Arkusz 6. Elementy geometrii analitycznej w przestrzeni
|
|
- Sylwester Milewski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos ψ, ρ sin φ cos ψ, ρ sin ψ], ρ 0, φ, ψ R Zadanie 6.2. Obliczyć iloczyny skalarne podanych par wektorów a) a = [1, 2, 5], b = [, 1, 0] b) a = [, 4, 1], b = [2,, 0] c) u = i 2 k, v = i + j + 7 k d) u = 2 i j, v = i + 4 k Zadanie 6.. Obliczyć iloczyny wektorowe par wektorów z zadania 6.2. Zadanie 6.4. Sprawdzić, czy wektory u, v sa równoległe, czy prostopadłe, jeśli: a) u = [ 1, 0, ], v = [, 0, 9] b) u = [ 1, 0, ], v = [6, 7, 2] Zadanie 6.5. Czy można dobrać parametr m tak, aby wektory u i v były prostopadłe, jeśli: a) u = [m, 0, 1], v = [ 1, m, m] b) u = [m, m, m + 4], v = [m + 1,, 9] c) u = [2, m, 1], v = [m, 2m, 2] d) u = [m,, 4], v = [1, m, 1]? Zadanie 6.6. Czy można dobrać parametr k tak, aby wektory u i v z zadania 6.5 były równoległe? Zadanie 6.7. Znaleźć trzy wektory równoległe do wektora u = [4, 2, 8]. Zadanie 6.8. Znaleźć trzy wektory prostopadłe do wektora u = [4, 2, 8]. Zadanie 6.9. Obliczyć sin φ i cos φ, gdzie φ jest katem między wektorami: a) u = [1, 2, 2], v = [2, 1, 2] b) u = [0,, 4], v = [2, 2, 1] c) u = [1, 1, 1], v = [5, 1, 1] d) u = [5, 0, ], v = [0, 4, 0] Zadanie Obliczyć pole równoległoboku ABCD oraz znaleźć punkt D, jeśli: a) A = (1, 2, ), B = (4, 0, ), C = ( 2,, 0) b) A = (0, 0, 0), B = (5, 0, ), C = (1, 1, 1) c) A = ( 1, 2, ), B = (4, 5, 6), C = (0, 1, 2) Zadanie Obliczyć pole trójkata ABC, jeśli: a) A = (1, 2, ), B = ( 1, 0, 4), C = (5, 6, 0) b) A = (1, 2, 0), B = ( 1, 0, 0), C = (5, 6, 0) c) A = (0, 0, 0), B = (, 4, 5), C = (0, 0, 6) Zadanie Sprawdzić, czy punkty P, Q, R leża na jednej prostej, jeśli: a) P = (0, 0, ), Q = ( 1, 2, 4), R = (2, 4, 1) b) P = (1, 2, 1), Q = (, 0, 2), R = ( 1, 1, 1) c) P = ( 1, 0, 0), Q = (5, 6, 7), R = ( 1, 12, 14) Aktualizacja: 16 stycznia
2 Zadanie 6.1. Obliczyć iloczyny mieszane podanych trójek wektorów: a) a = [, 2, 1], b = [0, 1, 5], c = [2,, 4] b) u = i + j, v = 2 i j + k, w = i + 2 j 5 k. Zadanie Sprawdzić, czy punkty P, Q, R, S leża na jednej płaszczyźnie, jeśli: a) P = (0,, 4), Q = ( 1, 2, 2), R = (2, 0, ), S = ( 1, 1, 1) b) P = (1, 1, 1), Q = ( 1, 0, 14), R = (0, 4, 0), S = (, 2, 0) c) P = (, 2, 2), Q = ( 1, 1, 2), R = (, 4, 1), S = ( 2, 1, 0) Zadanie Obliczyć objętości podanych wielościanów: a) równoległościan rozpięty na wektorach a = [0, 0, 1], b = [ 1, 2, ], c = [2, 5, 1] b) czworościan o wierzchołkach A = (1, 1, 1), B = (1, 2, ), C = (2,, 1), D = ( 1,, 5). Zadanie Napisać równanie płaszczyzny π przechodzacej przez punkt P 0 i równoległej