Marek Be±ka, Statystyka matematyczna, wykªad Wykªadnicze rodziny rozkªadów prawdopodobie«stwa

Wielkość: px
Rozpocząć pokaz od strony:

Download "Marek Be±ka, Statystyka matematyczna, wykªad Wykªadnicze rodziny rozkªadów prawdopodobie«stwa"

Transkrypt

1 Mare Be±a, Statystya matematycza, wyªad Statystyi zupeªe 3. Wyªadicze rodziy rozªadów prawdopodobie«stwa Zacziemy od deicji Deicja 3. Rodzi rozªadów {µ θ } θ Θ azywamy wyªadicz rodzi rozªadów - parametrow, je±li jej g sto±ci f θ, θ Θ wzgl dem pewej σ - so«czoej miary λ s postaci: 3. f θ x = Cθ exp Q j θt j x hx, x, gdzie C 0, h 0, Q i, T i, i =, 2,..., s fucjami rzeczywistymi. Przestrze«statystycz, B, P, gdzie P = {µ θ } θ Θ jest wyªadicz rodzi rozªadów azywamy wyªadicz przestrzei statystycz. Przyªad 3.2 i Rozwa»my rodzi rozªadów ormalych o g sto±ci f θ x = exp x m2 2πσ 2 2σ 2, x IR, gdzie θ = m, σ 2 Θ = IR 0,. G sto±ci te mo»emy zapisa w postaci f θ x = exp 2πσ 2 2σ 2 x2 + m σ 2 x m2 2σ 2 = exp m2 2πσ 2 2σ 2 exp 2σ 2 x2 + m σ 2 x = Cθ exp Q θt x+q 2 θt 2 x, x IR, gdzie h, Cθ = exp m2 2πσ 2 2σ 2, θ Θ, T x = x 2, T 2 x = x, x IR, Q θ = 2σ 2, Q 2θ = m σ 2 θ Θ. Zatem rozwa»aa rodzia rozªadów ale»y do dwuparametrowej rodziy rozªadów wyªadiczych. ii Rozwa»my rodzi rozªadów dwumiaowych f θ = θ θ, = 0,,...,,

2 Mare Be±a, Statystya matematycza, wyªad 3 39 gdzie θ Θ = 0,. Mamy f θ = exp lθ + l θ gdzie θ exp l θ θ = exp l θ θ + l θ = = Cθ exp Q θt h, = 0,,...,, Cθ = θ θ, Q θ = l θ, θ Θ, h =, T =, = 0,,...,. Zatem rozwa»aa rodzia rozªadów dwumiaowych ale»y do jedoparametrowej rodziy rozªadów wyªadiczych. Rodzi wyªadiczych ie tworz p. rozªady jedostaje czy Cauchy'ego. Uwaga. Niech =,..., b dzie prób losow prost z populacji w tórej rozªady cechy ale» do rodziy wyªdiczej 3.. Wtedy rozªad z próby mo»emy zapisa w postaci: f θ x = f θ x i = Cθ exp Q j θt j x i hx i = C θ exp Q j θ T j x i hx i, x = x,..., x. Zatem rozªad z próby ale»y rówie» do - parametrowej rodziy wyªadiczej. Poadto z rytrium fatoryzacji mamy Stwierdzeie 3.3 Niech =,..., b dzie prób losow prost z populacji w tórej rozªady cechy ale» do rodziy wyªdiczej 3.. Wtedy statystya T = T i, T 2 i,..., jest dostatecz statysty dla parametru θ Θ. T i Cz sto zmieia sie parametryzacj w 3. przyjmuj c ϑ i = Q i θ, i =, 2,..., i przedstawiaj c g sto± 3. w postaci wzgl dem miary λ = hλ 3.2 f ϑ x = Cϑ exp ϑ j T j x, x,

3 Mare Be±a, Statystya matematycza, wyªad 3 40 gdzie ϑ = ϑ,..., ϑ Θ = {Q θ,..., Q θ IR : θ Θ}. W tej parametryzacji parametr ϑ azywamy parametrem aturalym. Posta 3.2 osi azw postaci aoiczej rodziy wyªadiczej. Posta ta podobie ja 3. ie jest jedozacza. Odwzorowaie θ ϑ = Q θ,..., Q θ azywamy odwzorowaiem aoiczym parametryzacj aoicz. Przestrze«Θ azywamy aoicz przestrzei parametrów. Zbiór wszystich putów ϑ = ϑ,..., ϑ dla tórych fucja 3.2 jest g sto±ci tj. Θ 0 = { ϑ IR : } exp ϑ j T j x dλ < azywamy atural przestrzei parametrów rodziy wyªadiczej. Jest to mo»liwie ajwiesza przestrze«parametrów. Jest oa zbiorem wypuªym. Rzeczywi±cie, je±li ϑ, θ Θ 0 i a, b > 0 oraz a + b =, to z ierówo±ci Höldera dla p = /a i q = /b otrzymujemy exp aϑ j + bθ j T j x dλ = Zatem aϑ + bθ Θ 0. exp aϑ j T j x exp exp ϑ j T j x dλ a exp θ j T j x dλ b <. bθ j T j x dλ Twierdzeie 3.4 Je±li g sto±ci rodziy rozªadów P s postaci 3.2, to g sto±ci statystyi dostateczej T = T,..., T wzgl dem miary λ T s postaci fθ T t = Cθ exp θ j t j, t = t,..., t IR. Dowód. Niech A BIR. Mamy µ T θ A = µ θt A = T A Cθ exp θ j T j x dλx = A Cθ exp θ j t j dλ T t.

4 Mare Be±a, Statystya matematycza, wyªad Zupeªe rodziy rozªadów prawdopodobie«stwa Zacziemy od deicji Deicja 3.5 Rodzi rozªadów prawdopodobie«stwa P = {µ θ } θ Θ ore±lo a przestrzei prób, B azywamy zupeª ograiczeie zupeª je±li a»da B - mierzala i ograiczoa oraz P - caªowala rzeczywista statystya ϕ speªiaj ca warue 3.3 E θ ϕ = 0 dla a»dego θ Θ jest rówa zero P - p.w. Z powy»szej deicji wyia,»e je±li E θ ϕ = c dla θ Θ, to ϕ = c, P - p.w. Lemat 3.6 Niech, B, P b dzie przestrzei statystycz i iech P 0 P domiuje P. Je±li P 0 jest rodzia zupeª ograiczeie zupeª, to P jest rówie» rodzi zupeª ograiczeie zupeª. Dowód. Niech P = {µ θ } θ Θ oraz P 0 = {µ θ } θ Θ0, Θ 0 Θ. Niech ϕ b dzie rzeczywist statysty B - mierzal i P - caªowal ta,»e E θ ϕ = 0 dla a»dego θ Θ. Wtedy E θ ϕ = 0 dla θ Θ 0. Z zupeªo±ci P 0 mamy ϕ = 0, P 0 - p.w. St d i z domiowaia P przez P 0 mamy ϕ = 0, P - p.w. Przyªad 3.7 Niech P b dzie rodzi rozªadów dwumiaowych z ustaloym IN i parametrem θ Θ = 0,. Wtedy dla dowolej statystyi ϕ ore±loej a = {0,,..., } i taiej,»e ϕ θ θ = 0, dla a»dego θ Θ, mamy =0 θ ϕ = 0 dla a»dego θ Θ. θ =0 Ozaczmy t = θ/ θ. Wtedy t 0, dla θ Θ oraz ϕ t = 0, t > 0. =0 Z wªaso±ci wielomiaów wyia,»e ϕ = 0 dla = 0,, 2,...,. Zatem rodzia P rozªadów dwumiaowych jest zupeªa.

