Kinematyka odwrotna:

Wielkość: px
Rozpocząć pokaz od strony:

Download "Kinematyka odwrotna:"

Transkrypt

1

2 Kinematka owotna: ozwiązanie zaania kinematki owotnej owaza ię o wznazenia maiez zekztałenia H otai H E Wznazenie tej maiez olega na znalezieni jenego bąź wztkih ozwiązań ównania: T T n n q... q gzie q... q H A... A Powżze ównanie aje nieliniowh nietwialnh gż olne wieze maiez i H to: ównań któe można zaiać Tij q... q hi j gzie i ; j n

3 Złożoność zaganienia kinematki owotnej: Poza ozwiązwania zaania kinematki owotnej jeteśm zainteeowani znalezieniem zamkniętej otai ozwiązania ównań a nie ozwiązaniami nmeznmi gż: w ewnh zatoowaniah ównania kinematki owotnej mzą bć ozwiązwane bazo zbko; mają ozwiązanie w otai zamkniętej można zgotować zaa wbo konketnh ozwiązań ośó wiel itniejąh. Pzkła. Manilato tanfozki T A A A A A A z W el znalezienia zmiennh zegbowh: należ ttaj ozwiązać komlikowan kła ównań tgonometznh.

4 Ukła ównań tgonometznh niezbęnh o wznazenia zmiennh zegbowh obota tanfozkiego: z ] [ ] [ ] [ ] [

5 Ozężenie kinematzne z O z O z z n a n z ozważm manilato o ześi toniah wobo n. manilato tanfozki.

6 Analiza zak z O z O z z n a n wazim zależność T n q... q H w otai wóh ównań : z q... q oaz q... q zatem : k

7 Jeśli wółzęne wektoa oznazć oowienio: z a wółzęne wektoa zez z to: z z teaz g możliwe jet jż wznazenie iewzh zmiennh zegbowh koztają z ważenia okeślam oientaję końówki obota wzglęem kła O z na otawie któej wznazam ozotałe kąt zegbowe jako zbió kątów Elea oowiaająh zekztałeni : T

8 Algotm ealizaji owżzego zaania: Kok. Znaleźć zmienne zegbowe q q q takie że śoek kiśi owektoze jet zlokalizowan ównaniem: k Kok. Wkoztją zmienne zegbowe wznazone w kok oblizć maiez zekztałenia. Kok. Znaleźć zetaw kątów Elea oowiaająh maiez obot na otawie wzo: T

9 Kinematka owotna ozji oejśie geometzne Manilato z łokiem konfigaja tawowa [ z ] T

10 ztowanie wektoa na łazzznę z z z S z P P

11 Zatem zt śoka kiśi na łazzznę zetawia ię natęjąo: atan gzie atan ozn. wagmentową fnkję a tangen zefiniowaną la wztkih wznazająą jenoznaznie kąt taki że: o in Na zkła: atan π natomiat atan π Jenoześnie należ zaważć że gim ozzalnm ozwiązaniem la kąta jet: π atan

12 Pozja oobliwa manilatoa z W ozji nieoobliwej śoek kiśi oian wektoem leż na oi z a wię la każej watośi kąta ołożenie śoka jet tałe. Mam wię o znienia z niekońzoną lizbą ozwiązań la.

13 Manilato z łokiem z zeniętm bakiem z Konfigaja lewego amienia φ Konfigaja awego amienia

14 Konfigaja lewego amienia: φ φ gzie atan atan atan Konfigaja lewego amienia: atan atan

15 Wznazenie kątów i manilatoa: a Na mo wzoów wowazonh na wkłazie iewzm la wzłonowego mehanizm łakiego otzmjem: a atan M ± M oaz atan atan a atan o a z atan a a a in o a in

16 Manilato z łokiem z zenięiem obot PUMA amię z lewej ton gó amię z awej ton gó amię z lewej ton oł amię z awej ton oł

17 Konfigaja fezna manilato fezn z a z

18 z Analiza manilatoa feznego atan π atan a a z atan π atan z a z a

19 Kinematka owotna oientaji znajowanie kątów Elea oowiaająh maiez obot W el wznazenia kątów Elea w zak kiśi feznej należ ozwiązać ównanie maiezowe otai: atan lb atan.. ± ± a zatem : i

20 Jeśli wbiezem iewzą watość kąta wówza > oaz: atan atan Jeśli wbiezem zaś gą watość kąta wówza < oaz: atan atan Jeśli natomiat to fakt że maiez U jet otogonalna imlikje ównośi ± i o oznaza że maiez U jet otai: U ±

21 Jeśli wte i zli a zatem ównanie maiezowe któe należ ozwiązać jet otai: Smę kątów i można wznazć z ównania: atan atan Jeśli - wte - i zli π a zatem ównanie maiezowe któe należ ozwiązać jet otai: óżnię kątów i można wznazć z ównania: atan atan

22 Pzkła. Analiza zaania kinematki owotnej otatnie zmienne manilatoa z łokiem ównanie któe należ ozwiązać la otatnih zmiennh manilatoa jet otai: gzie U T

23 Stoją ozwiązanie zkane w zak kątów Elea otzmjem: Jeśli i nie ą jenoześnie ówne ze wówza ze wzoów: atan lb atan otzmjem: atan ± Jeśli w owżzm ównani zotanie wbana oatnia watość iewiatka wówza kąt i oblizć można ze wzoów: atan atan zatem: atan atan

24 Pomowanie ozważań la manilatoa z łokiem manilatoa tawowego z z Jeśli onjem natęjąmi anmi: z oaz:

25 wówza zmienne zegbowe w notaji D-H ą okeślone natęjąmi wzoami: ± ± atan atan atan atan atan atan atan a a a a gzie M M M a a a z z