do płaszczyzny π 1, gdy: a) P 0 = (, 2, 1), π 1 : 2x 2y 4z 7 = 0 b) P 0 = (0, 0, 0), π 1 : x + z 11 = 0 c) P 0 = (2,, 0), π 1 jest płaszczyzna d) P 0 = (2,, 0), π 1 jest płaszczyzna Oxz Zadanie Napisać równanie płaszczyzny π przechodzacej przez punkty P 1 i P 2 i prostopadłej do płaszczyzny π 1, gdy: a) P 1 = (6, 2, 1), P 2 = (, 1, 1), π 1 : x + 2y z 6 = 0 b) P 1 = ( 2, 0, ), P 2 = (1, 1, 1), π 1 : 2x z 8 = 0 b) P 1 = (1, 2, 4), P 2 = ( 2, 4, 5), π 1 jest płaszczyzna Zadanie Napisać równanie płaszczyzny π przechodzacej przez punkt P 0 i prostopadłej do płaszczyzn π 1, i π 2, gdy: a) P 0 = (, 2, 1), π 1 : 2x 2y 4z 7 = 0, π 2 : x + y z 1 = 0 b) P 0 = (0, 0, 0), π 1 : x + z 11 = 0, π 2 : x + 2y z = 0 b) P 0 = (1,, 4), π 1 : x z = 0, π 2 jest płaszczyzna b) P 0 = (1,, 4), π 1 jest płaszczyzna, π 2 jest płaszczyzna Oxz Zadanie Znaleźć punkty przecięcia płaszczyzny π z osiami układu współrzędnych z, gdy a) π : 2x + y + z 6 = 0 b) π : 2x y z = 0 c) 2x + y 6 = 0 d) 2x + z 6 = 0 Zadanie Napisać równanie płaszczyzny przechodzacej przez punkty P 1, P 2, P, gdy: a) P 1 = (5, 2, 1), P 2 = (0,, 4), P = (5, 6, 7) b) P 1 = (0, 0, 12), P 2 = (2, 2, 5), P = (4, 0, 6) c) P 1 = (4, 4, ), P 2 = (0, 6, 0), P = (8, 1, 6) Aktualizacja: 16 stycznia
3 Zadanie Znaleźć wartości parametru k, dla których płaszczyzny π 1 i π 2 sa równoległe, gdy a) π 1 : 2x + ky + z + 6 = 0, π 2 : kx + 2y + (k 1)z + = 0 b) π 1 : x + (k + 1)y + 6z + 1 = 0, π 2 : (k + 1)x + 4ky + ( 11 + k 2) z = 0 Zadanie Dla jakich wartości parametru k płaszczyzny π 1 i π 2 z zadania 6.21 sa prostopadłe? Zadanie 6.2. Sprawdzić, że płaszczyzny π i π 2 sa równoległe, a następnie obliczyć odległość między tymi płaszczyznami, jeśli: a) π 1 : 6x y + 6z + 5 = 0, π 2 : 4x 2y + 4z = 0 b) π 1 : 6x 8z 1 = 0, π 2 : 9x 12z + 48 = 0 c) π 1 : 2x 4y 6z 2 = 0, π 2 : x 6y 9z = 0 Zadanie Napisać równanie płaszczyzny π zawierajacej krawędź przecięcia płaszczyzn π 1 i π 2 i przechodzacej przez punkt P, gdy: a) π 1 : 2x y z 8 = 0, π 2 : x y z 6 = 0, P = (1, 0, 2) b) π 1 : x z 6 = 0, π 2 : x + y z 6 = 0, P = (1, 2, ) c) π 1 : x + y 2z = 0, π 2 : y + 2z 8 = 0, P = (0, 2, 1) d) π 1 : 2x + 2y + z 2 = 0, π 2 : x y z 2 = 0, P = (1, 1, 2) Zadanie Napisać równanie płaszczyzny π zawierajacej krawędź przecięcia płaszczyzn π 1 i π 2 i prostopadłej do płaszczyzny π, gdy: a) π 1 : x y z 6 = 0, π 2 : 2x y z 8 = 0, π : x + y 6z 12 = 0 b) π 1 : 2x y = 0, π 2 : y + z 8 = 0, π : x + y 6z 12 = 0 c) π 1 : x + y z = 0, π 2 : 2x y z 8 = 0, π : 2x y + z 6 = 0 d) π 1 : x + y z = 0, π 2 : 2x y z 8 = 0, π : 4x y + z = 0 Zadanie Napisać równania