5 Mare Be±a, Statystya matematycza, wyªad 3 42 Przyªad 3.8 i Niech P = {Nm, σ 2 : θ = m, σ Θ = IR 0, } b dzie rodzi rozªadów gaussowsich. Niech ϕ b dzie fucj borelows, caªowal wzgl dem tej rodziy miar gaussowsich oraz iech σ x m2 ϕx exp 2π 2σ 2 dx = 0, dla m, σ Θ. R Po podiesieiu do wadratu w argumecie espoety oraz podzieliu stroami przez wyra»eia wyª czoe przed caª otrzymujemy R ϕx exp x2 m 2σ 2 exp σ 2 x dx = 0 dla m, σ Θ. Z wªaso±ci dwustroej trasformaty Laplace'a mamy St d ϕx exp x2 2σ 2 ϕ = 0, dla P p.w x IR. Zatem rodzia P rozªadów gaussowsich jest zupeªa. ii Niech P = {N, σ 2 : θ = σ Θ = 0, } b dzie rodzi wszystich rozªadów gaussowsich o warto±ci oczeiwaej m =. Rozwa»my fucj ϕx = x, x IR. Wtedy σ x 2 ϕx exp 2π R 2σ 2 dx = σ x 2 x exp 2π R 2σ 2 dx = 0, σ > 0, ale ϕx = x 0, Zatem rodzia wszystich rozªadów gaussowsich o warto±ci oczeiwaej m = ie jest zupeªa. Przyªad 3.9 Niech P = {µ θ } θ Θ b dzie rodzi rozªadów jedostajych µ θ a przedziale 0, θ, gdzie θ Θ = 0,. Zaªó»my,»e ϕ jest fucj borelows P - caªowal i ta,»e St d 0 = E θ [ϕ] = ϕx R θ I 0, θx dx = θ θ 0 θ 0 ϕx dx dla wszystich θ Θ. ϕx dx = 0 dla wszystich θ Θ.

6 Mare Be±a, Statystya matematycza, wyªad 3 43 Ró»iczuj c wzgl dem θ otrzymujemy Zatem ϕθ = 0 dla λ p.w. wszystich θ Θ = 0,. ϕ = 0, St d rodzia rozªadów jedostajych a przedziale 0, θ dla θ > 0 jest zupeªa. Stwierdzeie 3.0 Niech =,..., b dzie prób 2 losow prost z populacji w tórej badaa cecha ma rozªad µ θ, θ Θ. Wtedy rodzia rozªadów próby P = {µ θ } θ Θ ie jest zupeªa. Dowód. Ozaczmy P = {µ θ } θ Θ. Niech ϕ : IR b dzie taa,»e ϕ Cost., oraz E θ ϕ 2 = ϕx 2 dµ θ x <, θ Θ. Ore±lmy ψ : IR wzorem ψx = ψx,..., x = ϕx ϕx 2, x = x,..., x. Wtedy E θ ψ = E θ ϕ E θ ϕ = 0, θ Θ. Gdyby teraz ψ = 0, P - p.w., to = µ θ {x : ψx = 0} = µ 2 θ {x, x 2 2 : ϕx ϕx 2 = 0}. St d ϕx ϕx 2 dµ θ x dµ θ x 2 = 2 ϕx 2 dµ θ x dµ θ x 2 = 2 Z drugiej stroy ϕx ϕx 2 dµ θ x dµ θ x 2 = 2 Zatem Var θ ϕ = E θ [ ϕ Eθ ϕ ] 2 = St d ϕx dµ θ x 2. ϕx 2 dµ θ x. 2 ϕx 2 dµ θ x ϕx dµ θ x = 0, θ Θ. ϕ E θ ϕ, co daje sprzeczo±, bo ϕ Cost., P - p.w.

7 Mare Be±a, Statystya matematycza, wyªad 3 44 Deicja 3. Niech daa b dzie przestrze«statystycza, B, P. Da statysty T :, B Y, A azywamy statysty zupeª ograiczeie zupeª je±li rodzia rozªadów P T = {µ T θ } θ Θ jest zupeªa ograiczeia zupeªa. Twierdzeie 3.2 Niech daa b dzie przestrze«statystycza, B, P i statystya T :, B Y, A. Je±li rodzia rozªadów P jest zupeªa ograiczeie zupeªa, to rodzia rozªadów P T jest rówie» zupeªa ograiczeie zupeªa. Mówi c iaczej: Na zupeªej przestrzei statystyczej a»da statystya jest zupeªa. Dowód. Niech ϕ b dzie fucj rzeczywist ograiczo, A - mierzal, P T - caªowal i speªiaj c warue ϕt dµ T θ t = 0, θ Θ. St d Z zupeªo±ci P wyia,»e Poiewa» Y ϕt x dµ θ x = 0, θ Θ. µ θ {x : ϕt x 0} = 0, θ Θ. {x : ϕt x 0} = T {t Y : ϕt 0}, wi c [ {t Y : ϕt 0} = µθ T {t Y : ϕt 0} ] = µ θ {x : ϕt x 0} = 0 µ T θ dla θ Θ, co dowodzi zupeªo±ci P T. Zauwa»my,»e twierdzeie odwrote do powy»szego ie musi by prawdziwe tz. rodzia P T mo»e by zupeªa, a P ie. Przyªad 3.3 Niech =, 2 b dzie prób losow prost z populacji w tórej badaa cecha ma rozªad ormaly Nm, σ 2, θ = m, σ Θ = IR 0,. Ja wiadomo ze stwierdzeia 3.0 rodzia rozªadów próby ie jest zupeªa. Rozwa»my statysty T = + 2. Jej rodzi rozªadów jest rodzia rozªadów ormalych N2m, 2σ 2, θ = m, σ Θ. Ja wiadomo z przyªadu 3.8 i jest oa rodzi zupeª. Twierdzeie 3.4 Lehma Niech daa b dzie przestrze«statystycza, B, P, gdzie rodzia rozªadów P = {µ θ } θ Θ ma g sto±ci f θ wzgl dem pewej σ - so«czoej miary λ postaci f θ x = Cθ exp θ j T j x, x, gdzie θ = θ,..., θ ale» do aturalej przestrzei parametrów Θ IR. Je±li Θ zawiera przedziaª - wymiarowy, to statystya T = T,..., T jest zupeªa i dostatecza.

