24. CAŁKA POWIERZCHNIOWA ZORIENTOWANA
|
|
- Bogna Kasprzak
- 9 lat temu
- Przeglądów:
Transkrypt
1 4. CAŁA POWIERZCHNIOWA ZORIENTOWANA Płat powierzchniowy gładki o równaniach parametrycznych: x = x( u, v ), y = y( u, v ), z = z( u, v ),, (u,v) w którym rozróżniamy dwie jego stron dodatnią i ujemną. nazywamy płatem zorientowanym. Zorientowanie płata ustala kierunek normalnej (w każdym punkcie płata) od strony ujemnej do strony dodatniej. Płaty i są przeciwnie zorientowane. Jeżeli powierzchnia jest zamknięta to za stronę dodatnią przyjmujemy jej zewnętrzną stronę. Gdy zaś powierzchnia nie jest zamknięta, to za stronę dodatnią przyjmujemy tę stronę, dla której cosinus kąta jaki tworzy normalna do tej powierzchni z osią OZ jest dodatni w każdym punkcie tej powierzchni. Niech na płacie gładkim zorientowanym będą dane funkcje ciągłe P ( z ), Q ( z ), R ( z ). 4.1
2 Oznaczmy przez α, β, γ kąty jakie tworzy z osiami współrzędnych wektor normalny n r skierowany od strony ujemnej do strony dodatniej płata i rozważmy iloczyn skalarny wektorów F = [ P ( z ), Q ( z ), ( z ) n R ] [ α,cos β, cos γ ] = cos. = P ( z ) cos α + Q( z ) cos β + R( z ) cos γ. gdzie kropka oznacza iloczyn skalarny Wtedy całka powierzchniowa zorientowana = s F n d P( z ) cos αd + Q( z ) cos βd + istnieje i zależy od orientacji płata. = R( z ) cos γd Całkę tę nazywamy całką powierzchniową zorientowaną funkcji P( z), Q( z), R( z) po płacie i zapisujem po wprowadzeniu oznaczeń cos αd = dydz, cos βd = dxdz, cos γd = dxdy, w postaci P( z ) dydz + Q( z ) dxdz + R( z ) dxdy Przy przyjętych założeniach można wykazać, że Pdydz + Qdxdz + Rdxdy = [ P Q, R] ( ru rv )dudv r r, () 4.
3 r gdzie r = [ x, y, z ], r = [ x, y, z ] u u u u r v v v v i wektor r r u jest wektorem normalnym płata skierowanym od strony ujemnej do dodatniej. v Gdy powierzchnia dodatnio zorientowana dana jest w postaci jawnej: z = f(y), ( y) 1 to z ) dxdy = R ( R( f ( y )) dxdy. 1 Analogicznie, gdy powierzchnia dodatnio zorientowana dana jest w postaci jawnej: to z ) dydz = x = g(z), ( z) P ( P( g( z ), z ) dydz, oraz gdy powierzchnia dodatnio zorientowana dana jest w postaci jawnej: to z ) dxdz = y = h(z), ( z) Q ( Q( h( z ), z ) dxdz. Wtedy Pdydz + Qdxdz + Rdxdy = Pdydz + Qdxdz + Rdxdy 4.