26 Pzkła. Manilato SCAA Ponieważ kinematka ota tego manilatoa okeślona jet zez maiez T tonie wobo to kinematka owotna owaza ię o ozwiązania natęjąego ównania maiezowego: a a a a ozwiązanie owżzego ównania jet możliwe wte i tlko wte g maiez jet otai: atan gzie

27 ztowanie amion manilatoa na łazzznę z z

28 Wznazanie zmiennh zegbowh manilatoa na otawie nk ± gzie atan a a a a Kąt wznazam z zależnośi: atan atan a a a Zatem: atan atan oaz: z

Plan wykładu 6. Hanna Pawłowska Elementy termodynamiki atmosfery i fizyki chmur Wykład 6

Plan wykładu 6. Hanna Pawłowska Elementy termodynamiki atmosfery i fizyki chmur Wykład 6 Plan wykłau 6 emoynamika związana z uhem ionowym Poe euo-aiabatyzny emeatua ekwiwalentna, temeatua ekwiwalentno-otenjalna, liqui wate otential temeatue Gaient wilgotno-aiabatyzny Hanna Pawłowka Elementy

Bardziej szczegółowo

Zastosowanie algorytmu Euklidesa

Zastosowanie algorytmu Euklidesa Zatoowanie algoytmu Euklidea Pzelewanie wody Dyonujez dwoma czeakami o ojemnościach 4 i 6 litów, utym ojemnikiem o nieoganiczonej objętości i nieoganiczoną ilością wody Podaj oób naełnienia ojemnika 14

Bardziej szczegółowo

ÓŁ Ą Ś Ą Ł Ś Ó Ą Ł ź ź Ą ż ż ż ż ż Ę Ę ź Ą ż Ę Ń Ę ż ż ź ż ż Ń ż Ą ż ć ż ć ć ć ć ż ć ć ć ć ż Ł Ę Ą ć ć ć ć ć ć ć ć ć ź ć ź Ę ć ź ć ż ć ć ć ż ź ć ć ć ć ż ź ż ż ć ż ż ć ż Ę Ą ć Ł ź ż ż Ł Ó ÓŁ ć Ą ć Ą ż ż

Bardziej szczegółowo

ć ź ź Ł ź ź ź Ś ć ć Ę ÓŁ ź Ń ź ź ź ć ć Ń ć ć ć Ń ź Ę Ś Ń ć ć ć ź ć ć ć ć ć ć ź Ś Ę ź ź Ż ć ź ź ć ź Ń ź ć ć ć ź ź Ł Ń ć Ń Ń ź Ś Ń Ę Ę Ę ź ć ć Ę ź Ń Ł Ę ź ź Ń Ę Ę Ł Ł Ś Ś ć ć Ł ź ć ć Ł Ó Ż Ś Ł Ó ź Ę Ń

Bardziej szczegółowo

Ł ś Ł Ą ś Ź Ł ś Ł ś ź ś ę ÓŁ ÓŁ ź ź ś ś ę ę ź ć ś ś ę ć ę ś ę ś ź ę ś ę ś ś ś ę ę ć ę ś Ł ę ę ę Ę Ą ś ś ś Ł ś ę ś Ł Ń Ł Ń ę ś ś ę Ż Ż ś Ż ś ś Ż ś ź ś ś ź ś ę ś ę Ń ę ę ę ś ę ś ę ś ź ś Ł ś ś ś ś ę ś ś

Bardziej szczegółowo

Ń ÓŁ Ł Ś Ł Ł Ś ÓŁ Ł Ś Ń ÓŁ Ł Ń Ź ę Ą ę ę ę ę ę ę Ź ę ć ć ę ę ę ę ę Ź ć ę ę ę ć ć ę ę ę Ł ę ę ę Ł Ł ę ę ę ę ę ź ę ę ę ę ź ę ć ę ć ć ę ę ź ź ę ć ę ę ź Ź ę ź ę ę ć Ź Ą ć ć ć ę ę ę ę ę Ź ź ę ć Ł ź ę ę Ź Ę

Bardziej szczegółowo

Ł ÓŁ Ł Ą Ś Ą Ą Ś Ś ć ć ć ć ć ć ć ć ć ć ć Ę ć ń ć ć ć ć ć ć ć ń ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ą ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ń ń ć Ś ń ć ń ć ń ć ć Ś ć Ż Ś Ś ń Ł Ń ń ć ć ć ć Ś ń

Bardziej szczegółowo

Ł Ń Ś ś ę ę ś ś ś ś ę ę ę ę ś ś ę ś ę ś ę ś ś ć Ą ś ę ś ś ę ś ę ś ś Ń ś ś ś ś ś ś ę ę ę ę ś ś ę ć ś ś ę ś ę ś ę ę ś ę ś Ą ę ś ę ś ś ś ś ę ś ś ę ę ś ś ę ś ś ś ę ę ę ś ś ś ę ś ę ś ę ć ś ś ę ś ę ę Ą ę ę ę

Bardziej szczegółowo

Ą Ą Ł Ś ÓŁ Ł ć ć ź ÓŁ ć ć Ś ć ć Ą ć ć ć ź ć ć ć ć ć Ą Ó ÓŁ ć ć Ł Ł ź Ś ć ć ć ć Ł Ł ć ć Ł Ł Ł ć Ó ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ź Ż ź Ł ć Ż Ć Ż Ś Ż ć ć ć ć Ł Ż Ś ć Ś ź ć ź ć ć ć ź ć Ś Ź ŚĆ ź ć ć Ś Ś

Bardziej szczegółowo

Ą Ł Ł Ł Ś ż ź ź Ł Ś Ą Ł Ś Ś Ł Ó ż Ł Ś Ą ć ć ż ż Ą ż ć ż ż ć ć ć Ś ć ż Ś ż ż Ą ć ż ż ć ć ć ć ż ż Ś ć ż ż ÓŁ ż ż ż Ł Ł Ś Ó ć ż Ł ż ż ż ż ż Ć Ó Ó ż ż Ó Ł Ł ż Ą ż ż ż ż ż ż ż ż ż ć ż ż ć ż ż ż ć ż ż ż Ł ć