8 Mare Be±a, Statystya matematycza, wyªad 3 45 Przyªad 3.5 Niech =,..., b dzie prób losow prost z populacji w tórej badaa cecha ma rozªad ormaly Nm, σ 2, θ = m, σ Θ = IR 0,. G sto± z próby mo»a zapisa w postaci exp m2 2σ f θ x = 2 2π /2 σ m exp σ 2 x i 2σ 2 Przejd¹my do parametryzacji aoiczej ozaczaj c x 2 i, x = x,..., x IR. θ = m σ 2, θ 2 = 2σ 2, θ = θ, θ 2 Θ = IR, 0. G sto±ci z próby maj teraz posta f θ x = Cθ exp θ x i + θ 2 x 2 i, x = x,..., x IR. Poiewa» aturala przestrze«parametrów Θ zawiera przedziaª dwuwymiarowy, wi c z twierdzeia Lehmaa statystya T = T, T 2, gdzie T = i, T 2 = 2 i jest statysty zupeª. Zauwa»my,»e gdyby±my zaw zili Θ do Θ = {θ, θ 2 : θ =, θ 2 < 0}, to Θ ie zawiera przedziaªu dwuwymiarowego i statystya T, T 2 ie jest zupeªa dla Θ. Rzeczywi±cie, rozwa»my iezerow fucj gt, t 2 = t t 2 t2 0, t IR, t 2 > 0. Wtedy gt, T 2 = i [ i 2 2 ] i = i [ i 2 2 i ]. Poiewa» E 2 i = m2 + σ 2, i oraz i Nm, σ 2 /, wi c bo θ = m/σ2 =. EgT, T 2 = m [ m 2 + σ 2 m 2 + σ2 ] = m σ2 = m σ 2 = 0, dla a»dego σ > 0,

9 Mare Be±a, Statystya matematycza, wyªad 3 46 Twierdzeie 3.6 Niech daa b dzie przestrze«statystycza, B, P, gdzie rodzia rozªadów P = {µ θ } θ Θ jest domiowaa przez pew miar σ - so«czo λ. Je±li statystya T :, B Y, A jest dostatecza i ograiczeie zupeªa, to T jest miimal dostatecz statysty. Dowód. Niech ν b dzie wyró»ioym rozªadem rówowa»ym z P. Ozaczmy B 0 = T A. Z dostateczo±ci T twierdzeie 2.2 istieje dla a»dego θ Θ wersja g sto±ci f θ rozªadu µ θ wzgl dem ν, tóra jest mierzala wzgl dem B 0. Niech B 0 b dzie ajmiejsz σ - algebr wzgl dem tórej s mierzale g sto±ci f θ dla θ Θ. Niech A B. Wtedy µa B 0 µa B 0 jest B 0 - mierzala. St d ja wiadomo istieje fucja borelowsa ograiczoa g taa,»e gt = µa B 0 µa B 0. Zatem mamy Z ograiczoej zupeªo±ci T mamy E θ gt = E θ [ µa B0 µa B 0 ] = 0, θ Θ. gt = 0, St d w szczególo±ci, gdy A B 0 dostajemy 3.4 I A = µa B 0, Ozaczmy F = {x : µa B 0x = } B 0. Wtedy a mocy 3.4 mamy F A N P, bo F A {I A µa B 0 }. Poiewa» A = A \ F [F \ F \ A], wi c A B 0. Wyazali±my zatem zawieraie B 0 B 0, a poiewa» B 0 B 0, wi c mamy B 0 = B 0 Na mocy twierdzeia 2.24 B 0 jest miimal dostatecz σ - algebr tz. T jest miimal dostatecz statysty. Deicja 3.7 Niech daa b dzie przestrze«statystycza, B, P, gdzie P = {µ θ } θ Θ i statystya T :, B Y, A. Statysty T azywamy swobod dla θ Θ, je±li jej rozªad ie zale»y od parametru θ tz. dla pewego rozªadu ν mamy µ T θ = ν, θ Θ. Twierdzeie 3.8 Basu Niech T i V b d statystyami a przestrzei statystyczej, B, P, gdzie P = {µ θ } θ Θ. Je±li statystya T jest dostatecza i ograiczeie zupeªa, a statystya V jest statysty swobod, to T i V s iezale»e.

10 Mare Be±a, Statystya matematycza, wyªad 3 47 Dowód. Niech ϕ b dzie ograiczo rzeczywist fucj, mierzal i µ V θ θ Θ. Z dostateczo±ci T mamy - caªowal dla E θ [ ϕv T ] = E [ ϕv T ], θ Θ. Zatem V - swoboda E θ { E [ ϕv T ]} = Eθ ϕv = EϕV, θ Θ. Z ograiczoej zupeªo±ci T dostajemy E [ ϕv T ] = EϕV, St d V jest iezale»e od T. Przyªad 3.9 Niech =,..., b dzie prób losow z rozªadu ormalego Nm, σ 2, gdzie parametr σ jest zay. Zatem θ = m Θ = IR. Ja wiadomo przyªad statystya T = i jest statysty dostatecz i zupeª przyªad 3.8i. Statysta V = i T 2 jest swoboda. Zatem z twierdzeia Basu statystyi T i V s iezale»e.

7 Twierdzenie Fubiniego

7 Twierdzenie Fubiniego M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz

Bardziej szczegółowo

Wykªad 05 (granice c.d., przykªady) Rozpoczniemy od podania kilku przykªadów obliczania granic ci gów. n an = + dla a > 1. (5.1) lim.

Wykªad 05 (granice c.d., przykªady) Rozpoczniemy od podania kilku przykªadów obliczania granic ci gów. n an = + dla a > 1. (5.1) lim. Wykªad 05 graice cd, przykªady Rozpocziemy od podaia kilku przykªadów obliczaia graic ci gów Niech a > Ozaczmy a = c > 0 Mamy Poiewa» c = +, wi c tak»e a = + c + c c a = + dla a > 5 Poadto, zauwa»amy,»e

Bardziej szczegółowo

Metoda najszybszego spadku

Metoda najszybszego spadku Metody Gradietowe W tym rozdziale bdziemy rozwaa metody poszuiwaia dla fucji z przestrzei R o wartociach rzeczywistych Metody te wyorzystuj radiet fucji ja rówie wartoci fucji Przypomijmy, czym jest zbiór

Bardziej szczegółowo

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej

Bardziej szczegółowo

Estymatory nieobciążone o minimalnej wariancji

Estymatory nieobciążone o minimalnej wariancji Estymatory ieobciążoe o miimalej wariacji Model statystyczy (X, {P θ, θ Θ}); g : Θ R 1 Zadaie: oszacować iezaą wartość g(θ) Wybrać takie δ(x 1, X 2,, X ) by ( θ Θ) ieobciążoość E θ δ(x 1, X 2,, X ) = g(θ)

Bardziej szczegółowo

Wyk lad 8 Zasadnicze twierdzenie algebry. Poj. ecie pierścienia

Wyk lad 8 Zasadnicze twierdzenie algebry. Poj. ecie pierścienia Wy lad 8 Zasadicze twierdzeie algebry. Poj ecie pierścieia 1 Zasadicze twierdzeie algebry i jego dowód Defiicja 8.1. f: C C postaci Wielomiaem o wspó lczyiach zespoloych azywamy fucj e f(x) = a x + a 1

Bardziej szczegółowo

Wykªad 2. Szeregi liczbowe.

