnej części sygnału (t u. Pole dodatnie S 1. Pole ujemne S 2. POLIECHNIK WROCŁWSK, WYDZIŁ PP I- LBORORIUM Z PODSW ELEKROECHNIKI I ELEKRONIKI Ćwiczenie nr 9. Pomiary podsawowych paramerów przebiegów elekrycznych Cel ćwiczenia: Celem ćwiczenia jes zapoznanie ćwiczących

Bardziej szczegółowo

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia Pomiary częsoliwości i przesunięcia fazowego sygnałów okresowych POMIARY CZĘSOLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Cel ćwiczenia Poznanie podsawowych meod pomiaru częsoliwości i przesunięcia

Bardziej szczegółowo

Przetwarzanie analogowocyfrowe

Przetwarzanie analogowocyfrowe Przewarzanie analogowocyfrowe Z. Serweciński 05-03-2011 Przewarzanie u analogowego na cyfrowy Proces przewarzania u analogowego (ciągłego) na cyfrowy składa się z rzech podsawowych operacji: 1. Próbkowanie

Bardziej szczegółowo

ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ

ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ Ćwiczenie 8 ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ. Cel ćwiczenia Analiza złożonego przebiegu drgań maszyny i wyznaczenie częsoliwości składowych harmonicznych ego przebiegu.. Wprowadzenie

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się: Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili

Bardziej szczegółowo

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych Wydział Elekryczny, Kaedra Maszyn, Napędów i Pomiarów Elekrycznych Laboraorium Przewarzania i Analizy Sygnałów Elekrycznych (bud A5, sala 310) Insrukcja dla sudenów kierunku Auomayka i Roboyka do zajęć

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: = ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:

Bardziej szczegółowo

Badanie funktorów logicznych TTL - ćwiczenie 1

Badanie funktorów logicznych TTL - ćwiczenie 1 adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami

Bardziej szczegółowo

CHEMIA KWANTOWA Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoretycznej Zespół Chemii Kwantowej Grupa Teorii Reaktywności Chemicznej

CHEMIA KWANTOWA Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoretycznej Zespół Chemii Kwantowej Grupa Teorii Reaktywności Chemicznej CHEMI KWTOW CHEMI KWTOW Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoreycznej Zespół Chemii Kwanowej Grupa Teorii Reakywności Chemicznej LITERTUR R. F. alewajski, Podsawy i meody chemii kwanowej:

Bardziej szczegółowo

imei 1. Cel ćwiczenia 2. Zagadnienia do przygotowania 3. Program ćwiczenia

imei 1. Cel ćwiczenia 2. Zagadnienia do przygotowania 3. Program ćwiczenia CYFROWE PRZEWARZANIE SYGNAŁÓW Laboraorium Inżynieria Biomedyczna sudia sacjonarne pierwszego sopnia ema: Wyznaczanie podsawowych paramerów okresowych sygnałów deerminisycznych imei Insyu Merologii Elekroniki

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 8. Generatory przebiegów elektrycznych

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 8. Generatory przebiegów elektrycznych Cel ćwiczenia: Celem ćwiczenia jes zapoznanie sudenów z podsawowymi właściwościami ów przebiegów elekrycznych o jes źródeł małej mocy generujących przebiegi elekryczne. Przewidywane jes również (w miarę

Bardziej szczegółowo

Sformułowanie Schrödingera mechaniki kwantowej. Fizyka II, lato

Sformułowanie Schrödingera mechaniki kwantowej. Fizyka II, lato Sformułowanie Schrödingera mechaniki kwanowej Fizyka II, lao 018 1 Wprowadzenie Posać funkcji falowej dla fali de Broglie a, sin sin k 1 Jes o przypadek jednowymiarowy Posać a zosała określona meodą zgadywania.