4 Przykład Obliczyć całkę powierzchniową zorientowaną ( x y ) + dxdy po zewnętrznej stronie górnej połowy sfery x + y + z = R. Rozwiązanie Równanie płata jest następujące: z = R x y, gdzie zmienne x i y należą do koła o równaniu: x + y R. tąd ( x + y ) dxdy = ( x y ) + dxdy Przechodząc do współrzędnych biegunowych x = rcos ϕ, y = r sin ϕ, gdzie r 1, ϕ π, mamy R π R 1 4 π 4 ( x + y ) dxdy = dr r dϕ π r = = R Twierdzenie Gaussa Ostrogradskiego Jeżeli w obszarze V normalnym względem wszystkich płaszczyzn układu, określone są funkcje P ( z ), Q ( z ), R( z ) ciągłe wraz z pochodnymi cząstkowymi rzędu pierwszego wewnątrz V i na jego brzegu będącego powierzchnią gładką zorientowaną dodatnio, to + Qdxdz + Rdxdy = ( Px + Qy + Rz ) Pdydz dxdydz. V 4.4
5 Przykład Obliczyć całkę ( y z + x) dydz x ydxdz + ( z 4xy) + dxdy zewnętrznej stronie prostopadłościanu ograniczonego płaszczyznami układu współrzędnych i płaszczyznami x =, y = 4, z = 1. po Rozwiązanie Funkcje + P = y z + x, Q = x y, R = z 4xy oraz ich odpowiednie pochodne cząstkowe są równe P = 1, Wtedy x Q y x =, R z = z. ( y z + x) dydz x ydxdz + ( z + 4xy) dxdy = 1 x + x gdzie obszar V opisany jest nierównościami y 4. z 1 Zatem V V ( z ) dxdydz, 1 [ z x z + z ] = ( 1 x + z ) dxdydz = dx dy ( 1 x + z ) dz = 4 dx = 4 4 ( x ) dx = x x =
6 4.. Twierdzenie tokesa Niech będą określone funkcje P ( z ), Q ( z ), R( z ) ciągłe wraz z pochodnymi cząstkowymi rzędu pierwszego w pewnym obszarze otaczającym płat. Jeżeli krzywa jest brzegiem płata tak zorientowanym, że zwrot obiegu po krzywej i strona płata są zgodne, to Pdx + Qdy + Rdz = ( Ry Qz ) dydz + ( Pz Rx ) dxdz + ( Qx Py ) dxdy. Przykład + dz, gdzie Obliczyć całkę ( x y + z) dx + ( y x + z) dy + ( x y z) jest dodatnio zorientowaną krawędzią przecięcia płaszczyzny x + y + 6z = z płaszczyznami układu, Rozwiązanie Mamy P = x y + z, Q = y x + z, R = x y + z oraz Wtedy P P y z = 1, = Q x = R x = 1,. Q = 1 R = ( y + z) dx + ( y x + z) dy + ( x y + z) dz = z x 4dydz + dxdz dxdy y s gdzie jest trójkątem wyciętym z płaszczyzny x + y + 6z = przez płaszczyzny układu dodatnio zorientowanym. 4.6
7 Powierzchnia opisana jest równaniami parametrycznymi x = u, y = v, z = u v oraz (u,v), a obszar opisany jest nierównościami x y 1. x Ponieważ Zatem s 1 r = u 1,,, 7 = r v 1 =, 1, 4dydz + dxdz dxdy = dxdy 7 oraz [ 4,, ] 7 = 4 r r 1 1 = 1 u v,,. 1, 1, 1 dxdy =. 4.. Zadania 4.1. Obliczyć całkę powierzchniową ( y z) dydz + ( z x) dxdz + ( x y) dxdy, gdy: a) jest górną strona powierzchni koła x + y 1, z =, b) jest wewnętrzną stroną powierzchni stożka x + y = z znajdującą się między płaszczyznami z = i z = H. 4.7
8 4.. Obliczyć całki powierzchniowe: a) ydydz + xdxdz + zdxdy, b) xzdydz + xydxdz + yzdxdy, gdy jest górną stroną trójkąta wyciętego z płaszczyzny x y + z = 1 przez płaszczyzny układu, 4.. Obliczyć całki powierzchniowe: a) dydz + dxdz + 6 zdxdy, gdy jest górną stroną trójkąta o wierzchołkach A(,, ), B(,, ), C(,,1), b) xdydz + ydxdz zdxdy, gdy jest zewnętrzną stroną powierzchni z = 1 x y leżącą nad płaszczyzną OXY, c) d) xdydz, gdy jest zewnętrzną stroną powierzchni 4x + y + 4z = 4 dla x >, y >, z >, y dxdz, gdy jest wewnętrzną stroną powierzchni x 9 y z 4 = 1 dla y > orzystając z twierdzenia Gaussa Ostrogradskiego obliczyć całkę xdydz + ydxdz + zdxdy, gdy jest: a) wewnętrzną stroną powierzchni x + y + z = R, 4.8