Bardziej szczegółowo

Wynik finansowy transakcji w momencie jej zawierania jest nieznany z uwagi na zmienność ceny przedmiotu transakcji, czyli instrumentu bazowego

Wynik finansowy transakcji w momencie jej zawierania jest nieznany z uwagi na zmienność ceny przedmiotu transakcji, czyli instrumentu bazowego .Istmety ochoe otaty temiowe azywae sa istmetami ochoymi (eivatives. otat temiowy zobowiazje wie stoy o zeowazeia w zyszłosci ewej tasacji a wczesiej staloych waach. Jea stoa otatów (abywca - te, co je

Bardziej szczegółowo

Teoria i metody optymalizacji

Teoria i metody optymalizacji eoia dualności dla zadania pogamowania liniowego PL EORIA I MEODY OPYMALIZACJI Zadanie liniowego pogamowania całkowitoliczbowego PCL Wdział Elektoniki Kie. Automatka i Robotka Studia II t. NZ d inż. Ewa

Bardziej szczegółowo

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III Modelowanie pzepływu cieczy pzez ośodki poowate Wykład III 6 Ogólne zasady ozwiązywania ównań hydodynamicznego modelu pzepływu. Metody ozwiązania ównania Laplace a. Wpowadzenie wielkości potencjału pędkości

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla

Bardziej szczegółowo

ĆWICZENIE 5. Badanie przekaźnikowych układów sterowania

ĆWICZENIE 5. Badanie przekaźnikowych układów sterowania ĆWICZENIE 5 Badanie zekaźnikowych układów steowania 5. Cel ćwiczenia Celem ćwiczenia jest badanie zekaźnikowych układów steowania obiektem całkującoinecyjnym. Ćwiczenie dotyczy zekaźników dwu- i tójołożeniowych

Bardziej szczegółowo

IV OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy część 2 ZADANIA 29 lutego 2012r.

IV OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy część 2 ZADANIA 29 lutego 2012r. V OGÓLNOPOLSK KONKS Z FZYK Fizyka się liczy część ZADANA 9 lutego 0.. Dwie planety obiegają Słooce po, w pzybliżeniu, kołowych obitach o pomieniach 50 0 km (Ziemia) i 080 km (Wenus). Znaleź stosunek ich

Bardziej szczegółowo

PLAN WYKŁADU. Opis pary wodnej w atmosferze Opis wilgotnego, nienasyconego powietrza 1 /22

PLAN WYKŁADU. Opis pary wodnej w atmosferze Opis wilgotnego, nienasyconego powietrza 1 /22 PLAN WYKŁADU Oi ay wonj w atofz Oi wilgotngo, ninayongo owitza /22 Poęzniki Salby, Chat 4 C&W, Chat 4 &Y, Chat 2 2 /22 OPIS PAY WODNEJ W AOSFEZE 3 /22 aua.naa.go 4 /22 Dla tatu i iśniń otykanyh w atofz,

Bardziej szczegółowo

II.6. Wahadło proste.

II.6. Wahadło proste. II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia

Bardziej szczegółowo

Model klasyczny gospodarki otwartej

Model klasyczny gospodarki otwartej Model klasyczny gospodaki otwatej Do tej poy ozpatywaliśmy model sztucznie zakładający, iż gospodaka danego kaju jest gospodaką zamkniętą. A zatem bak było międzynaodowych pzepływów dób i kapitału. Jeżeli

Bardziej szczegółowo

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metody optymalizacji d inż. Paweł Zalewski kademia Moska w Szczecinie Optymalizacja - definicje: Zadaniem optymalizacji jest wyznaczenie spośód dopuszczalnych ozwiązań danego polemu ozwiązania najlepszego

Bardziej szczegółowo

m q κ (11.1) q ω (11.2) ω =,

m q κ (11.1) q ω (11.2) ω =, OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU

Bardziej szczegółowo

Metoda odbić zwierciadlanych

Metoda odbić zwierciadlanych Metoa obić zwiecialanych Pzypuśćmy, że łaunek punktowy (Rys ) umieszczony jest w oległości o nieskończonej powiezchni pzewozącej, umiejscowionej na płaszczyźnie X0Y Piewsze pytanie, jakie o azu się nasuwa

Bardziej szczegółowo

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony Modele odpowiedzi do akusza Póbnej Matuy z OPERONEM Matematyka Poziom ozszezony Listopad 00 W kluczu są pezentowane pzykładowe pawidłowe odpowiedzi. Należy ównież uznać odpowiedzi ucznia, jeśli są inaczej

Bardziej szczegółowo

SCENARIUSZ LEKCJI MATEMATYKI Temat: Zadania na dowodzenie w trygonometrii. Cel: Uczeń tworzy łańcuch argumentów i uzasadnia jego poprawność.