Wykªad 2. Szeregi liczbowe. Wykªad jest prowadzoy w oparciu o podr czik Aaliza matematycza 2. Deicje, twierdzeia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 2. Szeregi liczbowe. Deicje i podstawowe twierdzeia Deicja Szeregiem liczbowym

Bardziej szczegółowo

Analiza matematyczna 1 Notatki do wykªadu Mateusz Kwa±nicki. 7 Sumy i iloczyny uogólnione

Analiza matematyczna 1 Notatki do wykªadu Mateusz Kwa±nicki. 7 Sumy i iloczyny uogólnione Aaliza matematycza Notatki do wykªadu Mateusz Kwa±icki 7 Sumy i iloczyy uogólioe Dla dowolych liczb a k, a k+, a k+,..., a l okre±lamy sum uogólio i iloczy uogólioy: a k + a k+ + a k+ +... + a l, l a k

Bardziej szczegółowo

1 Twierdzenia o granicznym przejściu pod znakiem całki

1 Twierdzenia o granicznym przejściu pod znakiem całki 1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae

Bardziej szczegółowo

> 1), wi c na mocy kryterium porównawczego szereg sin(n n)

> 1), wi c na mocy kryterium porównawczego szereg sin(n n) .65. si() W szeregu tym wyst puj wyrazy dodatie i ujeme, ale ie a przemia. Zbadajmy wi c szereg: si() zªo»oy z warto±ci bezwzgl dych wyrazów szeregu daego w zadaiu. Poiewa» si(), wi c si() = Po prawej

Bardziej szczegółowo

Zestaw zadań do skryptu z Teorii miary i całki. Katarzyna Lubnauer Hanna Podsędkowska

Zestaw zadań do skryptu z Teorii miary i całki. Katarzyna Lubnauer Hanna Podsędkowska Zestaw zadań do skryptu z Teorii miary i całki Katarzya Lubauer Haa Podsędkowska Ciała σ - ciała. Zbadaj czy rodzia A jest ciałem w przestrzei X=[0] a) A = X 0 b) A = X 0 3 3 c) A = { X { }{}{ 0}{ 0 }

Bardziej szczegółowo

szereg jest szeregiem o wyrazach nieujemnych. Ponadto dla α (0; π ) zachodzi nierówno± sinα < α,

szereg jest szeregiem o wyrazach nieujemnych. Ponadto dla α (0; π ) zachodzi nierówno± sinα < α, .. si Poiewa» si < 1; 1 >, wi c zbadajmy szereg zªo»oy z warto±ci bezwzgl dych wyrazów szeregu daego w zadaiu: () si = si, ale si < 0; 1 > Zatem si 1 () Po prawej stroie powy»szej ierówo±ci mamy szereg

Bardziej szczegółowo

Zbiory. Zadanie 5. Wykaza to»samo±ci (a) A (B \ C) = [(A B) \ C] (A C), (b) A \ [B \ (C \ D)] = (A \ B) [(A C) \ D],

Zbiory. Zadanie 5. Wykaza to»samo±ci (a) A (B \ C) = [(A B) \ C] (A C), (b) A \ [B \ (C \ D)] = (A \ B) [(A C) \ D], x FAQ ANALIZA R c ZADANIA Zbiory Zadaie 1. Opisa zbiory A B, A B, A \ B, B \ A je±li A = {x R : x 3x < 0, }; B = {x R : x 3x + 4 0} Zadaie. Niech A, B, C, D b d podzbiorami przestrzei X. Udowodi,»e A \

Bardziej szczegółowo

RAP pa¹dziernika S n = S 0 + i=1. p r q l = p r q l r. N n(a,b)

RAP pa¹dziernika S n = S 0 + i=1. p r q l = p r q l r. N n(a,b) RAP 4 5 pa¹dzierika 008 Wykªad : PSL metoda zliczaia ±cie»ek Wykªadowca: Adrzej Ruci«ski Pisarz:Bartosz Naskr cki i Marek Kaluba Wst p B dziemy dalej studiowa zachowaia osobika, którego gr zajmowali±my

Bardziej szczegółowo

Twierdzenia graniczne:

Twierdzenia graniczne: Twierdzeia graicze: Tw. ierówośd Markowa Jeżeli P(X > 0) = 1 oraz EX 0: P X k 1 k EX. Tw. ierówośd Czebyszewa Jeżeli EX = m i 0 < σ = D X 0: P( X m tσ) 1 t. 1. Z partii towaru o wadliwości

Bardziej szczegółowo

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic). Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic

Bardziej szczegółowo

Analiza Matematyczna I.1

Analiza Matematyczna I.1 Aaliza Matematycza I Seria, P Nayar, 0/ Zadaie Niech a k >, (k =,, ) b d liczbami rzeczywistymi o tym samym zaku Udowodij,»e prawdziwa jest ierówo± ( + a )( + a ) ( + a ) + a + a + + a Czy zaªo»eie,»e

Bardziej szczegółowo

Analiza Matematyczna I.1

Analiza Matematyczna I.1 Aaliza Matematycza I Seria, P Nayar, 0/3 Zadaie Niech a k >, (k =,, b d liczbami rzeczywistymi o tym samym zaku Udowodij,»e prawdziwa jest ierówo± ( + a ( + a ( + a + a + a + + a Czy zaªo»eie,»e liczby

Bardziej szczegółowo

Biostatystyka, # 5 /Weterynaria I/

Biostatystyka, # 5 /Weterynaria I/ Biostatystyka, # 5 /Weterynaria I/ dr n. mat. Zdzisªaw Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowa«Matematyki i Informatyki ul. Gª boka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Konkurs Uczniowskich Prac z Matematyki. Urok zbioru µ. Michaª Mi±kiewicz. Opiekun pracy: dr Jerzy Bednarczuk

Konkurs Uczniowskich Prac z Matematyki. Urok zbioru µ. Michaª Mi±kiewicz. Opiekun pracy: dr Jerzy Bednarczuk Kokurs Ucziowskich Prac z Matematyki Urok zbioru µ Michaª Mi±kiewicz Opieku pracy: dr Jerzy Bedarczuk Warszawa 010 Streszczeie Tematem mojej pracy s pukty takie,»e suma kwadratów odlegªo±ci puktów z wcze±iej

Bardziej szczegółowo

Tw. 1. Je»eli ci g {a n } ma granic a i ci g {b n } ma granic b, to ci g {a n b n } ma granic a b. Tw. 2. b n. Tw. 3. Tw. 4.

Tw. 1. Je»eli ci g {a n } ma granic a i ci g {b n } ma granic b, to ci g {a n b n } ma granic a b. Tw. 2. b n. Tw. 3. Tw. 4. Tw.. Je»eli ci g {a } ma graic a i ci g {b } ma graic b, to ci g {a + b } ma graic a+b. Tw.. Je»eli ci g {a } ma graic a i ci g {b } ma graic b, to ci g {a b } ma graic a-b. Tw.. Je»eli ci g {a } ma graic

Bardziej szczegółowo

tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze

tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze R o z d z i a l III RÓWNANIA RÓŻNICZKOWE LINIOWE WYŻSZYCH RZE DÓW 12. Rówaie różiczowe liiowe -tego rze du Na pocza te zauważmy, że podobie ja w dziedziie rzeczywistej wprowadzamy dla fucji zespoloych

Bardziej szczegółowo

Funkcja generująca rozkład (p-two)

Funkcja generująca rozkład (p-two) Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są