9 b) zewnętrzną stroną sześcianu ograniczonego płaszczyznami x =, x = 1, y =, y = 1, z =, z = 1, c) wewnętrzną stroną ostrosłupa ograniczonego płaszczyzną x + y + z = 1 i płaszczyznami układu orzystając z twierdzenia Gaussa Ostrogradskiego obliczyć całkę a) ( xy + z ) dydz + ( xz y ) dxdz + ( 6z xy)dxdy, gdy jest zewnętrzną stroną x + y + z = R, b) xdydz + 4 ydxdz + zdxdy, gdy jest wewnętrzną stroną obszaru ograniczonego powierzchnią z = x + y i płaszczyzną z = 1, c) ( z + y ) dydz + xzdxdz + ( y x )dxdy, gdy jest zewnętrzną stroną powierzchni z = x + y 4 leżącej poniżej płaszczyzny OXY orzystając z twierdzenia tokesa obliczyć całkę: + dz, gdzie jest dodatnio a) ( x z) dx + ( x + y + z) dy + ( 1 y) zorientowaną krawędzią trójkąta o wierzchołkach A(1,, ), B(, 1, ), C(,, 1), b) yzdx + xzdy + xydz, gdzie jest ujemnie zorientowanym okręgiem x + y = 4, z = 1, 4.9
10 x c) e dx + z( x + y ) dy + yz dz, gdzie jest ujemnie zorientowaną krawędzią przecięcia powierzchni z = x + y płaszczyznami x =, y =, x =, y =
Uniwersytet Warmińsko-Mazurski w Olsztynie
Uniwersytet Warmińsko-Mazurski w Olsztynie ZETAW II Całka podwójna.. Obliczyć całki iterowane (a 4 4 2 ( (x + y ( 2 4 ( y x y dy dx y 3 x 2 + y 2 dx dy. 2. Zmienić kolejność całkowania (a (d 2 e ( 2x x
Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.Długość l łuku zwykłego gładkiego Γ
Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.ługość l łuku zwykłego gładkiego l = 1dl = b a (x (t)) 2 + (y (t) 2 ) + (z (t)) 2 dt 2.Pole powierzchni walcowej = {(x, y, z) : (x, y), 0 z
Matematyka 2. Elementy analizy wektorowej cz V Całka powierzchniowa zorientowana
Matematyka 2 Elementy analizy wektorowej cz V Całka powierzchniowa zorientowana Literatura M.Gewert, Z.Skoczylas; Elementy analizy wektorowej; Oficyna Wydawnicza GiS, Wrocław, 2000 W.Żakowski, W.Kołodziej;
22. CAŁKA KRZYWOLINIOWA SKIEROWANA
CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś
Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie
Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem..1. Całka podwójna po prostokącie.. CAŁKA POWÓJNA.. Całka podwójna po obszarach normalnych..3. Całka podwójna po obszarach regularnych..4.
Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 3. CAŁKA POTRÓJNA
Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem 1 Całka potrójna po prostopadłościanie CAŁKA POTRÓJNA 2 Całka potrójna po obszarach normalnych Współrzędne walcowe 4 Współrzędne sferyczne
Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1
SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,
Rachunek całkowy funkcji wielu zmiennych
Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1
Wstęp. W razie zauważenia jakichś błędów w tym tekście proszę o sygnał, na przykład mailowy: michal.musielak@utp.edu.pl.