SCENARIUSZ LEKCJI MATEMATYKI Temat: Zadania na dowodzenie w trygonometrii. Cel: Uczeń tworzy łańcuch argumentów i uzasadnia jego poprawność. SCENAIUSZ LEKCJI MATEMATYKI Temat: Zadania na dowodzenie w tygonometii Cel: Uczeń twozy łańcuch agumentów i uzasadnia jego popawność Czas: godzina lekcyjna Cele zajęć: Uczeń po zajęciach: wykozystuje definicje

Bardziej szczegółowo

23. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA

23. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA . CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA Płat powiechniow o ównaniach paametcnch: ( ) ( ) ( ) () gdie oba jet obaem eglanm nawam płatem gładkim (płatem eglanm) gd w każdm pnkcie tego płata itnieje płacna

Bardziej szczegółowo

Metoda odbić zwierciadlanych

Metoda odbić zwierciadlanych Metoa obić zwiecialanych Pzyuśćmy, że łaunek unktowy (Rys ) umieszczony jest w oległości o nieskończonej owiezchni zewozącej, umiejscowionej na łaszczyźnie X0Y Piewsze ytanie, jakie o azu się nasuwa jest

Bardziej szczegółowo

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym. Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,

Bardziej szczegółowo

LABOLATORIUM SZTUCZNYCH SIECI NEURONOWYCH

LABOLATORIUM SZTUCZNYCH SIECI NEURONOWYCH LABOLATORIUM SZTUCZNYCH SIECI NEURONOWYCH ĆWICZENIE 3 NEURONOWE STEROWANIE ROBOTEM Neuonowe steowanie ynamiką obota. Cel ćwiczenia należy zestawić ukła steowania amionami obota z wykozystaniem metoy owotnego

Bardziej szczegółowo

Rozciąganie i ściskanie prętów projektowanie 3

Rozciąganie i ściskanie prętów projektowanie 3 Rozciąganie i ściskanie pętó pojektoanie 3 Sposób oziązyania pętó ozciąganych/ściskanych został omóiony ozziale. Zaania pojektoe spoazają się o okeślenia ymiaó pzekoju popzecznego pęta na postaie aunku

Bardziej szczegółowo

Zastosowanie teorii pierścieni w praktyce

Zastosowanie teorii pierścieni w praktyce Upozczenie wyażeń 2x+(y x) = x+y Spotkania z Matematyka Zatoowanie teoii pieścieni w paktyce Alekande Deniiuk denijuk@matman.uwm.edu.pl Uniweytet Wamińko-Mazuki w Olztynie Wydział Matematyki i Infomatyki

Bardziej szczegółowo

Rozważymy nieskończony strumień płatności i obliczymy jego wartość teraźniejszą.

Rozważymy nieskończony strumień płatności i obliczymy jego wartość teraźniejszą. Renty wieczyste Rozważyy nieskończony stuień płatności i obliczyy jego watość teaźniejszą Najpiew ozważy entę wieczystą polegającą na wypłacie jp co ok Jeśli piewsza płatność jest w chwili to ówiy o encie

Bardziej szczegółowo

PRĘDKOŚCI KOSMICZNE OPRACOWANIE

PRĘDKOŚCI KOSMICZNE OPRACOWANIE PRĘDKOŚCI KOSMICZNE OPRACOWANIE I, II, III pędkość komiczna www.iwiedza.net Obecnie, żyjąc w XXI wieku, wydaje ię nomalne, że człowiek potafi polecieć w komo, opuścić Ziemię oaz wylądować na Kiężycu. Poza

Bardziej szczegółowo

1. SZCZEGÓLNE PRZYPADKI ŁUKÓW.

1. SZCZEGÓLNE PRZYPADKI ŁUKÓW. Olga Kopacz, Aam Łoygowski, Kzysztof Tymbe, ichał Płotkowiak, Wojciech Pawłowski Konsultacje naukowe: pof. hab. Jezy Rakowski Poznań /. SZCZEGÓLNE PRZYPADKI ŁUKÓW.. Łuk jenopzegubowy kołowy. Dla łuku jak

Bardziej szczegółowo

Ł Ą Ą Ą ÓŁ Ą ć ć ń ń ń Ą ć ń ń ć ń Ę ń ń Ę ń ń ń ń ń ń Ą ń Ć ń ń ń ń ż ń ń ń ź Ś ń ń ń ż ż ż ń ń Ę ć Ś ć ć ż ń ń ń Ł ń ń ń ń ń ż Ł ÓŁ ÓŁ Ą Ś Ę Ą Ą Ą Ł Ł Ą Ą Ś ż ÓŁ ż Ł Ą Ę ć ż Ł ż Ż ż ń Ś Ó Ś Ś Ó ń Ą ż

Bardziej szczegółowo

29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste

29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste 9 Rozpaszanie na potencjae sfeycznie symetycznym - fae kuiste W ozdziae tym zajmiemy się ozpaszaniem na potencjae sfeycznie symettycznym V ). Da uchu o dodatniej enegii E = k /m adiane ównanie Schödingea

Bardziej szczegółowo

Wyznaczanie współczynnika sztywności drutu metodą dynamiczną.

Wyznaczanie współczynnika sztywności drutu metodą dynamiczną. Ćwiczenie M- Wyznaczanie współczynnika sztywności dutu metodą dynamiczną.. Ce ćwiczenia: pomia współczynnika sztywności da stai metodą dgań skętnych.. Pzyządy: dwa kążki metaowe, statyw, dut staowy, stope,

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listopad 0 W ni niej szym sche ma cie oce nia nia za dań otwa tych są pe zen to wa ne pzy kła do we po paw ne od po wie

Bardziej szczegółowo

MECHANIKA BUDOWLI 12

MECHANIKA BUDOWLI 12 Olga Koacz, Kzysztof Kawczyk, Ada Łodygowski, Michał Płotkowiak, Agnieszka Świtek, Kzysztof Tye Konsultace naukowe: of. d hab. JERZY RAKOWSKI Poznań /3 MECHANIKA BUDOWLI. DRGANIA WYMUSZONE, NIETŁUMIONE

Bardziej szczegółowo

ź ź Ż ź ź ź ć ć ÓŁ ź ćź ć ć ć ć Ó Ó ć ź ć ć ć ć ć ć ź ź ź Ś Ó ć ć ć Ć ć ź ć Ę ź Ś ć Ś ć Ź ć ć ź ź ć ć ć ć ć ć ć ź ź ć ć Ś ź Ś Ś ź ź Ś Ś Ś ć ć ć ć ć ć ć ć ć ć ź ć ź Ć ź Ś Ś Ś ź Ś Ż ć ź ź ź ź ć ć ź ź ć ć

