Geometria Analityczna w Przestrzeni
|
|
- Mariusz Stefaniak
- 6 lat temu
- Przeglądów:
Transkrypt
1 Algebra p. 1/25 Algebra Geometria Analityczna w Przestrzeni Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi Gdańsk
2 Algebra p. 2/25 Geometria Analityczna w Przestrzeni Najnowsza wersja tego dokumentu dostępna jest pod adresem
3 Algebra p. 3/25 Afiniczny układ współrzędnych w przestrzeni Wybierzmy dowolny punkt O, poczatek układu Przez ten punkt poprowadźmy trzy niekomplanarne proste: Ox, Oy, Oz, osie współrzędnych Płaszczyzny współrzędnych Oxy, Oxz, Oyz Na osiach wyznaczymy niezerowe wektory: odpowiednio e 1, e 2, e 3 bazę. Dla każdego punktu A wektor OA ma jednoznaczne przedstawienie OX = xe 1 +ye 2 +ze 3 liczby x, y, z współrzędne punktu A układ jest prawym (dodatnim), jeżeli (e 1 e 2 e 3 ) > 0 układ jest lewym (ujemnym), jeżeli (e 1 e 2 e 3 ) < 0 kierunki na osiach, zorientowane zgodnie z wektorami bazy, nazywaja się dodatnimi. Kierunki przeciwne ujemnymi
4 Algebra p. 4/25 Układ współrzędnych kartezjańskich Układ współrzędnych nazywa się kartezjańskim, jeżeli osie sa wzajemnie prostopadłe wektory e 1, e 2, e 3 sa jednostkowe (maja jednostkowa długość). Dalej w prezentacji prawie zawsze układ będzie prawym kartezjańskim układem Dla wektorów bazy układu kartezjańskiego czasami stosuje się oznaczenia i, j, k
5 Algebra p. 5/25 Podział odcinka w danym stosunku Dane sa dwa punkty A 1 (x 1,y 1,z 1 ) oraz A 2 (x 2,y 2,z 2 ) Znaleźć punkt A(x,y,z), który dzieli odcinek A 1 A 2 w stosunku λ 1 : λ 2 λ 2A1 A λ 1AA2 = 0 OA = λ 2OA 1 +λ 1OA2 λ 1 +λ 2 x = λ 2x 1 +λ 1 x 2 λ 1 +λ 2, y = λ 2y 1 +λ 1 y 2 λ 1 +λ 2, z = λ 2z 1 +λ 1 z 2 λ 1 +λ 2. wzory sa prawidłowe w każdym układzie
6 Algebra p. 6/25 Odległość między punktami Dane sa dwa punkty A 1 (x 1,y 1,z 1 ) oraz A 2 (x 2,y 2,z 2 ) A 1 A 2 2 = A 1 A 2 2 = (x 1 x 2 ) 2 +(y 1 y 2 ) 2 +(z 1 z 2 ) 2 wzory sa prawidłowe tylko w układzie kartezjańskim
7 Algebra p. 7/25 Pole trójkata Dane sa trzy punkty A 1 (x 1,y 1,0), A 2 (x 2,y 2,0) oraz A 3 (x 3,y 3,0) A 1 A 2 A 1 A 3 = x 2 x 1 y 2 y 2 x 3 x 1 y 3 y 1 k P(A 1 A 2 A 3 ) = 1 2 x 2 x 1 y 2 y 2 x 3 x 1 y 3 y 1
8 Algebra p. 8/25 Objętość czworościanu Dane sa cztery punkty A 1 (x 1,y 1,z 1 ), A 2 (x 2,y 2,z 2 ), A 3 (x 3,y 3,z 3 ) oraz A 4 (x 4,y 4,z 4 ) x 2 x 1 y 2 y 2 z 2 z 1 P(A 1 A 2 A 3 ) = 1 6 x 3 x 1 y 3 y 1 z 2 z 1 x 4 x 1 y 4 y 1 z 4 z 1
9 Algebra p. 9/25 Równanie powierzchni f(x,y,z) = 0 równanie niejawne x = f 1 (u,v), y = f 2 (u,v), równanie parametryczne z = f 3 (u,v) Sfera (x x 0 ) 2 +(y y 0 ) 2 +(z z 0 ) 2 = R 2 Walec: x = Rcosu y = Rsinu, z = v x 2 +y 2 = R 2
10 Algebra p. 10/25 Równanie krzywej { f 1 (x,y,z) = 0, f 2 (x,y,z) = 0 x = f 1 (t), y = f 2 (t), z = f 3 (t) Okrag równanie niejawne równanie parametryczne { (x a 1 ) 2 +(y b 1 ) 2 +(z c 1 ) 2 R 2 1 = 0, (x a 2 ) 2 +(y b 2 ) 2 +(z c 2 ) 2 R 2 2 = 0. Punkty przecięcia rozwiazania układów równań
11 Algebra p. 11/25 Zmiana układu współrzędnych Niech dane będa dwa ogólne układy współrzędnych: (O,e 1,e 2,e 3 ) oraz (O,e 1,e 2,e 3 ) Punkt A ma współrzędne (x,y,z) względem jednego układu oraz (z,y,z ) względem drugiego. Wektory (e 1,e 2,e 3 ) maja jednoznaczne rozłożenie po e 1 = a 11 e 1 +a 12e 2 +a 13e 3, bazie (e 1,e 2,e 3 ): e 2 = a 21 e 1 +a 22e 2 +a 23e 3, e 2 = a 31 e 1 +a 32e 2 +a 33e 3. Punkt O w nowym układzie ma współrzędne (x 0,y 0,z 0 ). x = a 11 x+a 21 y +a 31 z +x 0, Wówczas y = a 12 x+a 22 y +a 32 z +y 0, z = a 13 x+a 23 y +a 33 z +z 0.