Wstęp Niniejsze opracowanie zawiera notatki z ćwiczeń z matematyki prowadzonych na UTP kierunkach: Budownictwo, Mechanika i Budowa Maszyn, Inżynieria Odnawialnych Źródeł Energii, Transport, Teleinformatyka,
Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej
Definicja całki podwójnej Katedra Matematyki i Ekonomii Matematycznej 25 maja 2016 Definicja całki podwójnej Załóżmy, że f : K R, gdzie K = a, b c, d R 2, jest funkcją ograniczoną. Niech x 0, x 1,...,
Całka podwójna po prostokącie
Całka podwójna po prostokącie Rozważmy prostokąt = {(x, y) R : a x b, c y d}, gdzie a, b, c, d R, oraz funkcję dwóch zmiennych f : R ograniczoną w tym prostokącie. rostokąt dzielimy na n prostokątów i
ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:
ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz
opracował Maciej Grzesiak Całki krzywoliniowe
opracował Maciej Grzesiak Całki krzywoliniowe 1. Definicja całki krzywoliniowej nieskierowanej Rozważmy następujący problem. Dany jest przewód elektryczny na którym rozmieszczone są ładunki. Przypuśćmy,
ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:
ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz
Całki krzywoliniowe wiadomości wstępne
Całki krzywoliniowe wiadomości wstępne Łuk na płaszczyźnie to zbiór punktów (x, y o współrzędnych x = x(t, y = y(t, gdzie (x(t, y(t są funkcjami ciągłymi określonymi na przedziale bez punktów wielokrotnych.
Całki krzywoliniowe skierowane
Całki krzywoliniowe skierowane Zamiana całki krzywoliniowej skierowanej na całkę pojedyńcza. Twierdzenie Greena. Zastosowania całki krzywoliniowej skierowanej. Małgorzata Wyrwas Katedra Matematyki Wydział
x y = 2z, + 2y f(x, y) = ln(x3y ) y x
. Funkcje wielu zmiennych i funkcje uwikłane Zad.. Obliczyć przybliżoną wartość wyrażenia (, 4) (,), Zad.. Obliczyć przybliżoną wartość wyrażenia, 8, 5, Zad. 3. Wykazać, że każda funkcja z(x, y) = x f
x y = 2z. + 2y f(x, y) = ln(x3y ) y x
. Funkcje wielu zmiennych i funkcje uwikłane Zad.. Obliczyć przybliżoną wartość wyrażenia (, 4) (,). Zad.. Wykazać, że każda funkcja z(x, y) = x f ( ) y x, gdzie f jest funkcją różniczkowalną jednej zmiennej,
opracował Maciej Grzesiak Analiza wektorowa
opracował Maciej Grzesiak Analiza wektorowa 1. Funkcje wektorowe 1.1. Funkcje wektorowe na płaszczyźnie Wektor r = x i + y j nazywamy wektorem wodzącym punktu (x, y). Jeśli x oraz y są funkcjami czasu,
Elementy analizy wektorowej. Listazadań
Elementy analizy wektorowej Opracowanie: dr Marian Gewert, dr Zbigniew Skoczylas Listazadań % Całki krzywoliniowe niezorientowane 1. Obliczyć całkę krzywoliniową niezorientowaną f dl, jeżeli: 1 a)fx,y)=
Całki powierzchniowe
Całki powierzchniowe Całki powierzchniowe niezorientowane. Całki powierzchniowe zorientowane. Elementy analizy wektorowej. Twierdzenia Gaussa-Ostrogradskiego oraz tokesa. Małgorzata Wyrwas Katedra Matematyki
Wstęp. W razie zauważenia jakichś błędów w tym tekście proszę o sygnał, na przykład mailowy:
Wstęp Niniejsze opracowanie zawiera notatki z ćwiczeń z matematyki prowadzonych na UTP kierunkach: Budownictwo, Mechanika i Budowa Maszyn, Inżynieria Odnawialnych Źródeł Energii, Transport, Teleinformatyka,
Matematyka 2. Elementy analizy wektorowej cz IV Całka powierzchniowa niezorientowana
Matematyka 2 Elementy analizy wektorowej cz IV Całka powierzchniowa niezorientowana Literatura M.Gewert, Z.Skoczylas; Elementy analizy wektorowej; Oficyna Wydawnicza GiS, Wrocław, 2000 W.Żakowski, W.Kołodziej;
y(t) = y 0 + R sin t, t R. z(t) = h 2π t
SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,