Bardziej szczegółowo

Ekstremalna teoria grafów Filip Lurka V Liceum ogólnoksztaªc ce w Krakowie

Ekstremalna teoria grafów Filip Lurka V Liceum ogólnoksztaªc ce w Krakowie Ekstremala teoria grafów Filip Lurka V Liceum ogóloksztaªc ce w Krakowie 1 Ekstremala Teoria Grafów 1 Ekstremala Teoria Grafów Filip Lurka 1.1 Teoria Deicja 1.1 Klik azywamy graf peªy; ka»de dwa wierzchoªki

Bardziej szczegółowo

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n Metoda Newtoa i rówaie z = 1 Załóżmy, że fucja f :C C ma ciągłą pochodą. Dla (prawie) ażdej liczby zespoloej z 0 tworzymy ciąg (1) (z ) 0, z 1 = z f ( z ), ciąg te f ' (z ) będziemy azywać orbitą liczby

Bardziej szczegółowo

2 Podstawowe obiekty kombinatoryczne

2 Podstawowe obiekty kombinatoryczne 2 Podstawowe obiety ombinatoryczne Oznaczenia: N {0, 1, 2,... } zbiór liczb naturalnych. Dla n N przyjmujemy [n] {1, 2,..., n}. W szczególno±ci [0] jest zbiorem pustym. Je±li A jest zbiorem so«czonym,

Bardziej szczegółowo

Statystyka matematyczna. Wykład II. Estymacja punktowa

Statystyka matematyczna. Wykład II. Estymacja punktowa Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych

Bardziej szczegółowo

Statystyka Matematyczna. Skrypt. Spis treści. SKN Matematyki Stosowanej. s k n. m s 11 czerwca Oznaczenia i definicje 4

Statystyka Matematyczna. Skrypt. Spis treści. SKN Matematyki Stosowanej. s k n. m s 11 czerwca Oznaczenia i definicje 4 Spis treści Ozaczeia i defiicje 4 Wioskowaie statystycze 4. Statystyki dostatecze................................................. 4.. Rodzia rozkładów wykładiczych......................................

Bardziej szczegółowo

8 Weryfikacja hipotez statystycznych

8 Weryfikacja hipotez statystycznych Marek Beśka, Statystyka matematycza, wykład 8 04 8 Weryfikacja hipotez statystyczych 8. Hipotezy statystycze Drugą obok estymacji formą wioskowaia statystyczego jest weryfikacja hipotez statystyczych.

Bardziej szczegółowo

16 Przedziały ufności

16 Przedziały ufności 16 Przedziały ufości zapis wyiku pomiaru: sugeruje, że rozkład błędów jest symetryczy; θ ± u(θ) iterpretacja statystycza przedziału [θ u(θ), θ + u(θ)] zależy od rozkładu błędów: P (Θ [θ u(θ), θ + u(θ)])

Bardziej szczegółowo

Spacery losowe i sieci elektryczne

Spacery losowe i sieci elektryczne Uiwersytet Wrocªawsi Wydziaª Matematyi i Iformatyi Istytut Matematyczy specjalo± : zastosowaia rachuu prawdopodobie«stwa i statystyi Oliwier Bieraci Spacery losowe i sieci eletrycze Praca licecjaca apisaa

Bardziej szczegółowo

Analiza matematyczna 1 Notatki do wykªadu Mateusz Kwa±nicki

Analiza matematyczna 1 Notatki do wykªadu Mateusz Kwa±nicki Aaliza matematycza 1 Notatki do wykªadu Mateusz Kwa±icki 1 Idukcja matematycza Przykªad 1. Pewego popoªudia Kubu± Puchatek kupiª pust beczk, która mie±ci 20 sªoików miodu, i wlaª do iej wszystkie swoje

Bardziej szczegółowo

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi,

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi, 7 Liczby zespoloe Liczby zespoloe to liczby postaci z a + bi, gdzie a, b R. Liczbę i azywamy jedostką urojoą, spełia oa waruek i 2 1. Zbiór liczb zespoloych ozaczamy przez C: C {a + bi; a, b R}. Liczba

Bardziej szczegółowo

Funkcje tworz ce skrypt do zada«

Funkcje tworz ce skrypt do zada« Fukcje tworz ce skrypt do zada«mateusz Rapicki, Piotr Suwara 20 maja 2012 1 Kombiatoryka Deicja 1 (dwumia Newtoa) dla liczb caªkowitych ieujemych, k to liczba k sposobów wybraia k elemetów z -elemetowego

Bardziej szczegółowo

wi c warunek konieczny zbie»no±ci szeregu jest speªniony. 12 = 9 12 = 3 4 k(k+1) k=1 ( k+1 k(k+1) n+1 = 1 1 n+1 = 1 0 = 1 36 = =

wi c warunek konieczny zbie»no±ci szeregu jest speªniony. 12 = 9 12 = 3 4 k(k+1) k=1 ( k+1 k(k+1) n+1 = 1 1 n+1 = 1 0 = 1 36 = = 32 (+) Jest to szereg o wyrazach dodatich Poadto wyraz ogóly tego szeregu jest zbie»y do 0, wi c waruek koieczy zbie»o±ci szeregu jest speªioy s (+) 2 s 2 s + 2 (2+) 2 + 2 3 2 + 6 3 6 + 6 4 6 2 3 s 3 s

Bardziej szczegółowo

1 Wnioskowanie statystyczne podstawowe poj cia

1 Wnioskowanie statystyczne podstawowe poj cia 1 Wioskowaie statystycze podstawowe poj cia 1.1 arametry rozkªadu, próba losowa We wioskowaiu statystyczym próbujemy a podstawie losowej próbki z pewej populacji wioskowa a temat caªej populacji. Mo»emy

Bardziej szczegółowo

6 Metody konstruowania estymatorów

6 Metody konstruowania estymatorów Marek Beśka, Statystyka matematyczna, wykład 6 74 6 Metody konstruowania estymatorów 6.1 Metoda momentów Niech (X, B, P) będzie przestrzenią statystyczną, gdzie P = {µ θ } θ Θ, (Θ IR) jest rodziną rozkładów

Bardziej szczegółowo

Równoliczno zbiorów. Definicja 3.1 Powiemy, e niepuste zbiory A i B s równoliczne jeeli istnieje. Piszemy wówczas A~B. Przyjmujemy dodatkowo, e ~.

Równoliczno zbiorów. Definicja 3.1 Powiemy, e niepuste zbiory A i B s równoliczne jeeli istnieje. Piszemy wówczas A~B. Przyjmujemy dodatkowo, e ~. 16 Rówoliczo zbiorów Defiicja 3.1 Powiemy, e iepuste zbiory A i B s rówolicze jeeli istieje f : A B. Piszemy wówczas A~B. Przyjmujemy dodatkowo, e ~. Twierdzeie 3.1 (podstawowa właso rówoliczoci zbiorów)

Bardziej szczegółowo

X i T (X) = i=1. i + 1, X i+1 i + 1. Cov H0. ( X i. k 31 ) 1 Φ(1, 1818) 0, 12.