12 Algebra p. 12/25 Zmiana kartezjańskiego układu współrzędnych Jeżeli obydwa układy sa kartezjańskie, to współczynniki a ij spełniaj a warunki a a2 12 +a2 13 = 1, a 11a 21 +a 12 a 22 +a 13 a 23 = 0, a a2 22 +a2 23 = 1, a 11a 31 +a 12 a 32 +a 13 a 33 = 0, a a2 32 +a2 33 = 1, a 21a 31 +a 22 a 32 +a 23 a 33 = 0. I odwrotnie
13 Algebra p. 13/25 Równanie płaszczyzny Niech dany będzie kartezjański układ współrzędnych. Niech A(x 0,y 0,z 0 ) będzie punktem na płaszczyźnie. Niech n = (n 1,n 2,n 3 ) będzie wektorem, prostopadłym do płaszczyzny Wtedy każdy punkt płaszczyzny spełnia równanie n 1 (x x 0 )+n 2 (y y 0 )+n 3 (z z 0 ) = 0 W każdem układzie współrzędnych równanie płaszczyzny jest liniowe: ax+by +cz +d = 0 Odwrotnie: każde liniowe równanie (a 2 +b 2 +c 2 0) określa płaszczyznę.
14 Algebra p. 14/25 Położenie względem układu współrzędnych a = b = 0 równoległa do Oxy (zgadza się przy d = 0). b = c = 0 równoległa do Oyz (zgadza się przy d = 0). a = c = 0 równoległa do Oxz (zgadza się przy d = 0). a = 0, b 0, c 0 równoległa do Ox (przechodzi przez Ox przy d = 0). a 0, b = 0, c 0 równoległa do Oy (przechodzi przez Oy przy d = 0). a 0, b 0, c = 0 równoległa do Oz (przechodzi przez Oz przy d = 0). d = 0 przechodzi przez poczatek układu współrzędnych d 0 x α + y β + z γ = 1
15 Algebra p. 15/25 Równanie normalne płaszczyzny Punkt A 0 (x 0,y 0,z 0 ) należy do płaszczyzny ax 0 +by 0 +cz 0 +d = 0 Niech punkt nie należy do płaszczyzny. Niech A 1 (x 1,y 1,z 1 ) będzie podstawa prostopadłej, poprowadzonej z A 0 na płaszczyznę ax 0 +by 0 +cz 0 +d = a(x 0 x 1 )+b(y 0 y 1 )+c(z 0 z 1 )+d = n A 1 A 0 = ± n δ, n = (a,b,c) jest normala do płaszczyzny δ jest odległościa płaszczyzny od punktu ax 0 +by 0 +cz 0 +d ma znak plus po jednej stronie od płaszczyzny i minus po drugiej δ = ax 0+by 0 +cz 0 +d a2 +b 2 +c 2 Jeśli a 2 +b 2 +c 2 = 1, równanie płaszczyzny nazywa się normalnym
16 Algebra p. 16/25 Wzjaemne położenie dwóch płaszczyzn Niech dane będa dwie płaszczyzny: a 1 x+b 1 y +c 1 z +d 1 = 0 oraz a 2 x+b 2 y +c 2 z +d 2 = 0 Płaszczyzny sa równoległe (lub się pokrywaja) a 1 a 2 = b 1 b 2 = c 1 c 2 Płaszczyzny sa prostopadłe a 1 a 2 +b 1 b 2 +c 1 c 2 = 0 Niech θ będzie katem między płaszczyznami. Wtedy a cosθ = 1 a 2 +b 1 b 2 +c 1 c 2 a 2 1 +b 2 1+c 2 1 a 2 2 +b 2 2+c 2 2
17 Algebra p. 17/25 Wzjaemne położenie trzech płaszczyzn Niech dane będa trzy płaszczyzny: a 1 x+b 1 y +c 1 +d 1 = 0, a 2 x+b 2 y +c 2 +d 2 = 0 oraz a 3 x+b 3 y +c 3 +d 3 = 0 Płaszczyzny maja jeden wspólny punkt a 1 b 1 c 1 a 2 b 2 c 2 0 a 3 b 3 c 3 a 1 b 1 c 1 jeżeli a 2 b 2 c 2 = 0, to płaszczyzny sa równowegłe do a 3 b 3 c 3 niektórej prostej.