Bardziej szczegółowo

Ł ÓŁ Ó Ó Ó ć Ź Ó Ą ć Ź Ó Ś ć Ś Ó Ó ć Ó Ź Ó Ś ć Ź ć Ę Ó Ó Ą Ł ć Ą Ą Ą Ó ć Ó Ó Ó ć Ó ć ć ć Ó Ą Ź Ó Ą ć Ś Ó Ą Ź Ó Ź Ś Ó Ó Ź Ó Ó Ź Ź Ó Ó ć Ó Ą Ć Ó Ó Ź Ź Ź Ę Ó ć ć Ł Ó Ó Ó ć ć Ó ź ć ć Ó Ś Ó ć ź Ź ź ć Ś Ó ć

Bardziej szczegółowo

ÓŁ Ł Ó ź Ł Ą Ł ń ń Ą ń ź Ą ń ż ć Ę Ę Ę ż ć ń ć ń ż ń ć ń Ę ż ć ź ć ź ć Ę ż ż Ę Ę Ą ż ź ń ź ź ż ć ż ń Ę ć ć ć ń Ę ń ć Ę ć ń ń ż ń ń ń ń ń ń ń ż Ę ń ń ń Ę ń ć ż Ż Ż ćę Ę Ę ż ć Ą ż Ę ż Ę ż Ę Ę ć Ę ć ż ż ć

Bardziej szczegółowo

Wyznaczanie temperatury i ciśnienia gazu z oddziaływaniem Lennarda Jonesa metodami dynamiki molekularnej

Wyznaczanie temperatury i ciśnienia gazu z oddziaływaniem Lennarda Jonesa metodami dynamiki molekularnej Pojekt n C.4. Wyznazanie tempeatuy i iśnienia gazu z oddziaływaniem Lennada Jonesa metodami dynamiki molekulanej Wpowadzenie Fizyka Rozważamy model gazu zezywistego zyli zbió atomów oddziaływująyh z sobą

Bardziej szczegółowo

Przejmowanie ciepła przy konwekcji swobodnej w przestrzeni ograniczonej (szczeliny)

Przejmowanie ciepła przy konwekcji swobodnej w przestrzeni ograniczonej (szczeliny) inż. Michał Stzeszewski 0-006 Pzejowanie ciepła pzy konwekcji swobonej w pzestzeni oganiczonej (szczeliny) Zaania o saozielnego ozwiązania v. 0.. powazenie celu uposzczenia achunkowego ozwiązania zjawiska

Bardziej szczegółowo

SK-7 Wprowadzenie do metody wektorów przestrzennych SK-8 Wektorowy model silnika indukcyjnego, klatkowego

SK-7 Wprowadzenie do metody wektorów przestrzennych SK-8 Wektorowy model silnika indukcyjnego, klatkowego Ćwiczenia: SK-7 Wpowadzenie do metody wektoów pzetzennych SK-8 Wektoowy model ilnika indukcyjnego, klatkowego Wpowadzenie teoetyczne Wekto pzetzenny definicja i poawowe zależności. Dowolne wielkości kalane,

Bardziej szczegółowo

Ą ć ź ć Ą ć Ą Ą Ł Ź Ą Ź ć ć Ź Ą Ą Ą ź Ł ć Ź Ą ć ź ć Ą Ź ć ź Ą Ą Ą Ł Ą Ł Ź ć Ś Ń ć Ł Ź Ó ć ć ć Ą ÓŁ ź Ą Ą Ź ć Ź Ź Ą Ł Ł ć ć ć ć ź ć ź ć Ą Ą Ź Ź Ą ć Ą Ź Ś Ą Ó Ź Ó Ą Ź Ą Ł Ł Ź ć Ś ć Ą Ą ć Ź Ó Ś Ś Ź ź ź Ś

Bardziej szczegółowo

METEMATYCZNY MODEL OCENY

METEMATYCZNY MODEL OCENY I N S T Y T U T A N A L I Z R E I O N A L N Y C H w K i e l c a c h METEMATYCZNY MODEL OCENY EFEKTYNOŚCI NAUCZNIA NA SZCZEBLU IMNAZJALNYM I ODSTAOYM METODĄ STANDARYZACJI YNIKÓ OÓLNYCH Auto: D Bogdan Stępień

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA (1980/1981). Stopień I, zadanie teoretyczne T4 1

XXX OLIMPIADA FIZYCZNA (1980/1981). Stopień I, zadanie teoretyczne T4 1 XXX OLMPADA FZYCZNA (1980/1981). Stopień, zadanie teoetyczne T4 1 Źódło: Komitet Główny Olimpiady Fizycznej; Waldema Gozowsi; Andzej Kotlici: Fizya w Szole, n 3, 1981.; Andzej Nadolny, Kystyna Pniewsa:

Bardziej szczegółowo

Ł ć ź ź Ą Ń ź ź ź Ę Ą Ń ć Ł Ł ć ć ć ć ć ć ć ć ć ź ź ć ć Ł ć ć ć Ł ć Ł ć ź Ś Ś ć ź ć ź ź ć Ł Ę Ę Ń ź ź ć ć Ł Ł Ą Ą ź Ą Ę ź ź Ś Ł ŚĆ ć ć ć Ń Ą Ę ź Ę Ł Ę Ą ź Ń ć ć ź ź Ą ź ź ć ć ŚĆ ć Ś Ś Ś ć Ę ć ć ć Ś

