Funkcja generująca rozkład (p-two)

Podobne dokumenty
Rozkład normalny (Gaussa)

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka

Wykład 8: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala, Poissona. Przybliżenie Poissona rozkładu dwumianowego.

Wyższe momenty zmiennej losowej

Erlanga. Znajdziemy rozkład czasów oczekiwania na n-te zdarzenie. Łączny czas oczekiwania. na n zdarzeń dany jest przez: = u-v i t 2.

Twierdzenia graniczne:

Matematyka ubezpieczeń majątkowych r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych r.

Podstawowe rozkłady zmiennych losowych typu dyskretnego

Wstęp. zbiór wszystkich zdarzeń elementarnych (sample space), S zbiór zdarzeń, (events), P prawdopodobieństwo (probability distribution).

M. Przybycień Rachunek prawdopodobieństwa i statystyka Wykład 7-2

1 Twierdzenia o granicznym przejściu pod znakiem całki

Modele zmienności aktywów ryzykownych. Model multiplikatywny Rozkład logarytmiczno-normalny Parametry siatki dwumianowej

21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b,

1. Element nienaprawialny, badania niezawodności. Model matematyczny elementu - dodatnia zmienna losowa T, określająca czas życia elementu

Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne

Rozkład normalny (Gaussa)

Prawdopodobieństwo i statystyka r.

ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE

EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą

Estymatory nieobciążone o minimalnej wariancji

Rozkład normalny (Gaussa)

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w

Pobieranie próby. Rozkład χ 2

są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X

oznaczają łączne wartości szkód odpowiednio dla k-tego kontraktu w t-tym roku. O składnikach naszych zmiennych zakładamy, że:

Prawdopodobieństwo i statystyka

będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,

Statystyka matematyczna. Wykład II. Estymacja punktowa

Komputerowa analiza danych doświadczalnych

Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja

θx θ 1, dla 0 < x < 1, 0, poza tym,

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe

D:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora.

P ( i I A i) = i I P (A i) dla parami rozłącznych zbiorów A i. F ( ) = lim t F (t) = 0, F (+ ) = lim t + F (t) = 1.

Lista 6. Estymacja punktowa

1 Przedziały ufności. ). Obliczamy. gdzie S pochodzi z rozkładu B(n, 1 2. P(2 S n 2) = 1 P(S 2) P(S n 2) = 1 2( 2 n +n2 n +2 n ) = 1 (n 2 +n+2)2 n.

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych

Podprzestrzenie macierzowe

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )

Twierdzenie 15.3 (o postaci elementów rozszerzenia ciała o zbiór). Niech F będzie ciałem oraz A F pewnym zbiorem. Niech L<F.

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.

16 Przedziały ufności

Podprzestrzenie macierzowe

Statystyczne aspekty emisji, propagacji i detekcji. promieniowania jądrowego

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011

Zmienna losowa N ma rozkład ujemny dwumianowy z parametrami (, q) = 7,

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:

1 Zmienne losowe. Własności dystrybuanty F (x) = P (X < x): F1. 0 F (x) 1 dla każdego x R, F2. lim F (x) = 0 oraz lim F (x) = 1,

tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Twierdzenie Cayleya-Hamiltona

FUNKCJE ZMIENNYCH LOSOWYCH. Uwagi o rozkładzie funkcji zmiennej losowej jednowymiarowej.

Komputerowa analiza danych doświadczalnych

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy

Nr zadania Σ Punkty:

1 Układy równań liniowych

MIANO ROZTWORU TITRANTA. Analiza statystyczna wyników oznaczeń

Ekonometryczne modele nieliniowe

Sygnały pojęcie i klasyfikacja, metody opisu.

STATYSTKA I ANALIZA DANYCH LAB II

Marek Be±ka, Statystyka matematyczna, wykªad Wykªadnicze rodziny rozkªadów prawdopodobie«stwa

Komputerowa analiza danych doświadczalnych

STATYSTYKA MATEMATYCZNA

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

npq jest funkcją gęstości zmiennej losowej X? Po wyznaczeniu k proszę znaleźć: dystrybuantę, kwartyl drugi,