Elementy analizy wektorowej
Elementy analizy wektorowej Całki powierzchniowe wykład z MATEMATKI Automatyka i robotyka studia niestacjonarne sem. II, rok ak. 2009/2010 Katedra Matematyki Wydział Informatyki Politechnika Białostocka
Liczby zespolone. Zadanie 1. Oblicz: a) ( 3+i)( 1 3i) b) (3+i)2 (4i+1) i
Zadanie. Oblicz: a) ( 3+i)( 3i) +i b) (3+i)2 (4i+) i (2+i) 3 Liczby zespolone Zadanie 2. Zaznacz na płaszczyźnie Gaussa zbiór: a) {z : z > 3} b) {z : z i } c) {z : 4 z + + i < 9} Zadanie 3. Wykaż, że suma
SIMR 2012/2013, Analiza 2, wykład 14,
IMR 2012/2013, Analiza 2, wykład 14, 2012-06-03 Całka powierzchniowa efinicja gładkiego płata powierzchni Gładkim płatem powierzchni nazywamy zbiór : = {(x, y, z) : z = g(x, y), (x, y) }, gdzie R 2 jest
Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni
Rozdział 5 Twierdzenia całkowe 5.1 Twierdzenie o potencjale Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej w przestrzeni trójwymiarowej, I) = A d r, 5.1) gdzie A = A r) jest funkcją polem)
Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)
Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),
1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą
3. Znaleźć długość krzywej l = {y = x, 0 x 1}. 4. Obliczyć objętość bryły powstałej w wyniku obrotu dookoła osi OX krzywej
eria. Obliczyć całki (A) 2 x 2 dx (z definicji); 2 xe x dx; e 2xe x2 dx. 2. Obliczyć pole obszaru (A) {(x, y) : < x < 3, < y < x 2 +}; {(x, y) : 6x x 2 < y < x 2 6x+}. 3. Znaleźć długość krzywej l = {y
1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?
1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Lista zadań nr 2 z Matematyki II
Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2
2 Całkowanie form różniczkowych i cykle termodynamiczne
2 Całkowanie form różniczkowych i cykle termodynamiczne 2.1 Definicja całki z formy różniczkowej ymbol ω oznacza całka z formy ω po obszarze Ω. To jak praktycznie obliczyć Ω taką całkę zależy jakiego stopnia
AB = x a + yb y a + zb z a 1
1. Wektory w przestrzeni trójwymiarowej EFINICJA. Uporzadkowana pare punktów (A, B) nazywamy wektorem i oznaczamy AB. Punkt A to poczatek wektora, punkt B to koniec wektora. EFINICJA. Je±li B = A, to wektor
Geometria analityczna
Geometria analityczna Wektory Zad Dane są wektory #» a, #» b, #» c Znaleźć długość wektora #» x (a #» a = [, 0, ], #» b = [0,, 3], #» c = [,, ], #» x = #» #» a b + 3 #» c ; (b #» a = [,, ], #» b = [,,
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE WÓCH ZMIENNYCH RZECZYWISTYCH efinicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą d
Analiza matematyczna 2 zadania z odpowiedziami
Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe
Rachunek różniczkowy i całkowy w przestrzeniach R n
Rachunek różniczkowy i całkowy w przestrzeniach R n Na dzisiejszym wykładzie rozważać będziemy funkcje f : R m R n Każda taka funkcję f można przedstawić jako wektor funkcji (f 1, f 2,, f n ), gdzie każda
Całki powierzchniowe w R n
Całki powierzchniowe w R n Na początek małe uzupełnienie z algebry liniowej. Niech R n k oznacza przestrzeń liniową macierzy o n wierszach i k kolumnach. Dla dowolnej macierzy A R n k, gdzie k n, połóżmy
1 x + 1 dxdy, gdzie obszar D jest ograniczo-
Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Zad.1 Całkę podwójną przez: a) y =, y =, = 1; b) y =, y =, y = 1; c) y =, y = 1, y = 5; d) y = ln, y = + 1, y = 1; e) y = ln, = e, y = 1;
27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE
27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i
1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?