X i T (X) = i=1. i + 1, X i+1 i + 1. Cov H0. ( X i. k 31 ) 1 Φ(1, 1818) 0, 12. Zadae p (X p (X ( ( π 6 6 e 6 X m ( π 6 6 e 6 ( X C e m 6 X, gdze staªa C e zale»y od statystyk X (X,, X 6, a m jest w ksze od zera Zatem p (X/p (X jest emalej c fukcj statystyk T (X 6 X ªatwo pokaza,»e

Bardziej szczegółowo

Rozkład normalny (Gaussa)

Rozkład normalny (Gaussa) Rozład ormaly (Gaussa) Wyprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowych. Rozważmy pomiar wielości m, tóry jest zaburzay przez losowych efetów o wielości e ażdy, zarówo zaiżających ja i

Bardziej szczegółowo

Biostatystyka, # 4 /Weterynaria I/

Biostatystyka, # 4 /Weterynaria I/ Biostatystyka, # 4 /Weterynaria I/ dr n. mat. Zdzisªaw Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowa«Matematyki i Informatyki ul. Gª boka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012 Wykład 2 Wrocław, 11 października 2012 Próba losowa Definicja. Zmienne losowe X 1, X 2,..., X n nazywamy próba losową rozmiaru n z rozkładu o gęstości f (x) (o dystrybuancie F (x)) jeśli X 1, X 2,...,

Bardziej szczegółowo

Wykład 6. Przestrzenie metryczne ośrodkowe i zupełne. ρ, gdzie r

Wykład 6. Przestrzenie metryczne ośrodkowe i zupełne. ρ, gdzie r Wyład 6 Przestrzeie etrycze ośrodowe i zupełe. Przypoiay, że zbiór azyway przeliczaly, jeśli jest o rówoliczy ze zbiore wszystich liczb aturalych N, a co ajwyżej przeliczaly, jeśli jest o przeliczaly lub

Bardziej szczegółowo

Ciągi i szeregi liczbowe. Ciągi nieskończone.

Ciągi i szeregi liczbowe. Ciągi nieskończone. Ciągi i szeregi liczbowe W zbiorze liczb X jest określoa pewa fukcja f, jeŝeli kaŝdej liczbie x ze zbioru X jest przporządkowaa dokładie jeda liczba pewego zbioru liczb Y Przporządkowaie to zapisujem w

Bardziej szczegółowo

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b

Bardziej szczegółowo

Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne

Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne Wykład 4 Niezależość zmieych, fukcje i charakterystyki wektora losowego, cetrale twierdzeia graicze Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematycza Aa Jaicka wykład XIV, 06.06.06 STATYSTYKA BAYESOWSKA CD. Pla a dzisiaj. Statystyka Bayesowska rozkłady a priori i a posteriori estymacja Bayesowska: Bayesowski Estymator Największej

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach. a) (6 pkt.) oblicz intensywno± pªaconych skªadek;

EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach. a) (6 pkt.) oblicz intensywno± pªaconych skªadek; EGZAMIN MAGISTERSKI, 26.06.2019r Matematyka w ekonomii i ubezpieczeniach 1. (8 punktów) Dwa niezale»ne portfele S 1, S 2 maj zªo»one rozkªady Poissona. S 1 CP oisson(2, F ), S 2 CP oisson(2, G), gdzie

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa

Analiza matematyczna i algebra liniowa Aaliza matematycza i algebra liiowa Materiały pomocicze dla studetów do wyładów Rachue różiczowy ucji wielu zmieych. Pochode cząstowe i ich iterpretacja eoomicza. Estrema loale. Metoda ajmiejszych wadratów.

Bardziej szczegółowo

Statystyka Matematyczna. Skrypt. Spis treści. SKN Matematyki Stosowanej. s k n. m s 23 kwietnia Oznaczenia i definicje 3

Statystyka Matematyczna. Skrypt. Spis treści. SKN Matematyki Stosowanej. s k n. m s 23 kwietnia Oznaczenia i definicje 3 Spis treści Ozaczeia i defiicje 3 Wioskowaie statystycze 3. Statystyki dostatecze................................................. 3.. Rodzia rozkładów wykładiczych......................................

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

Operatory zwarte Lemat. Jeśli T jest odwzorowaniem całkowym na przestrzeni Hilberta X = L 2 (Ω) z jądrem k L 2 (M M)

Operatory zwarte Lemat. Jeśli T jest odwzorowaniem całkowym na przestrzeni Hilberta X = L 2 (Ω) z jądrem k L 2 (M M) Operatory zwarte Niech X będzie przestrzeią Baacha. Odwzorowaie liiowe T azywa się zwarte, jeśli obraz kuli jedostkowej T (B) jest zbiorem warukowo zwartym. Przestrzeń wszystkich operatorów zwartych a

Bardziej szczegółowo

1 Zmienne losowe. Własności dystrybuanty F (x) = P (X < x): F1. 0 F (x) 1 dla każdego x R, F2. lim F (x) = 0 oraz lim F (x) = 1,

1 Zmienne losowe. Własności dystrybuanty F (x) = P (X < x): F1. 0 F (x) 1 dla każdego x R, F2. lim F (x) = 0 oraz lim F (x) = 1, 1 Zmiee loowe Właości dytrybuaty F x = X < x: F1. 0 F x 1 dla każdego x R, F2. lim F x = 0 oraz lim F x = 1, x x + F3. F jet fukcją iemalejącą, F4. lim x x 0 F x = F x 0 dla każdego x R, F5. a X < b =

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XI: Testowanie hipotez statystycznych 12 stycznia 2015 Przykład Motywacja X 1, X 2,..., X N N (µ, σ 2 ), Y 1, Y 2,..., Y M N (ν, δ 2 ). Chcemy sprawdzić, czy µ = ν i σ 2 = δ 2, czyli że w obu populacjach

Bardziej szczegółowo

lim a n Cigi liczbowe i ich granice

lim a n Cigi liczbowe i ich granice Cigi liczbowe i ich graice Cigiem ieskoczoym azywamy dowol fukcj rzeczywist okrelo a zbiorze liczb aturalych. Dla wygody zapisu, zamiast a() bdziemy pisa a. Elemet a azywamy -tym wyrazem cigu. Cig (a )

Bardziej szczegółowo

Matematyka ETId I.Gorgol Twierdzenia o granicach ciagów. Twierdzenia o granicach ciagów

Matematyka ETId I.Gorgol Twierdzenia o granicach ciagów. Twierdzenia o granicach ciagów Twierdzeia o graicach ciagów Matematyka ETId I.Gorgol Zbieżość ciagu a jego ograiczoość TWIERDZENIE Jeżeli ci ag liczbowy a ) jest zbieży do graicy skończoej, to jest ograiczoy. Zbieżość ciagu a jego ograiczoość

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

KOMBINATORYKA 1 WYK LAD 11 Kombinatoryczna teoria zbiorów

KOMBINATORYKA 1 WYK LAD 11 Kombinatoryczna teoria zbiorów KOMBINATORYKA 1 WYK LAD 11 Kombiatorycza teoria zbiorów 23 maja 2012 Wyk lad poświe coy jest w lasościom rodzi podzbiorów skończoego zbioru. Rozpoczya go poje cie systemu różych reprezetatów wraz ze s

Bardziej szczegółowo

Wykład 13: Zbieżność według rozkładu. Centralne twierdzenie graniczne.