Bardziej szczegółowo

ś ŁĄ ŁĄ Ą Ą Ż Ą Ł ŁĄ Ł Ł Ą Ł Ą Ą Ó Ł Ó ś Ł Ł Ł Ą Ą ŁĄ Ą ŁĄ ÓŁ Ł ć Ż ś Ź ÓŁ Ą Ą ŁĄ Ą Ł Ź ć ź ś ś ś ŁĄ ÓŁ Ą Ć Ź Ź ś Ź ś Ź ś Ź ś ś Ł Ł Ą ś Ź ś ś ś Ł Ł Ą Ą Ź ś Ł Ł Ł Ą Ą ŁĄ Ź ś ś ś ść Ą Ł ź ść Ź ź ś Ł Ł ź

Bardziej szczegółowo

11. DYNAMIKA RUCHU DRGAJĄCEGO

11. DYNAMIKA RUCHU DRGAJĄCEGO 11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie

Bardziej szczegółowo

Ruch kulisty bryły. Kinematyka

Ruch kulisty bryły. Kinematyka Ruch kulist bł. Kinematka Ruchem kulistm nawam uch, w casie któego jeden punktów bł jest stale nieuchom. Ruch kulist jest obotem dookoła chwilowej osi obotu (oś ta mienia swoje położenie w casie). a) b)

Bardziej szczegółowo

Ą ÓŁ Ź ÓŹ Ó Ź Ź Ó Ź Ź Ś Ś Ó Ź Ó Ś Ó ć ć ć Ś Ó ć Ó Ó ź Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó ć Ó Ź Ź Ó Ó Ó Ź Ź ć Ó Ó Ó Ó Ó Ź Ź ć Ź Ó Ź ć Ó Ó Ó ć Ą Ś ć Ź Ś Ź ć Ó ź Ś Ł Ś Ś Ź Ś Ó Ź Ź Ź Ś Ś Ę Ź Ó Ś Ź Ó ć Ź Ź Ó ź Ó ć Ę Ó Ź ć

Bardziej szczegółowo

WZORY Z FIZYKI POZNANE W GIMNAZJUM

WZORY Z FIZYKI POZNANE W GIMNAZJUM WZORY Z IZYKI POZNANE W GIMNAZJM. CięŜa ciała. g g g g atość cięŝau ciała N, aa ciała kg, g tały ółczyik zay zyiezeie zieki, N g 0 0 kg g. Gętość ubtacji. getoc aa objetoc ρ V Jedotką gętości kładzie SI

Bardziej szczegółowo

Ś Ę ź Ę Ą Ł Ż Ą ć Ł Ż ŁĄ Ł Ł Ż Ż ŁĄ Ś Ą ć Ś Ś Ó Ę ć ć ź ć Ś Ę ć ć Ę Ę Ę Ę ć Ę Ę Ę ć ć Ę ź Ę Ę Ę Ł Ł Ł Ę Ę Ó Ó Ń Ó Ę Ł Ę Ę Ł Ę Ę Ó Ż Ę Ę Ę Ó Ś Ż ź Ę ź ź Ę Ż Ś Ś Ś Ż ć ź Ę Ę Ę Ż Ą Ę Ś Ę Ę Ę ÓŁ Ę Ą ć Ę Ą

Bardziej szczegółowo

D.4 VHM. ATIGarryson. High-performance tools. Ready for action. Pilniki obrotowe z węglika spiekanego firmy Garryson. Allegheny Technologies

D.4 VHM. ATIGarryson. High-performance tools. Ready for action. Pilniki obrotowe z węglika spiekanego firmy Garryson. Allegheny Technologies High-performane tool. Reay for ation. D.4 VHM Pilnii obrotowe z węglia pieanego firmy Garryon TIGarryon llegheny Tehnologie iepowleane p i l n i i o b r o t o w e z w ę g l i a p i e a n e g o niepowleane

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Konkusy w województwie podkapackim w oku szkolnym 08/09 KONKURS Z MTEMTYKI L UZNIÓW SZKÓŁ POSTWOWYH ETP REJONOWY KLUZ OPOWIEZI Zasady pzyznawania punktów za każdą popawną odpowiedź punkt za błędną odpowiedź

Bardziej szczegółowo

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych. Sterowanie dławieniowe-równoległe prędkością ruchu odbiornika hydraulicznego

Instrukcja do ćwiczeń laboratoryjnych. Sterowanie dławieniowe-równoległe prędkością ruchu odbiornika hydraulicznego Intrukcja o ćwiczeń laboratoryjnych Sterowanie ławieniowe-równoległe rękością ruchu obiornika hyraulicznego Wtę teoretyczny Niniejza intrukcja oświęcona jet terowaniu ławieniowemu równoległemu jenemu ze

Bardziej szczegółowo

Wykład 9. Model ISLM: część I

Wykład 9. Model ISLM: część I Makoekonomia 1 Wykład 9 Model ISLM: część I Gabiela Gotkowska Kateda Makoekonomii i Teoii Handlu Zaganicznego Plan wykładu Model ISLM Równowaga gaficzna Równowaga algebaiczna Skutki zmian paametów egzogenicznych

Bardziej szczegółowo

CHARAKTERYSTYKI UŻYTKOWE I WZORCOWANIE SZEROKOPASMOWYCH MIERNIKÓW NADFIOLETU

CHARAKTERYSTYKI UŻYTKOWE I WZORCOWANIE SZEROKOPASMOWYCH MIERNIKÓW NADFIOLETU Jezy PIETRZYKOWSKI CHARAKTERYSTYKI UŻYTKOWE I WZORCOWANIE SZEROKOPASMOWYCH MIERNIKÓW NADFIOLETU STRESZCZENIE Okeślono haakteystyki użytkowe szeokopasmowyh mieników nadfioletu oaz ih klasyfikaję. Podano

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA. Wykład V

TERMODYNAMIKA PROCESOWA. Wykład V ERMODYNAMIKA PROCESOWA Wykład V Równania stanu substancji czystych Równanie stanu gazu doskonałego eoia stanów odpowiadających sobie Równania wiialne Pof. Antoni Kozioł, Wydział Chemiczny Politechniki