18 Algebra p. 18/25 Równanie prostej Prosta jest przecięciem dwóch płaszczyzn { a 1 x+b 1 y +c 1 z +d 1 = 0 a 2 x+b 2 y +c 2 z +d 2 = 0 (1) Niech dany będzie punkt A 0 (x 0,y 0,z 0 ) na prostej, oraz niezerowy wektor e = (k,l,m), równoległy prostej. Wtedy dla dowolnego punktu A(x,y,z) wektory e oraz A 0 A będa równoległe: x x 0 k = y y 0 l = z z 0 m równanie kanoniczne prostej równanie kanoniczne jest szczególowym przypadkiem równania 1 równanie kanoniczne nie jest określono jednoznacznie Równanie prostej ma taka postać w dowolnym afinicznym układzie współrzędnych
19 Algebra p. 19/25 Równanie parametryczne prostej x x 0 k = y y 0 l = z z 0 m x = x 0 +kt, y = y 0 +lt, z = z 0 +mt.
20 Algebra p. 20/25 Położenie prostej względem układu współrzędnych x = x 0 +kt, y = y 0 +lt, z = z 0 +mt. k = 0 równoległa do płaszczyzny Oyz l = 0 równoległa do płaszczyzny Oxz m = 0 równoległa do płaszczyzny Oxy k = l = 0 równoległa do Osi Oz k = m = 0 równoległa do Osi Oy l = m = 0 równoległa do Osi Ox
21 Algebra p. 21/25 Wzajemne położenie prostej i płaszczyzny ax+by +cz +d = 0 x x 0 k = y y 0 l = z z 0 m równoległe ak +bl+cm = 0 jeżeli ponadto ax 0 +by 0 +cz 0 +d = 0, to prosta leży na płaszczyźnie prostopadłe a k = b l = c m { a 1 x+b 2 y +c 1 z +d 1 = 0, a 2 x+b 2 y +c 2 z +d 2 = 0, k = b 1 c 1 b 2 c 2, l = a 1 c 1 a 2 c 2, m = a 1 b 1 a 2 b 2.
22 Algebra p. 22/25 Wzajemne położenie dwóch prostych x x 0 k = y y 0 l = z z 0 m x x 0 k = y y 0 l = z z 0 m równoległe k k = l l jeżeli ponadto x 0 x 0 pokrywaja = m m k = y 0 y 0 l = z 0 z 0 m prostopadłe kk +ll +mm = 0 kat między prostymi:, to proste się cosθ = kk +ll +mm k 2 +l 2 +m 2 k 2 +l 2 +m 2
23 Algebra p. 23/25 Podstawowe zadania na prosta i płasczyznę Płaszczyzna przechodzaca przez punkt (x 0,y 0,z 0 ): a(x x 0 )+b(y y 0 )+c(z z 0 ) = 0 Prosta przechodzaca przez punkt (x 0,y 0,z 0 ): x x 0 k = y y 0 l = z z 0 m Prosta przechodzaca przez dwa punkty (x 0,y 0,z 0 ) x x oraz (x 1,y 1,z 1 ): 0 x 1 x 0 = y y 0 y 1 y 0 = z z 0 z 1 z 0 Płaszczyzna przechodzaca przez trzy punkty (x 0,y 0,z 0 ), (x 1,y 1,z 1 ) oraz (x 2,y 2,z 2 ): x x 0 y y 0 z z 0 x 1 x 0 y 1 y 0 z 1 z 0 = 0 x 2 x 0 y 2 y 0 z 2 z 0
24 Algebra p. 24/25 Podstawowe zadania na prosta i płasczyznę, cd Płaszczyzna przechodzaca przez punkt (x 0,y 0,z 0 ) i równoległa do danej płaszczyzny ax + by + cz + d = 0: a(x x 0 )+b(y y 0 )+c(z z 0 ) = 0 Prosta przechodzaca przez punkt (x 0,y 0,z 0 ) i równoległa do danej prostej x x 0 k = y y 0 l = z z 0 m : x x 0 k = y y 0 l = z z 0 m Prosta przechodzaca przez punkt (x 0,y 0,z 0 ) i prostopadła do danej płaszczyzny ax+by +c+d = 0: x x 0 a = y y 0 b = z z 0 c Płaszczyzna przechodzaca punkt (x 0,y 0,z 0 ) i prostopadła do danej prostej x x 0 k = y y 0 l = z z 0 m : k(x x 0 )+l(y y 0 )+m(z z 0 ) = 0