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

Metody Lagrange a i Hamiltona w Mechanice

7. Różniczkowanie. x x. f (x 0 ) = df(x). dx x=x0 Pierwsze oznaczenie pochodzi od Lagrange a, a drugie od Leibniza.

ELEMENTY SYSTEMÓW KOLEJKOWYCH

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

n n X n = σ σ = n n n Ponieważ zmienna losowa standaryzowana ma rozkład normalny N(0, 1), więc

Wykład z Rachunku Prawdopodobieństwa II

Analityczne reprezentacje sygnałów ciągłych

Zadania z analizy matematycznej - sem. I Szeregi liczbowe

Analiza obwodów elektrycznych z przebiegami stochastycznymi. Dariusz Grabowski

Wykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

WYKŁAD 1. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

Statystyka Matematyczna. Skrypt. Spis treści. SKN Matematyki Stosowanej. s k n. m s 23 kwietnia Oznaczenia i definicje 3

Komputerowa analiza danych doświadczalnych

Statystyka Inżynierska

Charakterystyki czasowe i częstotliwościowe układów automatyki. Podczas ćwiczenia poruszane będą następujące zagadnienia:

40:5. 40:5 = υ5 5p 40, 40:5 = p 40.

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona

Symulacyjna metoda doboru optymalnych parametrów w prognostycznych modelach wygładzania wykładniczego

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

Komputerowa analiza danych doświadczalnych

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera.

Wykład 4 Metoda Klasyczna część III

a 1, a 2, a 3,..., a n,...

Analiza matematyczna dla informatyków 4 Zajęcia 5

Komputerowa analiza danych doświadczalnych

Transkrypt:

Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są zmieymi losowymi przyjmującymi g g p p warości całowie ieujeme o Twierdzeie: iech,,..., będą iezależymi zmieymi losowymi o warościach całowiych ieujemych, oraz iech S + +... + wówczas: Dowód: g g S gs E E E g [ + +... + ] [ ] Wiose: Jeśli wszysie zmiee,,..., podlegają emu samemu rozładowi, wedy: g g S M. Przybycień Rachue prawdopodobieńswa i saysya Wyład 8-

Fucja geerująca rozład (p-wo FGP geeruje prawdopodobieńswo, poieważ: ( g... + P Twierdzeie: iech będzie ieujemą zmiea losową o warościach całowiych oraz iech E < dla pewego,,, wedy ( [ ] E... + g Wiose: W szczególości dla i mamy E E < E[ ] g M. Przybycień Rachue prawdopodobieńswa i saysya Wyład 8-3 P( [ ] [ ] < V g + g g Przyład: FGP dla rozładu Berouliego: ( g p + p q + p Przyład: FGP dla rozładu dwumiaowego: g p q q p ( + [ ] g p [ ] ( g! E V g + g ( g pq [ ] g p [ ] E V g + g ( g pq

Fucja geerująca rozład (p-wo Przyład: FGP dla rozładu geomeryczego ( P pq,,,... zajdujemy FGP: p g pq p ( q dla < q, q Zajdziemy FGP dla sumy iezależych zmieych z rozładu geomeryczego (Fs: P S S + +... + oraz sam rozład p-wa: ( p gs g q ( g S p q ( q! +! + ( +! + p q p q,,,... (!! Dooując zmiay idesu, orzymujemy rozład ujemy dwumiaowy w sadardowej posaci: j j + j P( S j p q, j, +,... M. Przybycień Rachue prawdopodobieńswa i saysya Wyład 8-4

Fucja geerująca mome Defiicja: Fucją geerującą mome (FGM dla zmieej losowej azywamy fucję zmieej rzeczywisej posaci: pod waruiem, że isieje sała h> aa, że powyższa warość oczeiwaa isieje dla [ ] ψ E Twierdzeie: (o jedozaczości Jeśli i są zmieymi losowymi dla órych w pewym obszarze isieją FGM, o ψ ( ψ ( f ( x f ( y M. Przybycień Rachue prawdopodobieńswa i saysya Wyład 8-5 Twierdzeie: iech,,..., będą iezależymi zmieymi losowymi dla órych isieją FGM, oraz iech S + +... + wówczas: Dowód: < h ψ ( ψ ( ( + +... + ψ S E e E e E e ψ Wiose: Jeśli wszysie zmiee,,..., podlegają emu samemu rozładowi, wedy: ψ S ψ S e [ ] [ ]