1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),
Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie
Wykład 14 i 15 Równania różniczkowe Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (x, y, y, y,..., y (n) ) = 0 (1) gdzie: y = y(x) niewiadoma funkcja zmiennej rzeczywistej
5 Równania różniczkowe zwyczajne rzędu drugiego
5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =
ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami
ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5
Analiza Matematyczna Praca domowa
Analiza Matematyczna Praca domowa J. de Lucas Zadanie 1. Pokazać, że dla wszystkich n naturalnych ( n ) exp kx k dx 1 dx n = 1 n (e k 1). (0,1) n k=1 n! k=1 Zadanie. Obliczyć dla dowolnego n. (0,1) n (x
Elementy równań różniczkowych cząstkowych
Elementy równań różniczkowych cząstkowych Magdalena Jakubek kwiecień 2016 1 Równania różniczkowe cząstkowe Problem brzegowy i problem początkowy Klasyfikacja równań Rodzaje warunków brzegowych Najważniejsze
Lista 3 CAŁKI KRZYWOLINIOWE I POWIERZCHNIOWE. K cykloida c x y ds K x y x r t t t y r t t t t ) ( 2 ) + ( 2 ) = {(, ) : 1 1 = }
Lista CAŁI RZYWOLINIOWE I POWIERZCHNIOWE Zad 1. Obliczć całki krzwoliniowe nieskierowane po wskazanch krzwch: ds a) = {(, ) : 0 1 = } + + ds = {(, ) : = r( t sin t), = r(1 cos t), 0 t } r > 0 ustalone
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza
Rachunek całkowy funkcji wielu zmiennych.
Rachunek całkowy funkcji wielu zmiennych. Agata ilitowska 27 1 Całka podwójna. 1.1 Całka podwójna w prostoka cie Niech f be dzie funkcja dwóch zmiennych określona i ograniczona w prostoka cie domknie tym
1 Układy równań liniowych
1 Układy równań liniowych 1. Rozwiązać układy równań liniowych metodą eliminacji Gaussa x + 2y z = 4 y 2z = 4x y + z = 0 x y + z = 0 2y + 5z = 1 6x 4y z = 1 x + y t = 1 x + y z = 0 y + z + t = 1 x + +
Rachunek różniczkowy funkcji wielu zmiennych
Wydział Matematyki Stosowanej Zestaw zadań nr 7 Akademia Górniczo-Hutnicza w Krakowie WFiIS, informatyka stosowana, I rok Elżbieta Adamus 13 grudnia 2018r. Rachunek różniczkowy funkcji wielu zmiennych
1 Równania różniczkowe zwyczajne
Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem
x y = 2z. + 2y, z 2y df
. Funkcje wielu zmiennych i funkcje uwikłane Zadanie.. Obliczyć przybliżoną wartość wyrażenia (, ) (,). Korzystamy z przybliżenia f, y) f, y ) + x x, y ) + y y, y ), gdzie x = x x a y = y y. Przybliżenie
Zestaw zadań z Analizy Matematycznej II 18/19. Konwencja: pierwsze litery alfabetu są parametrami, do tego zazwyczaj dodatnimi
Literatura pomocnicza Zestaw zadań z Analizy Matematycznej II 8/9 G.M. Fichtenholz - Rachunek różniczkowy i całkowy. B. Demidowicz - Zbiór zadań z analizy matematycznej. T 2,3 Krysicki, Włodarski - Analiza
Spis treści 1. Macierze, wyznaczniki, równania liniowe 2 2. Geometria analityczna 7 3. Granice, pochodne funkcji i ich zastosowania 10 4.