25 Algebra p. 25/25 Płaszczyzna rónoległa do dwóch prostych Płaszczyzna przechodzaca przez punkt (x 0,y 0,z 0 ) i równoległa do danych prostych x x 0 x x 0 k 2 = y y 0 l 2 = z z 0 m 2 : k 1 = y y 0 l 1 = z z 0 m 1 oraz l 1 m 1 (x x 0 ) l 2 m 2 (y y k 1 m 1 0) k 2 m 2 +(z z k 1 l 1 0) k 2 l 2 = 0 czyli x x 0 y y 0 z z 0 k 1 l 1 m 1 k 2 l 2 m 2 = 0
Elementy grafiki komputerowej. Elementy geometrii afinicznej
Elementy grafiki komputerowej. Elementy geometrii j Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 1 / 28 Elementy geometrii j Najnowsza wersja
Bardziej szczegółowoWektory. Algebra. Aleksander Denisiuk. Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi Gdańsk
Algebra Wektory Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Wektory Najnowsza wersja
Bardziej szczegółowoArkusz 6. Elementy geometrii analitycznej w przestrzeni
Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos
Bardziej szczegółowoWprowadzenie do grafiki maszynowej. Wprowadenie do geometrii maszynowej
Wprowadzenie do grafiki maszynowej. Wprowadenie do geometrii maszynowej Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 1 / 61 Wprowadenie do geometrii
Bardziej szczegółowoKrzywe stożkowe. Algebra. Aleksander Denisiuk
Algebra Krzywe stożkowe Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Krzywe stożkowe
Bardziej szczegółowoGeometria analityczna
Geometria analityczna Wektory Zad Dane są wektory #» a, #» b, #» c Znaleźć długość wektora #» x (a #» a = [, 0, ], #» b = [0,, 3], #» c = [,, ], #» x = #» #» a b + 3 #» c ; (b #» a = [,, ], #» b = [,,
Bardziej szczegółowoGEOMETRIA ANALITYCZNA W PRZESTRZENI
Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa
Bardziej szczegółowoProsta i płaszczyzna w przestrzeni
Prosta i płaszczyzna w przestrzeni Wybrane wzory i informacje Równanie prostej przechodzącej przez punkt P 0 = (x 0, y 0, z 0 ) o wektorze wodzącym r 0 i równoległej do wektora v = [a, b, c] : postać parametrycznego
Bardziej szczegółowoGeometria analityczna
Wydział Matematyki Stosowanej Zestaw zadań nr 10 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus maja 018r. 1 Działania na wektorach Zadanie 1. Oblicz długość wektorów: Geometria
Bardziej szczegółowoALGEBRA z GEOMETRIA, ANALITYCZNA,
ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y
Bardziej szczegółowoElementy geometrii analitycznej w R 3
Rozdział 12 Elementy geometrii analitycznej w R 3 Elementy trójwymiarowej przestrzeni rzeczywistej R 3 = {(x,y,z) : x,y,z R} możemy interpretować co najmniej na trzy sposoby, tzn. jako: zbiór punktów (x,
Bardziej szczegółowoA,B M! v V ; A + v = B, (1.3) AB = v. (1.4)
Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego
Bardziej szczegółowoGeometria w R 3. Iloczyn skalarny wektorów
Geometria w R 3 Andrzej Musielak Str 1 Geometria w R 3 Działania na wektorach Wektory w R 3 możemy w naturalny sposób dodawać i odejmować, np.: [2, 3, 1] + [ 1, 2, 1] = [1, 5, 2] [2, 3, 1] [ 1, 2, 1] =
Bardziej szczegółowoEkoenergetyka Matematyka 1. Wykład 6.