parametryczne prostej przechodzacej przez punkt (, 4, 2) i równoległej do osi: a) Ox b) Oy c) Oz Zadanie Napisać równania parametryczne prostej przechodzacej l przez punkt (, 4, 2) i równoległej do prostej l 1, gdy: x = t a) l 1 : y = z = 2 t t R { b) l 1 : x = 4y = z 6 2x y z 6 = 0 c) l 1 : x + y + z 5 = 0 Zadanie Napisać równania parametryczne prostej l przechodzacej przez punkty P = (, 4, 2) i Q = (5, 6, 2), a następnie sprawdzić, czy punkt R = (1, 2, ) należy do tej prostej. Aktualizacja: 16 stycznia 2012
4 Zadanie Napisać równania parametryczne prostej przechodzacej przez punkt (, 4, 5) i przecinajacej oś Oy w punkcie o współrzędnej y = 5. Zadanie 6.0. Napisać równania parametryczne prostej przechodzacej przez punkt P = ( 1, 2, ) i prostopadłej do prostych l 1 i l 2, gdy: x = 2 + t a) l 1 : y = t z = t R, l 2 : b) l 1 : x 1 = 2 y = 2z, l 2 : { 2x y + 2z 6 = 0 x + y + z 4 = 0 { x + y 6 = 0 2x y z 8 = 0 Zadanie 6.1. Napisać równania parametryczne, kierunkowe i krawędziowe prostej przechodzacej przez punkty P = (1, 2, 0), Q = ( 1,, 4). Zadanie 6.2. Sprawdzić, że proste l 1 i l 2 sa równoległe, jeśli: { a) l 1 : x 1 = 2y = z 4x + 12y 5z = 0 2, l 2 : 4x + 4y z + 1 = 0 b) l 1 : x = y = z 1, l 2 : x+ = y + 1 = z+2. Zadanie 6.. Znaleźć (jeśli istnieja) punkty wspólne prostych l 1 i l 2, jeśli: a) l 1 : x = y = z 1, l 2 : x 2 = y = z 1 2. b) l 1 : x = y = z 1, l 2 : x 2 = y = z 4 6. Zad. 6.1 a) 1 4, c) ρ 2 + h 2, d) ρ. Zad. 6.2 a) 5 6, c) 17, d) 2. Zad. 6. a) [5, 15, 5], b) [, 2, 17], c)[6, 19, 9] d) [ 4, 8, 1]. Zad. 6.4 a) równoległe prostopadłe. Zad. 6.5 a) k może być dowolne m = 4 lub m = 9, c) nie, d) m = 1. Zad. 6.6 a) nie m = 2, c) m = 4, d) nie. Zad. 6.7 każdy wektor postaci [4k, 2k, 8s], gdzie k R jest równoległy do u. Zad. 6.8 wektor v = [x, y, z] jest prostopadły do u, gdy 4x + 2y 8z = 0. Zad , cos φ = 4 9 sin φ = , cos φ = 2 15, c) sin φ = 4 2 9, cos φ = 7 9, d) a) sin φ = sin φ = 1, cos φ = 0. Zad a) 14, D = ( 5, 5, 0) 8, D = (4, 1, 2), c) 2 106, D=(-5,-4,-1). Zad a) 2 12, c) 15. Zad a) tak nie, c) tak. Zad. 6.1 a) Zad a) tak tak, c) nie. Zad a) 9 2. Zad a) x y 2z = 0, b) x + z = 0, c) z = 0, d) y = 0. Zad a) x y z = 0 x 5y + 2z = 0, c) 2x + y 8 = 0. Zad a) 5x + y + 2z 15 = 0 x y z = 0, c) y = 0, d) x 1 = 0. Zad a) (, 0, 0), (0, 6, 0), (0, 0, 2) (0, 0, 0), c) (, 0, 0), (0, 6, 0), d) (, 0, 0), (0, 0, 2). Zad a) x 15y + 10z + 5 = 0 x 4y 2z 24 = 0, c) x 4z = 0. Zad a) k = 2 k = 1. Zad a) k = nie ma takiego k. Zad. 6.2 a) d = 18 d = 10, c) d = 0. Zad a) 14x 25y + 1z 40 = 0 4x + 7y + 2z 24 = 0, c) x + y 2z = 0, d) takich płaszczyzn