Spis treści Macierze wyznaczniki równania liniowe Geometria analityczna 7 Granice pochodne funkcji i ich zastosowania 0 4 Liczby zespolone 6 5 Całki nieoznaczone 8 6 Zastosowania geometryczne całek 0 7
Spis treści 1. Liczby zespolone 2 2. Macierze, wyznaczniki, równania liniowe 4 3. Geometria analityczna 9 4. Granice, pochodne funkcji i ich
Spis treści Liczby zespolone Macierze wyznaczniki równania liniowe 4 Geometria analityczna 9 4 Granice pochodne funkcji i ich zastosowania 5 Całki nieoznaczone 8 6 Zastosowania geometryczne całek 0 7 Pochodne
Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y)
Wykład 6 Funkcje harmoniczne Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. e f i n i c j a Funkcję u (x 1, x 2,..., x n ) nazywamy harmoniczną w obszarze R n wtedy i
WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki
WYKŁA Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2005 Spis treści 1. Przestrzenie metryczne. 4 2. Granica i ciągłość funkcji
(8) Oblicz wyznacznik dowolnie wybranej macierzy stopnia czwartego. (9) Rozwi aż podany układ równań stosuj ac wzory Cramera:
Zadania przygotowuj ace do kolokwium (budownictwo, studia niestacjonarne, drugi semestr, 209) [7III] () Podaj przykład dowolnej macierzy A drugiego stopnia Oblicz A A T + A T A (2) Podaj przykład dowolnej
ANALIZA MATEMATYCZNA 2
ANALIZA MATEMATYCZNA Lista zadań 3/4 Opracowanie: dr Marian Gewert, dr Zbigniew Skoczylas Lista pierwsza Zadanie. Korzystając z definicji zbadać zbieżność podanych całek niewłaściwych pierwszego rodzaju:
ANALIZA MATEMATYCZNA 2.2B (2017/18)
ANALIZA MATEMATYCZNA.B (7/8) ANALIZA MATEMATYCZNA.A,.A LISTA. (na ćwiczenia) Całki niewłaściwe Część A. Zadania do samodzielnego rozwiązania, czyli to, co należy umieć z poprzedniego semestru... Podać
Całki podwójne. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka
Całki podwójne Całki podwójne po prostokacie. Całki podwójne po obszarach normalnych. Zamiana zmiennych w całkach podwójnych. Zastosowania całek podwójnych. Małgorzata Wyrwas Katedra Matematyki Wydział
Wyprowadzenie prawa Gaussa z prawa Coulomba
Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią
Analiza Matematyczna. Zastosowania Całek
Analiza Matematyczna. Zastosowania Całek Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 8-45 Gdańsk 9 maja 217
Analiza Matematyczna MAEW101 MAP1067
Analiza Matematyczna MAEW MAP67 Wydział Elektroniki Przykłady do Listy Zadań nr 4 Funkcje wielu zmiennych. Pochodne cząstkowe Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania 4.: Wyznaczyć
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3
Matematyczne Metody Fizyki II
Matematyczne Metody Fizyki II Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 1 M. Przybycień (WFiIS AGH) Matematyczne Metody Fizyki II Wykład 1 1 / 16 Literatura
6. Punkty osobliwe, residua i obliczanie całek
6. Punkty osobliwe, residua i obliczanie całek Mówimy, że funkcja holomorficzna f ma w punkcie a zero krotności k, jeśli f(a) = f (a) = = f (k ) (a) = 0, f (k) (a) 0. Rozwijając f w szereg Taylora w otoczeniu
Algebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści strona główna 1 Wyrażenia algebraiczne, indukcja matematyczna 2 2 Geometria analityczna w R 2 Liczby zespolone 4 4 Wielomiany
Elementy geometrii analitycznej w R 3
Rozdział 12 Elementy geometrii analitycznej w R 3 Elementy trójwymiarowej przestrzeni rzeczywistej R 3 = {(x,y,z) : x,y,z R} możemy interpretować co najmniej na trzy sposoby, tzn. jako: zbiór punktów (x,
Obliczanie długości łuku krzywych. Autorzy: Witold Majdak
Obliczanie długości łuku krzywych Autorzy: Witold Majdak 7 Obliczanie długości łuku krzywych Autor: Witold Majdak DEFINICJA Definicja : Długość łuku krzywej zadanej parametrycznie Rozważmy krzywą Γ zadaną
1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)
. Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny
Pole elektryczne. Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni.