Bardziej szczegółowo

GEOMETRIA PŁASZCZYZNY

GEOMETRIA PŁASZCZYZNY GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,

Bardziej szczegółowo

Arkusze maturalne poziom podstawowy

Arkusze maturalne poziom podstawowy Akusze matualne poziom postawowy zaania zamknięte N zaania 5 7 8 9 0 Pawiłowa opowieź a c a b c b a Liczba punktów zaania otwate N zaania Pawiłowa opowieź Punkty Q mg 00 N Z III zasay ynamiki wynika, że

Bardziej szczegółowo

Wykład 15. Reinhard Kulessa 1

Wykład 15. Reinhard Kulessa 1 Wykład 5 9.8 Najpostsze obwody elektyczne A. Dzielnik napięcia. B. Mostek Wheatstone a C. Kompensacyjna metoda pomiau siły elektomotoycznej D. Posty układ C. Pąd elektyczny w cieczach. Dysocjacja elektolityczna.

Bardziej szczegółowo

Krystyna Gronostaj Maria Nowotny-Różańska Katedra Chemii i Fizyki, FIZYKA Uniwersytet Rolniczy do użytku wewnętrznego ĆWICZENIE 4

Krystyna Gronostaj Maria Nowotny-Różańska Katedra Chemii i Fizyki, FIZYKA Uniwersytet Rolniczy do użytku wewnętrznego ĆWICZENIE 4 Kystyna Gonostaj Maia Nowotny-Różańska Katea Cheii i Fizyki, FIZYKA Uniwesytet Rolniczy o użytku wewnętznego ĆWICZENIE 4 WYZNACZANIE GĘSTOŚCI CIAŁ STAŁYCH I CIECZY PRZY POMOCY PIKNOMETRU Kaków, 2004-2012

Bardziej szczegółowo

Optyka 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Optyka 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Optka Projekt współinansowan przez Unię Europejską w ramach Europejskiego Funuszu Społecznego Optka II Promień świetln paając na powierzchnię zwierciała obija się zgonie z prawem obicia omówionm w poprzeniej

Bardziej szczegółowo

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

Zadanie 1. Zadanie 2. Sprawdzam dla objętości, że z obwarzanków mogę posklejać całą kulę o promieniu R: r = {x, y, z}; A = * Cross r, B

Zadanie 1. Zadanie 2. Sprawdzam dla objętości, że z obwarzanków mogę posklejać całą kulę o promieniu R: r = {x, y, z}; A = * Cross r, B Zadanie In[]:= = {x, y, z}; In[]:= B = B, B, B3 ; (* Bi to wielkości stałe *) In[3]:= A = - * Coss, B Out[3]= -B3 y + B z, B3 x - B z, -B x + B y In[4]:= {x,y,z} -B3 y + B z, B3 x - B z, -B x + B y Out[4]=

Bardziej szczegółowo

Maria Dems. T. Koter, E. Jezierski, W. Paszek

Maria Dems. T. Koter, E. Jezierski, W. Paszek Sany niesalone masyn synchonicnych Maia Dems. Koe, E. Jeieski, W. Pasek Zwacie aowe pąnicy synchonicnej San wacia salonego, wany akże waciem nomalnym lb pomiaowym yskje się pe wacie acisków wonika (j (sojana

Bardziej szczegółowo

Studia magisterskie ENERGETYKA. Jan A. Szantyr. Wybrane zagadnienia z mechaniki płynów. Ćwiczenia 2. Wyznaczanie reakcji hydrodynamicznych I

Studia magisterskie ENERGETYKA. Jan A. Szantyr. Wybrane zagadnienia z mechaniki płynów. Ćwiczenia 2. Wyznaczanie reakcji hydrodynamicznych I Studia magisteskie ENERGETYK Jan. Szanty Wybane zagadnienia z mehaniki płynów Ćwizenia Wyznazanie eakji hydodynamiznyh I Pzykład 1 Z dyszy o śedniah =80 [mm] i d=0 [mm] wypływa woda ze śednią pędkośią

Bardziej szczegółowo

WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI PRZY POMOCY WAHADŁA TORSYJNEGO

WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI PRZY POMOCY WAHADŁA TORSYJNEGO Mehk WYZNACZANIE MOUŁU SPĘŻYSTOŚCI PZY POMOCY WAHAŁA TOSYJNEO. Ops teoetz o ćwze zeszzo jest stoe www.wt.wt.e.p w ze YAKTYKA FIZYKA ĆWICZENIA LABOATOYJNE.. Ops kł poowego Oekte ń jest pęt o łgoś śe któego

Bardziej szczegółowo

J. Szantyr Wykład 11 Równanie Naviera-Stokesa

J. Szantyr Wykład 11 Równanie Naviera-Stokesa J. Sant Wkład Równanie Naviea-Stokesa Podstawienie ależności wnikającch model łn Newtona do ównania achowania ęd daje ównanie nane jako ównanie Naviea-Stokesa. Geoge Stokes 89 903 Clade Navie 785-836 Naviea-Stokesa.