Wykład 13: Zbieżność według rozkładu. Centralne twierdzenie graniczne. Rachuek prawopoobieństwa MA064 Wyział Elektroiki, rok aka 2008/09, sem leti Wykłaowca: r hab A Jurlewicz Wykła 3: Zbieżość weług rozkłau Cetrale twierzeie graicze Zbieżości ciągu zmieych losowych weług

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie

Bardziej szczegółowo

ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE

ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 8. ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE 1 Zbieżość ciągu zmieych losowych z prawdopodobieństwem 1 (prawie apewo) Ciąg zmieych losowych (X ) jest

Bardziej szczegółowo

1. Miara i całka Lebesgue a na R d

1. Miara i całka Lebesgue a na R d 1. Miara i całka Lebesgue a a R d 1. Miara. Mówimy, że rodzia podzbiorów S zbioru Ω jest σ-ciałem, jeśli wraz z każdym zbiorem zawiera oa jego dopełieie i jest zamkięta a sumowaie przeliczalych podrodzi.

Bardziej szczegółowo

PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1).

PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1). TATYTYKA MATEMATYCZNA WYKŁAD 3 RZEDZIAŁY UFNOŚCI Niech θ - iezay parametr rozkład cechy. Niech będzie liczbą z przedział 0,. Jeśli istieją statystyki, U i U ; U U ; których rozkład zależy od θ oraz U θ

Bardziej szczegółowo

Statystyka matematyczna - ZSTA LMO

Statystyka matematyczna - ZSTA LMO Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 1 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 1 1 / 28 Kontakt Dr Šukasz

Bardziej szczegółowo

9 Elementy analizy wielowymiarowej

9 Elementy analizy wielowymiarowej Marek Beśka, Statystyka matematyczna, wykład 9 3 9 Elementy analizy wielowymiarowej 9. Wielowymiarowy rozkład normalny Definicja 9. Wektor losowy X = X,..., X k ) określony na przestrzeni probabilistycznej

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykªad 1 Prawdopodobie«stwo

Elementy Modelowania Matematycznego Wykªad 1 Prawdopodobie«stwo Spis tre±ci Elementy Modelowania Matematycznego Wykªad 1 Prawdopodobie«stwo Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis tre±ci Spis tre±ci 1 2 3 4 5 Spis tre±ci Spis tre±ci 1 2 3 4

Bardziej szczegółowo

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji http://www.ii.ui.wroc.pl/ sle/teachig/a-apr.pdf Aaliza umerycza Staisław Lewaowicz Grudzień 007 r. Aproksymacja fukcji Pojęcia wstępe Defiicja. Przestrzeń liiową X (ad ciałem liczb rzeczywistych R) azywamy

Bardziej szczegółowo

CAŁKA NIEOZNACZONA. F (x) = f(x) dx.

CAŁKA NIEOZNACZONA. F (x) = f(x) dx. CAŁKA NIEOZNACZONA Mówimy, że fukcja F () jest fukcją pierwotą dla fukcji f() w pewym ustaloym przedziale - gdy w kadym pukcie zachodzi F () = f(). Fukcję pierwotą często azywamy całką ieozaczoą i zapisujemy

Bardziej szczegółowo

imię, nazwisko, nr indeksu (drukowanymi lit.) grupa inicjały wynik Egzamin 18L3. Test (90 min) Algebra i teoria mnogości 7 września 2018 O0

imię, nazwisko, nr indeksu (drukowanymi lit.) grupa inicjały wynik Egzamin 18L3. Test (90 min) Algebra i teoria mnogości 7 września 2018 O0 imię, azwisko, r ideksu drukowaymi lit.) grupa iicjały wyik Egzami 8L. Test 9 mi) 7 wrześia 8 O ϕx) : x > 4 x R \, ) ϕx) : y > x y b przyjmujemy

Bardziej szczegółowo

Matematyczne podstawy kognitywistyki

Matematyczne podstawy kognitywistyki Matematycze podstawy kogitywistyki Jerzy Pogoowski Zakªad Logiki i Kogitywistyki UAM pogo@amu.edu.pl Struktury ró»iczkowe Jerzy Pogoowski (MEG) Matematycze podstawy kogitywistyki Struktury ró»iczkowe 1

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

Notatki do wykªadu Rachunek prawdopodobie«stwa dla informatyków.

Notatki do wykªadu Rachunek prawdopodobie«stwa dla informatyków. Notatki do wykªadu Rachuek prawdopodobie«stwa dla iformatyków. Marci Milewski Wrocªaw, 4 lutego 2009 Spis tre±ci 1 Prawdopodobie«stwo 2 1.1 Ozaczeia i poj cia...........................................

Bardziej szczegółowo

Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja

Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja Podstawowe ozaczeia i wzory stosowae a wykładzie i laboratorium Część I: estymacja 1 Ozaczeia Zmiee losowe (cechy) ozaczamy a wykładzie dużymi literami z końca alfabetu. Próby proste odpowiadającymi im

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

3. (8 punktów) EGZAMIN MAGISTERSKI, Biomatematyka

3. (8 punktów) EGZAMIN MAGISTERSKI, Biomatematyka EGZAMIN MAGISTERSKI, 26.06.2017 Biomatematyka 1. (8 punktów) Rozwój wielko±ci pewnej populacji jest opisany równaniem: dn dt = rn(t) (1 + an(t), b gdzie N(t) jest wielko±ci populacji w chwili t, natomiast

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Zadanie Rozważmy następujący model strzelania do tarczy. Współrzędne puntu trafienia (, Y ) są niezależnymi zmiennymi losowymi o jednaowym rozładzie normalnym N ( 0, σ ). Punt (0,0) uznajemy za środe tarczy,

Bardziej szczegółowo

Statystyka matematyczna - ZSTA LMO

Statystyka matematyczna - ZSTA LMO Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 4 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 1 / 18 Wykªad 4 - zagadnienia

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n 4n n 1

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n 4n n 1 30. Obliczyć wartość graicy ( 0 ( ( ( 4 +1 + 1 4 +3 + 4 +9 + 3 4 +7 +...+ 1 4 +3 + 1 ( ( 4 +3. Rozwiązaie: Ozaczmy sumę występującą pod zakiem graicy przez b. Zamierzamy skorzystać z twierdzeia o trzech

Bardziej szczegółowo

1) Jakie są różnice pomiędzy analiza danych a wnioskowaniem statystycznym?

1) Jakie są różnice pomiędzy analiza danych a wnioskowaniem statystycznym? Plaowaie Eksperymetów 1) Jakie są różice pomiędzy aaliza daych a wioskowaiem statystyczym? Celem aalizy daych jest prezetacja kokretego zbioru daych, w sposób ukazujący jego właściwości, w szczególości

Bardziej szczegółowo

Wyk lad 2 W lasności cia la liczb zespolonych

Wyk lad 2 W lasności cia la liczb zespolonych Wyk lad W lasości cia la liczb zespoloych 1 Modu l, sprz eżeie, cz eść rzeczywista i cz eść urojoa Niech a, b bed a liczbami rzeczywistymi i iech z = a bi. (1) Przypomijmy, że liczba sprzeżo a do z jest

Bardziej szczegółowo

Spis tre±ci 1. Wprowadzenie Sprawy formalne O matematyce O kursie Ci gªo± Pochodna Caªka