Ekoenergetyka Matematyka. Wykład 6. RÓWNANIA PŁASZCZYZN Fakt (równanie normalne płaszczyzny) Równanie płaszczyzny przechodzącej przez punkt P0 ( x0, y0, z0) o wektorze wodzącym r [ x, y, z ] i prostopadłej
Bardziej szczegółowoAlgebra linowa w pigułce
Algebra Algebra linowa w pigułce Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Algebra
Bardziej szczegółowoGEOMETRIA ANALITYCZNA W PRZESTRZENI
GEOMETRIA ANALITYCZNA W PRZESTRZENI Położenie punktu w przestrzeni określamy za pomocą trzech liczb (x, y, z). Liczby te odpowiadają rzutom na osie układu współrzędnych: każdy rzut wzdłuż płaszczyzny równoległej
Bardziej szczegółowo1 Geometria analityczna
1 Geometria analityczna 1.1 Wektory na płaszczyźnie Wektor to uporządkowana para punktów, z których pierwszy nazywa się początkiem, a drugi końcem wektora. Jeżeli wprowadzimy prostokątny układ współrzędnych,
Bardziej szczegółowoZestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach:
Zestaw 9. Wykazać, że objętość równoległościanu zbudowanego na przekątnych ścian danego równoległościanu jest dwa razy większa od objętości równoległościanu danego.. Obliczyć objętość równoległościanu
Bardziej szczegółowoDEFINICJE: Punkt, prosta, płaszczyzna i przestrzeń są pojęciami pierwotnymi przyjmowanymi bez definicji,
TEMATYKA: Współliniowość Współpłaszczyznowość Ćwiczenia nr DEFINICJE: Punkt, prosta, płaszczyzna i przestrzeń są pojęciami pierwotnymi przyjmowanymi bez definicji, Podstawowe aksjomaty (zdanie, którego
Bardziej szczegółowoFunkcja liniowa i prosta podsumowanie
Funkcja liniowa i prosta podsumowanie Definicja funkcji liniowej Funkcja liniowa określona jest wzorem postaci: y = ax + b, x R, a R, b R a, b współczynniki funkcji dowolne liczby rzeczywiste a- współczynnik
Bardziej szczegółowo= [6; 2]. Wyznacz wierzchołki tego równoległoboku.
ZADANIE 1 (5 PKT) Wyznacz współrzędne wierzchołków trójkata jeżeli środki jego boków maja współrzędne: P = (1, 3), Q = ( 5, 4), R = ( 6, 7). ZADANIE 2 (5 PKT) Dla jakich wartości parametru α odległość
Bardziej szczegółowoGeometria analityczna - przykłady
Geometria analityczna - przykłady 1. Znaleźć równanie ogólne i równania parametryczne prostej w R 2, któr przechodzi przez punkt ( 4, ) oraz (a) jest równoległa do prostej x + 5y 2 = 0. (b) jest prostopadła
Bardziej szczegółowoAUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI
UTORK: ELŻBIET SZUMIŃSK NUCZYCIELK ZESPOŁU SZKÓŁ OGÓLNOKSZTŁCĄCYCH SCHOLSTICUS W ŁODZI ZNNE RÓWNNI PROSTEJ N PŁSZCZYŹNIE I W PRZESTRZENI SPIS TREŚCI: PROST N PŁSZCZYŻNIE Str 1. Równanie kierunkowe prostej
Bardziej szczegółowoR n jako przestrzeń afiniczna
R n jako przestrzeń afiniczna Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 11. wykład z algebry liniowej Warszawa, grudzień 2014 Mirosław Sobolewski (UW) Warszawa, grudzień 2014 1
Bardziej szczegółowoPRÓBNA MATURA ZADANIA PRZYKŁADOWE
ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba
Bardziej szczegółowoKrzywe stożkowe Lekcja VI: Parabola
Krzywe stożkowe Lekcja VI: Parabola Wydział Matematyki Politechniki Wrocławskiej Czym jest parabola? Parabola jest krzywą stożkową powstałą przez przecięcie stożka płaszczyzną pod kątem β = α (gdzie α
Bardziej szczegółowoGeometria analityczna
Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem
Bardziej szczegółowoUkłady współrzędnych
Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych
Bardziej szczegółowoM10. Własności funkcji liniowej
M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji
Bardziej szczegółowoIloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X
Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X ILOCZYN SKALARNY Iloczyn skalarny operator na przestrzeni liniowej przypisujący
Bardziej szczegółowoUkłady równań liniowych, macierze, Google
Układ równań linowych { x+2y = 6, 3x y = 4 (0) Spotkania z Matematyka Układy równań liniowych, macierze, Google Aleksander Denisiuk denisjuk@matman.uwm.edu.pl Uniwersytet Warmińsko-Mazurski w Olsztynie
Bardziej szczegółowoPRÓBNA MATURA ZADANIA PRZYKŁADOWE
ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba
Bardziej szczegółowoFIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE
Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era
Bardziej szczegółowoKrzywe stożkowe Lekcja VII: Hiperbola