Bardziej szczegółowo

OSCYLATOR HARMONICZNY

OSCYLATOR HARMONICZNY OSCYLTOR HRMONICZNY Dgania swobone oscylaoa haonicznego negia oencjalna sęŝysości Dgania łuione oscylaoa haonicznego Dgania wyuszone oscylaoa haonicznego Rezonans aliuowy Rezonans ocy Doboć ukłau gającego

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Chemia Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Chemia Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Chemia Poziom ozszezony Listopad W niniejszym schemacie oceniania zadań otwatych są pezentowane pzykładowe popawne odpowiedzi. W tego typu ch należy

Bardziej szczegółowo

ź ć Ń Ę Ś Ę ź Ś Ę ć ŚĆ Ó ÓŁ Ł ć ź ź ź ź Ń ć Ę Ę ź ć ć ź ć ć Ł ć Ę Ń ć Ę Ę ć Ł ć ź ź ć ź ć ć ć ź ć ź ź Ó Ń Ó Ż ź ć Ó ź ź ć ź ź Ś ć ć ź ć ć Ę Ł ź ź Ę Ę Ę Ę Ń Ę Ł Ę Ń Ń Ń ź Ń Ń ź ź Ń Ł ź ź ź Ę ź ź Ę Ń Ń

Bardziej szczegółowo

Sterowanie prędkością silnika krokowego z zastosowaniem mikrokontrolera ATmega8

Sterowanie prędkością silnika krokowego z zastosowaniem mikrokontrolera ATmega8 mg inż. ŁUKASZ BĄCZEK d hab. inż. ZYGFRYD GŁOWACZ pof. ndzw. w AGH Akademia Góniczo-Hutnicza Wydział Elektotechniki, Automatyki, Infomatyki i Elektoniki Kateda Mazyn Elektycznych Steowanie pędkością ilnika

Bardziej szczegółowo

16. Pole magnetyczne, indukcja. Wybór i opracowanie Marek Chmielewski

16. Pole magnetyczne, indukcja. Wybór i opracowanie Marek Chmielewski 6. Poe magnetczne, nukcja Wbó opacowane Maek meewsk 6.. Znaeźć nukcje poa magnetcznego w oegłośc o neskończone ługego pzewonka wacowego o pomenu pzekoju popzecznego a w któm płne pą I. 6.. Wznaczć nukcję

Bardziej szczegółowo

METODA CIASNEGO (silnego) WIĄZANIA (TB)

METODA CIASNEGO (silnego) WIĄZANIA (TB) MEODA CIASEGO silnego WIĄZAIA B W FE elektony taktujemy jak swobone, tylko zabuzone słabym peioycznym potencjałem; latego FE jest obym moelem metalu w B uważamy, że elektony są silnie związane z maciezystymi

Bardziej szczegółowo

11. 3.BRYŁY OBROTOWE. Walec bryła obrotowa powstała w wyniku obrotu prostokąta dokoła prostej zawierającej jeden z jego boków

11. 3.BRYŁY OBROTOWE. Walec bryła obrotowa powstała w wyniku obrotu prostokąta dokoła prostej zawierającej jeden z jego boków ..BRYŁY OBROTOWE Wae była obotowa powstała w wyniku obotu postokąta dokoła postej zawieająej jeden z jego boków pomień podstawy waa wysokość waa twoząa waa Pzekój osiowy waa postokąt o boka i Podstawa

Bardziej szczegółowo

Aerotriangulacja metodą niezaleŝnych wiązek

Aerotriangulacja metodą niezaleŝnych wiązek KP FC - aeo 27 Dwa zasanize etap pomiaow pomia wkonuje się na autogaie owm lub analitznm wkonuje się oientaję wewnętzną la kaŝego zjęia miez się współzęne tłowe otopunktów i punktów wiąŝąh oblizeniow blizenie

Bardziej szczegółowo

= ± Ne N - liczba całkowita.

= ± Ne N - liczba całkowita. POL LKTRYCZN W PRÓŻNI Ładunek - elementany Nieodłączna własność niektóych cząstek elementanych, [n. elektonu (-e), otonu (+e)], zejawiająca się w oddziaływaniu elektomagnetycznym tych cząstek. e =,6-9

Bardziej szczegółowo

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,

Bardziej szczegółowo

NOMINALNA STOPA PROCENTOWA stopa oprocentowania przyjęta w okresie bazowym; nie uwzględnia skutków kapitalizacji odsetek

NOMINALNA STOPA PROCENTOWA stopa oprocentowania przyjęta w okresie bazowym; nie uwzględnia skutków kapitalizacji odsetek Symbole: nominalna stopa pocentowa ( od stu ) n ilość okesów (lat, miesięcy, kwatałów etc.) m ilość podokesów (np. stopa pocentowa podana jest w skali oku; kapitalizacja miesięczna m=12) d stopa dyskontowa

Bardziej szczegółowo

Dobór zmiennych objaśniających do liniowego modelu ekonometrycznego

Dobór zmiennych objaśniających do liniowego modelu ekonometrycznego Dobó zmiennych objaśniających do liniowego modelu ekonometycznego Wstępnym zadaniem pzy budowie modelu ekonometycznego jest okeślenie zmiennych objaśniających. Kyteium wybou powinna być meytoyczna znajomość

Bardziej szczegółowo

Wyznaczanie współczynnika wnikania ciepła dla konwekcji swobodnej

Wyznaczanie współczynnika wnikania ciepła dla konwekcji swobodnej Kateda Silników Salinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wyznaczanie wsółczynnika wnikania cieła dla konwekcji swobodnej - - Pojęcia odstawowe Konwekcja- zjawisko wymiany cieła między owiezchnią

Bardziej szczegółowo

5.1 Połączenia gwintowe

5.1 Połączenia gwintowe 5.0 Połączenia Połączenia służą o pzenoszenia obciążeń mięzy elementami konstukcyjnymi uniemożliwiając ich wzajemne pzemieszczenia. POŁĄCZENIA NIEROZŁĄCZNE ROZŁĄCZNE PLASTYCZNE - nitowe - zawijane - zaginane

Bardziej szczegółowo

Zrobotyzowany system docierania powierzchni płaskich z zastosowaniem plików CL Data

Zrobotyzowany system docierania powierzchni płaskich z zastosowaniem plików CL Data MECHANIK NR 8-9/2015 25 Zobotyzowany system docieania powiezcni płaskic z zastosowaniem plików CL Data Robotic system fo flat sufaces lapping using CLData ADAM BARYLSKI NORBERT PIOTROWSKI * DOI: 10.17814/mecanik.2015.8-9.335

Bardziej szczegółowo