Bardziej szczegółowo

Spis treści ZASTOSOWANIE PAKIETU MATLAB W OBLICZENIACH ZAGADNIEŃ ELEKTRYCZNYCH I41

Spis treści ZASTOSOWANIE PAKIETU MATLAB W OBLICZENIACH ZAGADNIEŃ ELEKTRYCZNYCH I41 Ćwiczenie I4 Poliechnika Białosocka Wydział Elekryczny Kaedra Elekroechniki Teoreycznej i Merologii Spis reści Insrukcja do pracowni specjalisycznej INFORMTYK Kod zajęć ESC 9 Tyuł ćwiczenia ZSTOSOWNIE

Bardziej szczegółowo

2. Wprowadzenie. Obiekt

2. Wprowadzenie. Obiekt POLITECHNIKA WARSZAWSKA Insyu Elekroenergeyki, Zakład Elekrowni i Gospodarki Elekroenergeycznej Bezpieczeńswo elekroenergeyczne i niezawodność zasilania laoraorium opracował: prof. dr ha. inż. Józef Paska,

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1) Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza

Bardziej szczegółowo

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami

Bardziej szczegółowo

Teoria systemów i sygnałów Kierunek AiR, sem. 5 2wE + 1l

Teoria systemów i sygnałów Kierunek AiR, sem. 5 2wE + 1l Teoria systemów i sygnałów Kierunek AiR, sem. 5 2wE + 1l Prof. dr hab. Wojciech Moczulski Politechnika Ślaska, Wydział Mechaniczny Technologiczny Katedra Podstaw Konstrukcji Maszyn 19 października 2008

Bardziej szczegółowo

KURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE. Strona 1

KURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE.   Strona 1 KURS EKONOMETRIA Lekcja 1 Wprowadzenie do modelowania ekonomerycznego ZADANIE DOMOWE www.erapez.pl Srona 1 Część 1: TEST Zaznacz poprawną odpowiedź (ylko jedna jes prawdziwa). Pyanie 1 Kóre z poniższych

Bardziej szczegółowo

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera.

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera. 7. Całka Fouriera w posaci rzeczywisej. Wykład VII Przekszałcenie Fouriera. Doychczas rozparywaliśmy szeregi Fouriera funkcji w ograniczonym przedziale [ l, l] lub [ ] Teraz pokażemy analogicznie przedsawienie

Bardziej szczegółowo

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Program ćwiczeń: Pomiary częsoliwości i przesunięcia fazowego sygnałów okresowych POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Cel ćwiczenia Celem ćwiczenia jes poznanie: podsawowych

Bardziej szczegółowo

ĆWICZENIE NR 43 U R I (1)

ĆWICZENIE NR 43 U R I (1) ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH POLIECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGEYKI INSYU MASZYN i URZĄDZEŃ ENERGEYCZNYCH IDENYFIKACJA PARAMERÓW RANSMIANCJI Laboraorium auomayki (A ) Opracował: Sprawdził: Zawierdził:

Bardziej szczegółowo

Podręcznik: Jan Machowski Regulacja i stabilność

Podręcznik: Jan Machowski Regulacja i stabilność dr hab. Désiré D. Rasolomampionona, pro. PW GM pok.111 STANY NEUSTALONE SYSTEMÓW ELEKTROENERGETYCZNYCH Wykład dla sem. sudiów sopnia Auomayka Elekroenergeyczna Podręcznik: Jan Machowski Regulacja i sabilność

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1. 1. W p r owadze n ie 1 Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1.1. WPROWADZENIE SYGNAŁ nośnik informacji ANALIZA SYGNAŁU badanie, którego celem jest identyfikacja własności, cech, miar sygnału; odtwarzanie

Bardziej szczegółowo

Cechy szeregów czasowych

Cechy szeregów czasowych energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas

Bardziej szczegółowo

PAlab_4 Wyznaczanie charakterystyk częstotliwościowych

PAlab_4 Wyznaczanie charakterystyk częstotliwościowych PAlab_4 Wyznaczanie charakerysyk częsoliwościowych Ćwiczenie ma na celu przedsawienie prakycznych meod wyznaczania charakerysyk częsoliwościowych elemenów dynamicznych. 1. Wprowadzenie Jedną z podsawowych