Pole elektryczne Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni. Załóżmy pewien rozkład nieruchomych ładunków 1,...,
RACHUNEK CAŁKOWY FUNKCJI DWÓCH ZMIENNYCH
RACHUNEK CAŁKOWY FUNKCJI WÓCH ZMIENNYCH einicja całki podwójnej po prostokącie einicja Podziałem prostokąta R ={ : a b c d} inaczej: R = [a b] [c d] nazwam zbiór Pn złożon z prostokątów R R... Rn które
RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych
RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )
Metoda mnożników Lagrange a i jej zastosowania w ekonomii
Maciej Grzesiak Metoda mnożników Lagrange a i jej zastosowania w ekonomii 1 Metoda mnożników Lagrange a znajdowania ekstremum warunkowego Pochodna kierunkowa i gradient Dla prostoty ograniczymy się do
Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1
Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą
Analiza Matematyczna II dla Inżynierii Biomedycznej Lista zadań
Analiza Matematyczna II dla Inżynierii Biomedycznej Lista zadań Jacek Cichoń, WPPT PWr, 05/6 Pochodne i całki funkcji jednej zmiennej Zadanie Oblicz pierwszą i drugą pochodną następujących funkcji. f(x)
Analiza Matematyczna 3 Całki wielowymiarowe
[wersja z X 008] Analiza Matematyczna 3 Całki wielowymiarowe Konspekt wykładu dla studentów II r. fizyki Uniwersytet Jana Kochanowskiego 008/009 Wojciech Broniowski Powierzchnie kawałkami gładkie RYS Sfera
Funkcje dwóch zmiennych
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Funkcje dwóch zmiennych 1. Funkcje dwóch zmiennych: pojęcia podstawowe Definicja 1. Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach
Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/
Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro
FUNKCJE WIELU ZMIENNYCH
FUNKCJE WIELU ZMIENNYCH 1. Wyznaczyć i narysować dziedziny naturalne podanych funkcji: 4 x 2 y 2 ; (b) g(x, y) = e y x 2 1 ; (c) u(x, y) = arc sin xy; (d) v(x, y) = sin(x 2 + y 2 ); (e) w(x, y) = x sin
1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?
1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),
Spis treści 1. Macierze, wyznaczniki, równania liniowe 2 2. Geometria analityczna 7 3. Przestrzenie liniowe Granice, pochodne funkcji i ich
Spis treści Macierze wyznaczniki równania liniowe Geometria analityczna 7 Przestrzenie liniowe 0 4 Granice pochodne funkcji i ich zastosowania 5 Liczby zespolone 8 6 Wielomiany 7 Całki nieoznaczone 8 Zastosowania
Algebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Wyrażenia algebraiczne, indukcja matematyczna 2 II Geometria analityczna w R 2 4 III Liczby zespolone 5
ANALIZA MATEMATYCZNA
ANALIZA MATEMATYCZNA TABLICE Spis treści: 1.) Pochodne wzory 2 2.) Całki wzory 3 3.) Kryteria zbieżności szeregów 4 4.) Przybliżona wartość wyrażenia 5 5.) Równanie płaszczyzny stycznej i prostej normalnej
Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II
Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1
Geometria analityczna - przykłady
Geometria analityczna - przykłady 1. Znaleźć równanie ogólne i równania parametryczne prostej w R 2, któr przechodzi przez punkt ( 4, ) oraz (a) jest równoległa do prostej x + 5y 2 = 0. (b) jest prostopadła
FUNKCJE ZESPOLONE Lista zadań 2005/2006
FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)
Czworościany ortocentryczne zadania
Czworościany ortocentryczne zadania 1. Wykazać, że nastepujące warunki są równoważne: a) istnieje przecięcie wysokości czworościanu, b) przeciwległe krawędzie są prostopadłe, c) sumy kwadratów długości
GEOMETRIA ANALITYCZNA W PRZESTRZENI
Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa
4 Równania różniczkowe w postaci Leibniza, równania różniczkowe zupełne
Równania w postaci Leibniza 4 1 4 Równania różniczkowe w postaci Leibniza, równania różniczkowe zupełne 4.1 Równania różniczkowe w postaci Leibniza Załóżmy, że P : D R i Q: D R są funkcjami ciągłymi określonymi
Metoda mnożników Lagrange a i jej zastosowania w ekonomii
Maciej Grzesiak Metoda mnożników Lagrange a i jej zastosowania w ekonomii 1. Metoda mnożników Lagrange a znajdowania ekstremum warunkowego Pochodna kierunkowa i gradient. Dla prostoty ograniczymy się do
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85
Funkcje wielu zmiennych
Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.