Krzywe stożkowe Lekcja VII: Hiperbola Wydział Matematyki Politechniki Wrocławskiej Czym jest hiperbola? Hiperbola jest krzywą stożkową powstałą przez przecięcie stożka płaszczyzną pod kątem 0 β < α (gdzie
Bardziej szczegółowoAlgebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści strona główna 1 Wyrażenia algebraiczne, indukcja matematyczna 2 2 Geometria analityczna w R 2 Liczby zespolone 4 4 Wielomiany
Bardziej szczegółowoAlgebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Wyrażenia algebraiczne, indukcja matematyczna 2 II Geometria analityczna w R 2 4 III Liczby zespolone 5
Bardziej szczegółowoGrafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II
Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1
Bardziej szczegółowo11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).
1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego
Bardziej szczegółowoMatematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)
Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),
Bardziej szczegółowoDwie proste mogą być względem siebie prostopadłe, równoległe albo przecinać się pod kątem innym niż prosty..
4. Proste równoległe i prostopadłe Dwie proste mogą być względem siebie prostopadłe, równoległe albo przecinać się pod kątem innym niż prosty.. Jeśli przecinają się w dowolnym miejscu, i to pod kątem prostym,
Bardziej szczegółowoWYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń
Bardziej szczegółowoKONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie
KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie
Bardziej szczegółowoALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone
Bardziej szczegółowoBlok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x.
Blok III: Funkcje elementarne III. Narysuj wykres funkcji: a) y = x y = x y = x y = x III. Narysuj wykres funkcji: a) y = x + y = 4 x III. Znajdź miejsca zerowe funkcji: a) y = 6 x y = x e) y = x f) y
Bardziej szczegółowoFunkcja liniowa -zadania. Funkcja liniowa jest to funkcja postaci y = ax + b dla x R gdzie a, b R oraz
Funkcja liniowa jest to funkcja postaci y = ax + b dla x R gdzie a, b R oraz x argumenty funkcji y wartości funkcji a współczynnik kierunkowy prostej ( a = tg, gdzie osi OX) - kąt nachylenia wykresu funkcji
Bardziej szczegółowoAlgebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści 0 Wyrażenia algebraiczne, indukcja matematyczna 2 2 2 1 Geometria analityczna w R 2 3 3 3 2 Liczby zespolone 4 4 4 3
Bardziej szczegółowoFUNKCJA LINIOWA - WYKRES
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości
Bardziej szczegółowo- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe
1 Algebra Liniowa z Geometria - Wydział Fizyki Zestaw nr 2 Krzywe stożkowe 1 Znaleźć współrze dne środka i promień okre gu x 2 8x + y 2 + 6y + 20 = 0 2 Znaleźć zbiór punktów płaszczyzny R 2, których odległość
Bardziej szczegółowoSkrypt 23. Geometria analityczna. Opracowanie L7
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Geometria analityczna 1.
Bardziej szczegółowoOdległośc w układzie współrzędnych. Środek odcinka.
GEOMETRIA ANALITYCZNA ZADANIA. Odległośc w układzie współrzędnych. Środek odcinka. Zad. 1 Wyznacz odległość między punktami A i B (długość odcinka AB) jeżeli: d = Zad. 2 a) A=(5,-3) B=(-2,3) b) A=(-2,2)
Bardziej szczegółowoRównania prostych i krzywych; współrzędne punktu
Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej
Bardziej szczegółowoFUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci
Bardziej szczegółowoFUNKCJA LINIOWA, OKRĘGI
FUNKCJA LINIOWA, OKRĘGI. Napisz równanie prostej przechodzącej przez początek układu i prostopadłej do prostej 3x-y+=0.. Oblicz pole trójkąta ograniczonego osiami układy i prostą x+y-6=0. 3. Odcinek o
Bardziej szczegółowoPODSTAWY RACHUNKU WEKTOROWEGO
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)
Bardziej szczegółowoZajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
Bardziej szczegółowoIII. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi
Bardziej szczegółowoProsta, płaszczyzna, powierzchnie drugiego. stopnia. stopnia. JJ, IMiF UTP
JJ, IMiF UTP 16 PŁASZCZYZNA W R 3 Równanie płaszczyzny prostopadłej do wektora n = [A, B, C] i przechodzącej przez punkt P 1 (x 1, y 1, z 1 ): A(x x 1 ) + B(y y 1 ) + C(z z 1 ) = 0. n = [A, B, C] P 1 (x
Bardziej szczegółowoWykład z modelowania matematycznego.