Bardziej szczegółowo

Ćwiczenie 133. Interferencja fal akustycznych - dudnienia. Wyznaczanie częstotliwości dudnień. Teoretyczna częstotliwość dudnienia dla danego pomiaru

Ćwiczenie 133. Interferencja fal akustycznych - dudnienia. Wyznaczanie częstotliwości dudnień. Teoretyczna częstotliwość dudnienia dla danego pomiaru Kaedra Fizyki SGGW Nazwisko... Daa... Nr na liście... Imię... Wydział... Dzień yg.... Godzina... Ćwiczenie 33 Inererencja al akusycznych - dudnienia Tabela I. Wyznaczanie częsoliwości dudnień Pomiar Czas,

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

... nazwisko i imię ucznia klasa data

... nazwisko i imię ucznia klasa data ... nazwisko i imię ucznia klasa daa Liczba uzyskanych punków Ocena TEST SPRAWDZAJĄCY Z PRZYRZĄDÓW POMIAROWYCH W dniu dzisiejszym przysąpisz do esu pisemnego, kóry ma na celu sprawdzenie Twoich umiejęności

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo

Wyznaczanie charakterystyk częstotliwościowych

Wyznaczanie charakterystyk częstotliwościowych Wyznaczanie charakerysyk częsoliwościowych Ćwiczenie ma na celu przedsawienie prakycznych meod wyznaczania charakerysyk częsoliwościowych elemenów dynamicznych. 1. Wprowadzenie Jedną z podsawowych meod

Bardziej szczegółowo

MULTIMETR CYFROWY. 1. CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zasadą działania, obsługą i możliwościami multimetru cyfrowego

MULTIMETR CYFROWY. 1. CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zasadą działania, obsługą i możliwościami multimetru cyfrowego 1 MLIMER CYFROWY 1. CEL ĆWICZEIA: Celem ćwiczenia jes zapoznanie się z zasadą działania, obsługą i możliwościami mulimeru cyfrowego 2. WPROWADZEIE: Współczesna echnologia elekroniczna pozwala na budowę

Bardziej szczegółowo

Gr.A, Zad.1. Gr.A, Zad.2 U CC R C1 R C2. U wy T 1 T 2. U we T 3 T 4 U EE

Gr.A, Zad.1. Gr.A, Zad.2 U CC R C1 R C2. U wy T 1 T 2. U we T 3 T 4 U EE Niekóre z zadań dają się rozwiązać niemal w pamięci, pamięaj jednak, że warunkiem uzyskania różnej od zera liczby punków za każde zadanie, jes przedsawienie, oprócz samego wyniku, akże rozwiązania, wyjaśniającego

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

AMD. Wykład Elektrotechnika z elektroniką

AMD. Wykład Elektrotechnika z elektroniką Andrzej M. Dąbrowski AGH Universiy of Science and Technology Kaedra Elekroechniki i Elekroenergeyki e-mail: amd@agh.edu.pl Wykład Elekroechnika z elekroniką Wykład. Informacje wsępne i organizacyjne, zaliczenie

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki, Katedra K-4. Klucze analogowe. Wrocław 2017

Politechnika Wrocławska Wydział Elektroniki, Katedra K-4. Klucze analogowe. Wrocław 2017 Poliechnika Wrocławska Klucze analogowe Wrocław 2017 Poliechnika Wrocławska Pojęcia podsawowe Podsawą realizacji układów impulsowych oraz cyfrowych jes wykorzysanie wielkosygnałowej pacy elemenów akywnych,

Bardziej szczegółowo

Wygładzanie metodą średnich ruchomych w procesach stałych

Wygładzanie metodą średnich ruchomych w procesach stałych Wgładzanie meodą średnich ruchomch w procesach sałch Cel ćwiczenia. Przgoowanie procedur Średniej Ruchomej (dla ruchomego okna danch); 2. apisanie procedur do obliczenia sandardowego błędu esmacji;. Wizualizacja