Fucja geerująca mome ψ ( Twierdzeie: iech będzie zmieą losową, dla órej FGM isieje dla < h, gdzie h >, wedy isieją wszysie momey zmieej i są oreśloe przez: E Dowód (zmiea ciągła: d ψ la,,... d [ ] d + + x x r x x x x e f ( x dx < x > mamy e f ( x dx < i e f ( x dx < Poieważ dla dowolego r > zachodzi x / e dla x więc: + x x + r r r r x f ( x dx x f ( x dx + x f ( x dx + x f ( x dx x x x + x x r x ( e f x dx + x P x + e f x dx < Różiczując FGM -roie dosajemy: + + x e f x dx x f x dx E ( x ( [ ] ψ ψ M. Przybycień Rachue prawdopodobieńswa i saysya Wyład 8-6

Fucja geerująca mome Przyład: FGM dla rozładu dwumiaowego e p ( p ( pe p ψ + ( E[ ] ψ pe + p pe ψ p ( ( E ψ p + p Przyład: FGM dla rozładu wyładiczego ψ pe + p pe + e + p pe x x x e e λ dx e λ λ ψ λ λ dx, dla <λ λ / λ (! λ [ ]! ψ E + ( λ λ! ψ + / λ λ λ! M. Przybycień Rachue prawdopodobieńswa i saysya Wyład 8-7 [ ]!! Ogólie: ψ [ ] [ ] E e E + + E

Twierdzeie: Jeśli jes FGM zmieej, o FGM zmieej daa jes przez Dowód: Fucja geerująca mome ψ ( ψ [ ] ( α +β e β ψ ( α α +β α +β [ ] α β β [ ] ψ ψ α E e E e E e e e Przyład: FGM dla rozładu ormalego x / (, exp, dla - < Defiicja: Fucją geerującą mome (FGM dla weora losowego (,, azywamy fucję x ψ e dx e < π µ, σ pod waruiem, że isieją sałe h, h,, h > aie, że powyższa warość oczeiwaa isieje dla,,,,. +... + ( [ e ] ψ,...,,..., E Aby zaleźć FGM dla rozładu ormalego wyoujemy rasformację zmieej i orzysamy z powyższego wierdzeia: < h µ / µ+σ dla σ +µ ψ e ψ σ e, - < < M. Przybycień Rachue prawdopodobieńswa i saysya Wyład 8-8

Własości: Fucja charaerysycza Defiicja: Fucją charaerysyczą zmieej losowej azywamy fucję zmieej rzeczywisej posaci: i i [ ] ϕ E e E e ϕ i [ ] [ ] ϕ E e E cos + i si ( ϕ E[ cos( i si( ] E cos( + i si( ϕ [ ] Rozład zm. l. jes symeryczy wedy i ylo wedy gdy f. ch. jes rzeczywisa i [ ] Twierdzeie: (o jedozaczości iech i będą zmieymi losowymi. Wedy: f ( x f ( y ϕ ϕ Przyład: Fucja charaerysycza dla rozładu dwumiaowego i e p ( p ( pe i p ϕ + Przyład: Fucja charaerysycza dla rozładu wyładiczego i x e e dx e dx ix x λ λ λ ϕ λ λ λ i ϕ E e ϕ ϕ ϕ M. Przybycień Rachue prawdopodobieńswa i saysya Wyład 8-9

Fucja charaerysycza Twierdzeie: iech będzie zmieą losową o dysrybuacie F i fucji charaerysyczej ϕ. Jeśli F jes ciągła w puach a i b, o wedy: T ib ia e e F b F a lim ϕ d T π i T + ϕ d < + ix f ( x e ϕ d Twierdzeie: Jeśli spełioy jes warue o wówczas zmiea ma rozład ciągły o gęsości: Zajdujemy fucję gęsości p-wa: π Przyład: Zajdź gęsość p-wa zmieej losowej, órej fucja charaerysycza daa jes przez Sprawdzamy czy fucja charaerysycza jes całowala: + + ϕ d e 3 d e 3 d ϕ exp( i 3 < 3 3 f ( x d exp( ix + i π 3 π ( x + 9 M. Przybycień Rachue prawdopodobieńswa i saysya Wyład 8- +