Załóżmy, że równanie różniczkowe x (t) = f (t, x) (1) ma rozwiązanie ogólne x(t) = ϕ(t, c). (2) Załóżmy, że równanie różniczkowe x (t) = f (t, x) (1) ma rozwiązanie ogólne x(t) = ϕ(t, c). (2) Rodzina funkcji
Bardziej szczegółowoAlgebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Bardziej szczegółowoElementy geometrii w przestrzeni R 3
Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi
Bardziej szczegółowo1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)
1) Wykresem funkcji kwadratowej f jest parabola o wierzchołku w początku układu współrzędnych i przechodząca przez punkt. Wobec tego funkcja f określona wzorem 2) Punkt należy do paraboli o równaniu. Wobec
Bardziej szczegółowoALGEBRA Z GEOMETRIĄ ANALITYCZNĄ
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ Maciej Burnecki opracowanie strona główna Spis treści I Zadania Wyrażenia algebraiczne indukcja matematyczna Geometria analityczna na płaszczyźnie Liczby zespolone 4 Wielomiany
Bardziej szczegółowoWyk lad 11 1 Wektory i wartości w lasne
Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V
Bardziej szczegółowoKORESPONDENCYJNY KURS Z MATEMATYKI. PRACA KONTROLNA nr 1
KORESPONDENCYJNY KURS Z MATEMATYKI PRACA KONTROLNA nr 1 październik 000r 1. Suma wszystkich wyrazów nieskończonego ciągu geometrycznego wynosi 040. Jeśli pierwszy wyraz tego ciągu zmniejszymy o 17, a jego
Bardziej szczegółowoZadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
Bardziej szczegółowoALGEBRA Tematyka LITERATURA
ALGEBRA Tematyka Podstawowe pojęcia algebry: działania, własności działań. Struktury algebraiczne: grupy, pierścienie, ciała, przestrzenie liniowe. Ciała liczbowe: ciało liczb wymiernych, ciało liczb rzeczywistych,
Bardziej szczegółowoMatematyka rozszerzona matura 2017
Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem
Bardziej szczegółowoKrzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych
Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą
Bardziej szczegółowoAby opisać strukturę krystaliczną, konieczne jest określenie jej części składowych: sieci przestrzennej oraz bazy atomowej.
2. Podstawy krystalografii Podczas naszych zajęć skupimy się przede wszystkim na strukturach krystalicznych. Kryształem nazywamy (def. strukturalna) substancję stałą zbudowaną z atomów, jonów lub cząsteczek
Bardziej szczegółowoa 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
Bardziej szczegółowoLista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:
Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,
Bardziej szczegółowoGeometria. Rozwiązania niektórych zadań z listy 2
Geometria. Rozwiązania niektórych zadań z listy 2 Inne rozwiązanie zadania 2. (Wyznaczyć równanie stycznej do elipsy x 2 a 2 + y2 b 2 = 1 w dowolnym jej punkcie (x 0, y 0 ). ) Przypuśćmy, że krzywa na
Bardziej szczegółowo- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe
1 Algebra Liniowa z Geometria - Wydział Fizyki Zestaw nr 2 Krzywe stożkowe 1 Znaleźć współrze dne środka i promień okre gu x 2 8x + y 2 + 6y + 20 = 0 2 Znaleźć zbiór punktów płaszczyzny R 2, których odległość
Bardziej szczegółowoAlgebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1
Algebra liniowa II Lista Zadanie Udowodnić, że jeśli B b ij jest macierzą górnotrójkątną o rozmiarze m m, to jej wyznacznik jest równy iloczynowi elementów leżących na głównej przekątnej: det B b b b mm
Bardziej szczegółowoFUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH
FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest
Bardziej szczegółowo1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
Bardziej szczegółowoO D P O W I E D Z I D O Z A D A Ń T E S T O W Y C H
O D P O W I E D Z I D O Z A D A Ń T E S T O W Y C H 1. Niech A = {(x, y) R R : 3 x +4 x = 5 y } będzie zbiorem rozwiązań równania 3 x +4 x = 5 y w liczbach rzeczywistych. Wówczas zbiór A i zbiór N N mają
Bardziej szczegółowoi = [ 0] j = [ 1] k = [ 0]
Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym
Bardziej szczegółowoWykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2
Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 1 KWIETNIA 017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Suma sześciu kolejnych
Bardziej szczegółowoA. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla
Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego
Bardziej szczegółowo(8) Oblicz wyznacznik dowolnie wybranej macierzy stopnia czwartego. (9) Rozwi aż podany układ równań stosuj ac wzory Cramera:
Zadania przygotowuj ace do kolokwium (budownictwo, studia niestacjonarne, drugi semestr, 209) [7III] () Podaj przykład dowolnej macierzy A drugiego stopnia Oblicz A A T + A T A (2) Podaj przykład dowolnej
Bardziej szczegółowoDr inż. Janusz Dębiński Mechanika ogólna Wykład 2 Podstawowe wiadomości z matematyki Kalisz
Dr inż. Janusz Dębiński Mechanika ogólna Wykład 2 Podstawowe wiadomości z matematyki Kalisz Dr inż. Janusz Dębiński 1 2.1. Przestrzeń i płaszczyzna Podstawowe definicje Punkt - najmniejszy bezwymiarowy
Bardziej szczegółowoGEOMETRIA ANALITYCZNA. Poziom podstawowy
GEOMETRIA ANALITYCZNA Poziom podstawowy Zadanie (4 pkt.) Dana jest prosta k opisana równaniem ogólnym x + y 6. a) napisz równanie prostej k w postaci kierunkowej. b) podaj współczynnik kierunkowy prostej
Bardziej szczegółowoR n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },
nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.
Bardziej szczegółowoSkrypt 24. Geometria analityczna: Opracowanie L5
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 24 Geometria analityczna:
Bardziej szczegółowoRepetytorium z matematyki ćwiczenia
Spis treści 1 Liczby rzeczywiste 1 2 Geometria analityczna. Prosta w układzie kartezjańskim Oxy 4 3 Krzywe drugiego stopnia na płaszczyźnie kartezjańskiej 6 4 Dziedzina i wartości funkcji 8 5 Funkcja liniowa
Bardziej szczegółowoZad.3. Jakub Trojgo i Jakub Wieczorek. 14 grudnia 2013
Zad.3 Jakub Trojgo i Jakub Wieczorek 14 grudnia 2013 W pierwszej części naszej pracy będziemy chcieli zbadać ciągłość funkcji f(x, y) w przypadku gdy płaszczyzna wyposażona jest w jedną z topologii: a)
Bardziej szczegółowoAlgebra liniowa z geometria. - zadania Rok akademicki 2010/2011
1 GEOMETRIA ANALITYCZNA 1 Wydział Fizyki Algebra liniowa z geometria - zadania Rok akademicki 2010/2011 Agata Pilitowska i Zbigniew Dudek 1 Geometria analityczna 1.1 Punkty i wektory 1. Sprawdzić, czy
Bardziej szczegółowoMETODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza
Bardziej szczegółowoKLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ
KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające (W).
Bardziej szczegółowoSTEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
Bardziej szczegółowodr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Bardziej szczegółowoKryteria oceniania z matematyki Klasa III poziom podstawowy
Kryteria oceniania z matematyki Klasa III poziom podstawowy Potęgi Zakres Dopuszczający Dostateczny Dobry Bardzo dobry oblicza potęgi o wykładnikach wymiernych; zna prawa działań na potęgach i potrafi
Bardziej szczegółowoRAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1
RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 Zakres podstawowy Kl. 1-60 h ( 30 h w semestrze) Kl. 2-60 h (30 h w semestrze) Kl. 3-90 h (45 h w semestrze)
Bardziej szczegółowoPojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie
Bardziej szczegółowoWykład 5. Komórka elementarna. Sieci Bravais go
Wykład 5 Komórka elementarna Sieci Bravais go Doskonały kryształ składa się z atomów jonów, cząsteczek) uporządkowanych w sieci krystalicznej opisanej przez trzy podstawowe wektory translacji a, b, c,
Bardziej szczegółowoArkusz 4. Elementy geometrii analitycznej w przestrzeni
Arkusz 4. Elementy geometrii analitycznej w przestrzeni Zadanie 4.1. Obliczy dªugo±ci podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos
Bardziej szczegółowo