Bardziej szczegółowo

ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH

ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH Pior KISIELEWSKI, Łukasz SOBOTA ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH W arykule przedsawiono zasosowanie eorii masowej obsługi do analizy i modelowania wybranych sysemów

Bardziej szczegółowo

RUCH HARMONICZNY. sin. (r.j.o) sin

RUCH HARMONICZNY. sin. (r.j.o) sin RUCH DRGJĄCY Ruch harmoniczny Rodzaje drgań Oscylaor harmoniczny Energia oscylaora harmonicznego Wahadło maemayczne i fizyczne Drgania łumione Drgania wymuszone i zjawisko rezonansu RUCH HRMONICZNY Ruch

Bardziej szczegółowo

Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD

Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD 1. Cel ćwiczenia Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD Celem ćwiczenia jes poznanie własności dynamicznych diod półprzewodnikowych. Obejmuje ono zbadanie sanów przejściowych podczas procesu przełączania

Bardziej szczegółowo

Cyfrowe przetwarzanie sygnału przetwornika obrotowo-impulsowego

Cyfrowe przetwarzanie sygnału przetwornika obrotowo-impulsowego Cyfrowe przewarzanie sygnału przewornika obroowo-impulsowego Eligiusz PAWŁOWSKI Poliechnika Lubelska, Kaedra Auomayki i Merologii ul. Nadbysrzycka 38 A, 20-68 Lublin, email: elekp@elekron.pol.lublin.pl

Bardziej szczegółowo

VII. ZAGADNIENIA DYNAMIKI

VII. ZAGADNIENIA DYNAMIKI Konderla P. Meoda Elemenów Skończonych, eoria i zasosowania 47 VII. ZAGADNIENIA DYNAMIKI. Równanie ruchu dla zagadnienia dynamicznego Q, (7.) gdzie M NxN macierz mas, C NxN macierz łumienia, K NxN macierz

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy

Bardziej szczegółowo

Wybrane wiadomości o sygnałach. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych

Wybrane wiadomości o sygnałach. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych Wybrane wiadomości o sygnałach Przebieg i widmo Zniekszałcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych Przebieg i widmo analogowego. Sygnał sinsoidalny A ϕ sygnał okresowego

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

Analiza danych DRZEWA DECYZYJNE. Drzewa decyzyjne. Entropia. http://zajecia.jakubw.pl/ test 1 dopełnienie testu 1

Analiza danych DRZEWA DECYZYJNE. Drzewa decyzyjne. Entropia. http://zajecia.jakubw.pl/ test 1 dopełnienie testu 1 Analiza danych Drzewa decyzyjne. Enropia. Jakub Wróblewski jakubw@pjwsk.edu.pl hp://zajecia.jakubw.pl/ DRZEWA DECYZYJNE Meoda reprezenacji wiedzy (modelowania ablic decyzyjnych). Pozwala na przejrzysy

Bardziej szczegółowo

Drgania elektromagnetyczne obwodu LCR

Drgania elektromagnetyczne obwodu LCR Ćwiczenie 61 Drgania elekromagneyczne obwodu LCR Cel ćwiczenia Obserwacja drgań łumionych i przebiegów aperiodycznych w obwodzie LCR. Pomiar i inerpreacja paramerów opisujących obserwowane przebiegi napięcia

Bardziej szczegółowo

4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego

4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego 4.. Obliczanie przewodów grzejnych meodą dopuszczalnego obciążenia powierzchniowego Meodą częściej sosowaną w prakyce projekowej niż poprzednia, jes meoda dopuszczalnego obciążenia powierzchniowego. W

Bardziej szczegółowo

[ ] [ ] [ ] [ ] 1. Sygnały i systemy dyskretne (LTI, SLS) y[n] x[n] 1.1. Systemy LTI. liniowy system dyskretny