Spis tre±ci 1. Wprowadzenie Sprawy formalne O matematyce O kursie Ci gªo± Pochodna Caªka Spis tre±ci 1. Wprowadzeie 3 1.1. Sprawy formale 3 1.. O matematyce 3 1.3. O kursie 3 1.4. Ci gªo± 3 1.5. Pochoda 5 1.6. Caªka 6 1.7. Liczby rzeczywiste 6 1.8. Ie iformacje 6. Liczby rzeczywiste 7.1. Formala

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematycza Aa Jaicka wykład XIII, 30.05.06 STATYSTYKA BAYESOWSKA Pla a dzisiaj. Statystyka Bayesowska rozkłady a priori i a posteriori estymacja Bayesowska: Bayesowski Estymator Największej

Bardziej szczegółowo

A.1. Asymptotyka bez notacji asymptotycznej. Przykªad A.1. Zbada zachowanie asymptotyczne liczb Fibonacciego. Pokaza,»e. F n = round ( 1 5 Φ n )

A.1. Asymptotyka bez notacji asymptotycznej. Przykªad A.1. Zbada zachowanie asymptotyczne liczb Fibonacciego. Pokaza,»e. F n = round ( 1 5 Φ n ) A Notacjaasymptotycza Badaj c du»e obiekty kombiatorycze cz sto ie jest koiecze pozaie dokªadej warto±ci okre±loej wielko±ci (szczególie gdy wzór dokªady jest skomplikoway), a jedyie jej warto± przybli»o,

Bardziej szczegółowo

2.1 Przykład wstępny Określenie i konstrukcja Model dwupunktowy Model gaussowski... 7

2.1 Przykład wstępny Określenie i konstrukcja Model dwupunktowy Model gaussowski... 7 Spis treści Spis treści 1 Przedziały ufności 1 1.1 Przykład wstępny.......................... 1 1.2 Określenie i konstrukcja...................... 3 1.3 Model dwupunktowy........................ 5 1.4

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uiwersytet Ekoomiczy w Katowicach 2015/16 ROND, Fiase i Rachukowość, rok 2 Rachuek prawdopodobieństwa Rzucamy 10 razy moetą, dla której prawdopodobieństwo wyrzuceia orła w pojedyczym

Bardziej szczegółowo

Wyk lad 1 Podstawowe techniki zliczania

Wyk lad 1 Podstawowe techniki zliczania Wy lad 1 Podstawowe techii zliczaia Wariacje bez powtórzeń Defiicja 1. Niech i bed a liczbami aturalymi taimi, że. Niech A bedzie dowolym zbiorem elemetowym. Każdy ciag różowartościowy a 1,..., a d lugości

Bardziej szczegółowo

Twierdzenie 15.3 (o postaci elementów rozszerzenia ciała o zbiór). Niech F będzie ciałem oraz A F pewnym zbiorem. Niech L<F.

Twierdzenie 15.3 (o postaci elementów rozszerzenia ciała o zbiór). Niech F będzie ciałem oraz A F pewnym zbiorem. Niech L<F. 15. Wyład 15: Podciała, podciała geerowae przez zbiór, rozszerzeia ciał. Charaterystya pierścieia i ciała, ciała proste i lasyfiacja ciał prostych. 15.1. Podciała, podciała geerowae przez zbiór, rozszerzeia

Bardziej szczegółowo

Analiza I.1, zima wzorcowe rozwiązania

Analiza I.1, zima wzorcowe rozwiązania Aaliza I., zima 07 - wzorcowe rozwiązaia Marci Kotowsi 5 listopada 07 Zadaie. Udowodij, że dla ażdego aturalego liczba 7 + dzieli się przez 6. Dowód. Tezę udowodimy za pomocą iducji matematyczej. Najpierw

Bardziej szczegółowo

Twierdzenia o funkcjach ciągłych

Twierdzenia o funkcjach ciągłych Automatya i Robotya Aaliza Wyład 5 dr Adam Ćmiel cmiel@aghedupl Twierdzeia o ucjach ciągłych Tw (Weierstrassa Jeżeli ucja : R [ R jest ciągła a [, to ograiczoa i : ( sup ( i ( i ( [, Dowód Ograiczoość

Bardziej szczegółowo

Rachunek caªkowy funkcji wielu zmiennych

Rachunek caªkowy funkcji wielu zmiennych Rachunek caªkowy funkcji wielu zmiennych I. Malinowska, Z. Šagodowski Politechnika Lubelska 8 czerwca 2015 Caªka iterowana podwójna Denicja Je»eli funkcja f jest ci gªa na prostok cie P = {(x, y) : a x

Bardziej szczegółowo

Zadanie 1. Zadanie 2. Zadanie 3

Zadanie 1. Zadanie 2. Zadanie 3 Zadanie R to rata miesi czna, odsetki w k-tej racie to ods k = R( v 8 k ), a spªata kapitaªu wyra»a si wzorem kap k = Rv 8 k, gdzie v = (, 5) /6. Dany jest ukªad nierówno±ci z którego wynika Rv 8 N R(

Bardziej szczegółowo

x + 1 dla x 2 (d) f(x) = + 2 dla x > 2; (3) Znajd¹ dziedzin oraz funkcj odwrotn (je±li jest to proste) do: 1 log 3 x, (log2 x 2 ) 1 log 2

x + 1 dla x 2 (d) f(x) = + 2 dla x > 2; (3) Znajd¹ dziedzin oraz funkcj odwrotn (je±li jest to proste) do: 1 log 3 x, (log2 x 2 ) 1 log 2 1. Fukcje elemetare (1) Zajd¹ wykres fukcji arcsi(si(x)). (2) Zajd¹ posªuguj c si wykresami fukcje odwrote do podaych i»ej, a ast pie sprawd¹,»e s to rzeczywi±cie odwrote. (a) f(x) = 2x; (b) f(x) = 3x

Bardziej szczegółowo

3 Metody zliczania obiektów

3 Metody zliczania obiektów 3 Metody zliczaia obiektów Metoda bijektywa 3.1 Metoda bijektywa zliczaia obiektów kombiatoryczych polega a wskazaiu bijekcji pomi dzy badaym obiektem, a obiektem, którego ilo± elemetów jest am ju» zaa.

Bardziej szczegółowo

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to

Bardziej szczegółowo

Mat. Fin. i Bio., Gdańsk, Zestaw zadań ze statystyki matematycznej. Zestaw 1 1 N

Mat. Fin. i Bio., Gdańsk, Zestaw zadań ze statystyki matematycznej. Zestaw 1 1 N Marek Beśka, Statystyka matematyczna 1 Mat. Fin. i Bio., Gdańsk, 26.09.2016 Zestaw zadań ze statystyki matematycznej Zestaw 1 Zad. 1. Wykazać, że jeśli X 1, X 2,... są zmiennymi losowymi o jednakowych

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą

Bardziej szczegółowo

1 Liczby zespolone. , p, q Z. W zbiorze Q (tzn. liczb postaci p q

1 Liczby zespolone. , p, q Z. W zbiorze Q (tzn. liczb postaci p q 1 Liczby zespoloe 1.1 Dlaczego ie wystarczaj liczby rzeczywiste W dziejach systemów liczbowych, iejedokrotie trzeba byªo rozszerza istiej ce wyikaªo to z aturalych zapotrzebowa«. Liczby aturale N = {1,

Bardziej szczegółowo

Zbiory i odwzorowania

Zbiory i odwzorowania Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):

Bardziej szczegółowo