Fucja charaerysycza Twierdzeie: Jeśli zmiea losowa ma rozład dysrey o wówczas: i p P K lim e ϕ d T T T i Przyład: Zajdź rozład p-wa, órego fucja charaerysycza ma posać ϕ e + + Sprawdzamy czy fucja charaerysycza jes całowala: ϕ d d Poieważ mamy do czyieia ze zmieą dysreą, więc: T T [ exp ] [ i ] p lim exp i d lim T T T T i( T si( T( { lim dla T T( dla Twierdzeie: iech,,..., będą iezależymi zmieymi losowymi dla órych isieją fucje ch., oraz iech S + +... + wówczas: M. Przybycień Rachue prawdopodobieńswa i saysya Wyład 8- T ϕ ϕ Twierdzeie: Jeśli jes f. ch. zmieej, o f.ch. zmieej jes przez ϕ ( ϕ i e β ϕ ( α S T α +β dae

Fucje charaerysycze Przyład: Zajdź rozład sumy dwóch iezależych zmieych losowych z rozładu Poissoa o paramerach µ i µ. Twierdzeie: Jeśli isieje -y mome zmieej losowej o jej fucja charaerysycza jes -roie różiczowala i zachodzi: [ ] d m E ϕ dla,,..., i d i E! i ( µ e i i µ ϕ e e µ e µ exp( µ e!! exp ( exp ( exp( i i i ϕ ϕ l µ e µ e µ +µ e Z posaci fucji charaerysyczej wyia, że rozład sumy iezależych zmieych losowych z rozładu Poissoa o paramerach µ i µ podlega rozładowi Poissoa o paramerze. µ +µ [ ] O dla ϕ + + Uwaga: F. charaerysycza isieje dla dowolego rozładu, w szczególości dla aiego, óry ie posiada wszysich momeów. M. Przybycień Rachue prawdopodobieńswa i saysya Wyład 8-

Radomizacja i sumy losowe Przyład: (oyuacja przyładu ze sroy 6- ( p gdzie, λ ( g e µ Korzysając z FGP oraz wierdzeia o waruowej warości oczeiwaej orzymujemy: M. Przybycień Rachue prawdopodobieńswa i saysya Wyład 8-3 ( + g q p λ ( [ ] g E E ( q p E E + g ( q + p e e A więc zmiea losowa podlega rozładowi Poissoa z paramerem λp. λ q + p p Twierdzeie: iech,,..., będą iezależymi, ieujemymi, zmieymi losowymi o ym samym rozładzie oraz iech będzie ieujemą zmieą losową iezależą od,,...,. Defiiujemy S oraz dla S... + + +, wówczas: Dowód: g g g S S [ S ] S gs E e E e P E e P S [ ] ( P E e P g g g

Losowe sumy zmieych losowych Twierdzeie: Załóżmy, że spełioe są warui poprzediego wierdzeia. a Jeśli E[ ] < i E[ ] < E S [ ] [ ] E E b Jeśli dodaowo V[ ] < i V[ ] < V S [ ] [ ] [ ] E V + E V Dowód (a: ( [ ] [ ] g S g g g S g g g E S E E (b g ( g g ( g + g g g ( ( S E[ ( ] E[ ] + E E [ ] [ ] V S g S + g S g S [ ] E[ ( ] ( E[ ] + E[ ] E[ ( ] + E[ ] E[ ] ( E[ ] E[ ] [ ] E[ ] V[ ] + E[ ] V M. Przybycień Rachue prawdopodobieńswa i saysya Wyład 8-4

Losowe sumy zmieych losowych Twierdzeie: iech,,..., będą iezależymi zmieymi losowymi o ym samym Rozładzie, dla órych isieje FGM dla < h gdzie h>. iech będzie ieujemą zmieą losową o warościach całowiych, iezależą od,,...,. Defiiujemy S oraz dla, wówczas: S + +... + ϕ g ϕ S g ψ S Przyład: iech,,... będą iezależymi zmieymi z rozładu wyładiczego oraz iech Fs( p będzie iezależa od,,...,. Zajdź rozład S + +... + λ p ( pλ S g λ Fs( p pq ψ ψ ψ Exp pλ λ p q λ λ p p λ p p λ Ge( p pq ψ S g ψ p + q λ p p q λ λ λ Twierdzeie: iech,,..., będą iezależymi zmieymi losowymi o ym samym rozładzie oraz iech będzie ieujemą zmieą losową o warościach całowiych, iezależą od,,...,. Defiiujemy S oraz dla S + +... +, wówczas: M. Przybycień Rachue prawdopodobieńswa i saysya Wyład 8-5 ψ