[ ] [ ] [ ] [ ] 1. Sygnały i systemy dyskretne (LTI, SLS) y[n] x[n] 1.1. Systemy LTI. liniowy system dyskretny Cyfrowe rzewarzanie sygnałów --. Sygnały i sysemy dyskrene (LTI, SLS).. Sysemy LTI Pojęcie sysemy LTI oznacza liniowe sysemy niezmienne w czasie (ang. Linear Time - Invarian ). W lieraurze olskiej częściej

Bardziej szczegółowo

ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach

ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach ROZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Kaowicach WYZNAZANIE PARAMETRÓW FUNKJI PEŁZANIA DREWNA W UJĘIU LOSOWYM * Kamil PAWLIK Poliechnika

Bardziej szczegółowo

Temat VIII. Drgania harmoniczne

Temat VIII. Drgania harmoniczne Tema VIII Drgania harmoniczne Równanie ruchu F k Siła k m Równanie ruchu sin cos Położenie równowagi w ruchu drgającym Położenie równowagi o akie położenie, w kórym siły wymuszające ruch równoważą się

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( ) Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa

Bardziej szczegółowo

Podstawowe wyidealizowane elementy obwodu elektrycznego Rezystor ( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( τ ) i t i t u ( ) u t u t i ( ) i t. dowolny.

Podstawowe wyidealizowane elementy obwodu elektrycznego Rezystor ( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( τ ) i t i t u ( ) u t u t i ( ) i t. dowolny. Tema. Opracował: esław Dereń Kaedra Teorii Sygnałów Insyu Telekomunikacji Teleinformayki i Akusyki Poliechnika Wrocławska Prawa auorskie zasrzeżone Podsawowe wyidealizowane elemeny obwodu elekrycznego

Bardziej szczegółowo

1. POJĘCIA PODSTAWOWE ELEKTROTECHNIKI. SYGNAŁY ELEKTRYCZNE I ICH KLASYFIKACJA

1. POJĘCIA PODSTAWOWE ELEKTROTECHNIKI. SYGNAŁY ELEKTRYCZNE I ICH KLASYFIKACJA 1. POJĘCIA PODSAWOWE ELEKROECHNIKI. SYGNAŁY ELEKRYCZNE I ICH KLASYIKACJA 1.1. WPROWADZENIE WIELKOŚĆ (MIERZALNA) - cecha zjawiska, ciała lub substancji, którą można wyrazić jakościowo i wyznaczyć ilościowo.

Bardziej szczegółowo

Ćwiczenie E-5 UKŁADY PROSTUJĄCE

Ćwiczenie E-5 UKŁADY PROSTUJĄCE KŁADY PROSJĄCE I. Cel ćwiczenia: pomiar podsawowych paramerów prosownika jedno- i dwupołówkowego oraz najprosszych filrów. II. Przyrządy: płyka monaŝowa, wolomierz magneoelekryczny, wolomierz elekrodynamiczny

Bardziej szczegółowo

13. Optyczne łącza analogowe

13. Optyczne łącza analogowe TELEKOMUNIKACJA OPTOFALOWA 13. Opyczne łącza analogowe Spis reści: 13.1. Wprowadzenie 13.. Łącza analogowe z bezpośrednią modulacją mocy 13.3. Łącza analogowe z modulacją zewnęrzną 13.4. Paramery łącz

Bardziej szczegółowo

Temat 6. ( ) ( ) ( ) k. Szeregi Fouriera. Własności szeregów Fouriera. θ możemy traktować jako funkcje ω, których dziedziną jest dyskretny zbiór

Temat 6. ( ) ( ) ( ) k. Szeregi Fouriera. Własności szeregów Fouriera. θ możemy traktować jako funkcje ω, których dziedziną jest dyskretny zbiór ema 6 Opracował: Lesław Dereń Kaedra eorii Sygnałów Insyu eleomuniacji, eleinformayi i Ausyi Poliechnia Wrocławsa Prawa auorsie zasrzeżone Szeregi ouriera Jeżeli f ( ) jes funcją oresową o oresie, czyli

Bardziej szczegółowo

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego. Badanie liczników

Instrukcja do ćwiczenia laboratoryjnego. Badanie liczników Insrukcja do ćwiczenia laboraoryjnego Badanie liczników Opracował: mgr inż. Andrzej Biedka Wymagania, znajomość zagadnień: 3. 4. Budowa licznika cyfrowego. zielnik częsoliwości, różnice między licznikiem

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /

Bardziej szczegółowo

TEORIA PRZEKSZTAŁTNIKÓW. Kurs elementarny Zakres przedmiotu: ( 7 dwugodzinnych wykładów :)

TEORIA PRZEKSZTAŁTNIKÓW. Kurs elementarny Zakres przedmiotu: ( 7 dwugodzinnych wykładów :) W1. Wiadomości wsępne EORA PRZEKSZAŁNKÓW W. Przekszałniki sieciowe 1 W3. Przekszałniki sieciowe Kurs elemenarny Zakres przedmiou: ( 7 dwugodzinnych wykładów :) W4. Złożone i specjalne układy przekszałników

Bardziej szczegółowo

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II

Bardziej szczegółowo

LABORATORIUM Z ELEKTRONIKI

LABORATORIUM Z ELEKTRONIKI LABORAORIM Z ELEKRONIKI PROSOWNIKI Józef Boksa WA 01 1. PROSOWANIKI...3 1.1. CEL ĆWICZENIA...3 1.. WPROWADZENIE...3 1..1. Prosowanie...3 1.3. PROSOWNIKI NAPIĘCIA...3 1.4. SCHEMAY BLOKOWE KŁADÓW POMIAROWYCH...5

Bardziej szczegółowo

licencjat Pytania teoretyczne:

licencjat Pytania teoretyczne: Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie

Bardziej szczegółowo

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH Franciszek SPYRA ZPBE Energopomiar Elekryka, Gliwice Marian URBAŃCZYK Insyu Fizyki Poliechnika Śląska, Gliwice DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

METROLOGICZNE WŁASNOŚCI SYSTEMU BADAWCZEGO

METROLOGICZNE WŁASNOŚCI SYSTEMU BADAWCZEGO PROBLEY NIEONWENCJONALNYCH ŁADÓW ŁOŻYSOWYCH Łódź, 4 maja 999 r. Jadwiga Janowska, Waldemar Oleksiuk Insyu ikromechaniki i Fooniki, Poliechnika Warszawska ETROLOGICZNE WŁASNOŚCI SYSTE BADAWCZEGO SŁOWA LCZOWE:

Bardziej szczegółowo

Ewa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu. Analiza wrażliwości modelu wyceny opcji złożonych

Ewa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu. Analiza wrażliwości modelu wyceny opcji złożonych DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 7 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika w Toruniu

Bardziej szczegółowo

CYFROWE PRZETWARZANIE SYGNAŁÓW

CYFROWE PRZETWARZANIE SYGNAŁÓW POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Analiza korelacyjna sygnałów dr hab. inż.

Bardziej szczegółowo

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia

Bardziej szczegółowo

ĆWICZENIE 7 POMIARY CZĘSTOTLIWOŚCI I CZASU

ĆWICZENIE 7 POMIARY CZĘSTOTLIWOŚCI I CZASU ĆWICZENIE 7 POMIARY CZĘSTOTLIWOŚCI I CZASU 5. Cel ćwiczenia Celem ćwiczenia jes poznanie podsawowych meod pomiaru częsoliwości, okresu, czasu rwania impulsu, czasu przerwy, ip. 5.2 Wprowadzenie Częsoliwością

Bardziej szczegółowo

WYKŁAD FIZYKAIIIB 2000 Drgania tłumione

WYKŁAD FIZYKAIIIB 2000 Drgania tłumione YKŁD FIZYKIIIB Drgania łumione (gasnące, zanikające). F siła łumienia; r F r b& b współczynnik łumienia [ Nm s] m & F m & && & k m b m F r k b& opis różnych zjawisk izycznych Niech Ce p p p p 4 ± Trzy

Bardziej szczegółowo

Ćwiczenie: "Mierniki cyfrowe"

Ćwiczenie: Mierniki cyfrowe Ćwiczenie: "Mierniki cyfrowe" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Próbkowanie

Bardziej szczegółowo

Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona

Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona Całka nieoznaczona Andrzej Musielak Sr Całka nieoznaczona Całkowanie o operacja odwrona do liczenia pochodnych, zn.: f()d = F () F () = f() Z definicji oraz z abeli pochodnych funkcji elemenarnych od razu

Bardziej szczegółowo

Przetworniki analogowo-cyfrowe.

Przetworniki analogowo-cyfrowe. POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIEII ŚODOWISKA I ENEGETYKI INSTYTUT MASZYN I UZĄDZEŃ ENEGETYCZNYCH LABOATOIUM ELEKTYCZNE Przeworniki analogowo-cyfrowe. (E 11) Opracował: Dr inż. Włodzimierz OGULEWICZ

Bardziej szczegółowo

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar. EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b

Bardziej szczegółowo

Sygnały pojęcie i klasyfikacja, metody opisu.

Sygnały pojęcie i klasyfikacja, metody opisu. Sygały pojęcie i klasyfikacja, meody opisu. Iformacja przekazywaa jes za pośredicwem sygałów, kóre przeoszą eergię. Sygał jes o fukcja czasowa dowolej wielkości o charakerze eergeyczym, w kórym moża wyróżić

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7

INSTRUKCJA DO ĆWICZENIA NR 7 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety

Bardziej szczegółowo

Układy sekwencyjne asynchroniczne Zadania projektowe

Układy sekwencyjne asynchroniczne Zadania projektowe Układy sekwencyjne asynchroniczne Zadania projekowe Zadanie Zaprojekować układ dwusopniowej sygnalizacji opycznej informującej operaora procesu o przekroczeniu przez konrolowany paramer warości granicznej.

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 13

RÓWNANIA RÓŻNICZKOWE WYKŁAD 13 RÓWNANIA RÓŻNICZKOWE WYKŁAD 13 Geomeria różniczkowa Geomeria różniczkowa o dział maemayki, w kórym do badania obieków geomerycznych wykorzysuje się meody opare na rachunku różniczkowym. Obieky geomeryczne

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody

Bardziej szczegółowo

Wykład 4 Metoda Klasyczna część III

Wykład 4 Metoda Klasyczna część III Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)

Bardziej szczegółowo

i j k Oprac. W. Salejda, L. Bujkiewicz, G.Harań, K. Kluczyk, M. Mulak, J. Szatkowski. Wrocław, 1 października 2015

i j k Oprac. W. Salejda, L. Bujkiewicz, G.Harań, K. Kluczyk, M. Mulak, J. Szatkowski. Wrocław, 1 października 2015 WM-E; kier. MBM, lisa za. nr. p. (z kary przemiou): Rozwiązywanie zaań z zakresu: ransformacji ukłaów współrzęnych, rachunku wekorowego i różniczkowo-całkowego o kursu Fizyka.6, r. ak. 05/6; po koniec

Bardziej szczegółowo

Detektor Fazowy. Marcin Polkowski 23 stycznia 2008

Detektor Fazowy. Marcin Polkowski 23 stycznia 2008 Detektor Fazowy Marcin Polkowski marcin@polkowski.eu 23 stycznia 2008 Streszczenie Raport z ćwiczenia, którego celem było zapoznanie się z działaniem detektora fazowego umożliwiającego pomiar słabych i

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie

Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie Wykład 5 Elemeny eorii układów liniowych sacjonarnych odpowiedź na dowolne wymuszenie Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska

Bardziej szczegółowo