jest nieskończenie wiele; każda płaszczyzna postaci π : λ 1 (2x + 2y + z 2) + λ 2 (x y z 2) = 0, gdzie λ 1, λ 2 = 0. Zad a) 1x 49y z 114 = 0 6x + z 17 = 0, c) x + y z = 0, d) takich płaszczyzn jest nieskończenie wiele; każda płaszczyzna postaci π : λ 1 (x + y z ) + λ 2 (2x y z 8) = 0, gdzie λ 1, λ 2 = 0. Zad a) x = + t y = 4 z = 2 x = y = 4 + t z = 2, c) x = y = 4 z = 2 + t. Zad Aktualizacja: 16 stycznia
5 x = + t a) y = 4 z = 2 t Zad a) x = 1 + 2t y = 2 t z = 4t (1, 1, 2). 6 Elementy geometrii analitycznej w przestrzeni x = t y = 5 t z = 5t x = + t y = 4 + t 4 z = 2 + t, c), Zad. 6.0 a) x = 2t y = 4 7t z = 2 + t x = 1 t y = 2 + 9t z = + 7t, x 1 2 = y 2 1 = z 4, { x + 2y 5 = 0 4y + z 8 = 0. Zad x = t y = 2 + 9t z = 12t x = + 2t y = 4 + 2t z = 2 + 4t, nie.. Zad. 6.1a). Zad. 6. a) brak (proste skośne) Aktualizacja: 16 stycznia
Geometria analityczna
Geometria analityczna Wektory Zad Dane są wektory #» a, #» b, #» c Znaleźć długość wektora #» x (a #» a = [, 0, ], #» b = [0,, 3], #» c = [,, ], #» x = #» #» a b + 3 #» c ; (b #» a = [,, ], #» b = [,,
Arkusz 4. Elementy geometrii analitycznej w przestrzeni
Arkusz 4. Elementy geometrii analitycznej w przestrzeni Zadanie 4.1. Obliczy dªugo±ci podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos
Geometria analityczna
Wydział Matematyki Stosowanej Zestaw zadań nr 10 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus maja 018r. 1 Działania na wektorach Zadanie 1. Oblicz długość wektorów: Geometria
GEOMETRIA ANALITYCZNA W PRZESTRZENI
Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa
Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ. Marek Majewski Aktualizacja: 31 pa¹dziernika 2006
Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ Marek Majewski Aktualizacja: 1 pa¹dziernika 006 Spis tre±ci 1 Macierze dziaªania na macierzach. Wyznaczniki 1 Macierz odwrotna. Rz d macierzy
Geometria analityczna - przykłady
Geometria analityczna - przykłady 1. Znaleźć równanie ogólne i równania parametryczne prostej w R 2, któr przechodzi przez punkt ( 4, ) oraz (a) jest równoległa do prostej x + 5y 2 = 0. (b) jest prostopadła
Elementy geometrii analitycznej w R 3
Rozdział 12 Elementy geometrii analitycznej w R 3 Elementy trójwymiarowej przestrzeni rzeczywistej R 3 = {(x,y,z) : x,y,z R} możemy interpretować co najmniej na trzy sposoby, tzn. jako: zbiór punktów (x,
Prosta i płaszczyzna w przestrzeni
Prosta i płaszczyzna w przestrzeni Wybrane wzory i informacje Równanie prostej przechodzącej przez punkt P 0 = (x 0, y 0, z 0 ) o wektorze wodzącym r 0 i równoległej do wektora v = [a, b, c] : postać parametrycznego
Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach:
Zestaw 9. Wykazać, że objętość równoległościanu zbudowanego na przekątnych ścian danego równoległościanu jest dwa razy większa od objętości równoległościanu danego.. Obliczyć objętość równoległościanu
ALGEBRA z GEOMETRIA, ANALITYCZNA,
ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y
1 Geometria analityczna
1 Geometria analityczna 1.1 Wektory na płaszczyźnie Wektor to uporządkowana para punktów, z których pierwszy nazywa się początkiem, a drugi końcem wektora. Jeżeli wprowadzimy prostokątny układ współrzędnych,
Geometria w R 3. Iloczyn skalarny wektorów
Geometria w R 3 Andrzej Musielak Str 1 Geometria w R 3 Działania na wektorach Wektory w R 3 możemy w naturalny sposób dodawać i odejmować, np.: [2, 3, 1] + [ 1, 2, 1] = [1, 5, 2] [2, 3, 1] [ 1, 2, 1] =
Geometria Analityczna w Przestrzeni
Algebra p. 1/25 Algebra Geometria Analityczna w Przestrzeni Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045
ALGEBRA LINIOWA 1. Lista zadań
ALGEBRA Z GEOMETRI A ANALITYCZN A ALGEBRA LINIOWA Wszystkie warianty kursu Lista zdań obejmuje cały materiałkursu oraz określa przybliżony stopień trudności zadań, które pojawia się na kolokwiach i egzaminach
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ Maciej Burnecki opracowanie strona główna Spis treści I Zadania Wyrażenia algebraiczne indukcja matematyczna Geometria analityczna na płaszczyźnie Liczby zespolone 4 Wielomiany
= [6; 2]. Wyznacz wierzchołki tego równoległoboku.
ZADANIE 1 (5 PKT) Wyznacz współrzędne wierzchołków trójkata jeżeli środki jego boków maja współrzędne: P = (1, 3), Q = ( 5, 4), R = ( 6, 7). ZADANIE 2 (5 PKT) Dla jakich wartości parametru α odległość
FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE
Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone
WSTĘP DO ANALIZY I ALGEBRY, MAT1460
WSTĘP DO ANALIZY I ALGEBRY, MAT460 Listy zadań Literatura polecana. M.Gewert, Z.Skoczylas Wstęp do analizy i algebry. Teoria,przykłady,zadania.,Oficyna Wydawnicza GiS, Wrocław 04.. D.Zakrzewska, M.Zakrzewski,
Ekoenergetyka Matematyka 1. Wykład 6.
Ekoenergetyka Matematyka. Wykład 6. RÓWNANIA PŁASZCZYZN Fakt (równanie normalne płaszczyzny) Równanie płaszczyzny przechodzącej przez punkt P0 ( x0, y0, z0) o wektorze wodzącym r [ x, y, z ] i prostopadłej
Algebra liniowa z geometria. - zadania Rok akademicki 2010/2011
1 GEOMETRIA ANALITYCZNA 1 Wydział Fizyki Algebra liniowa z geometria - zadania Rok akademicki 2010/2011 Agata Pilitowska i Zbigniew Dudek 1 Geometria analityczna 1.1 Punkty i wektory 1. Sprawdzić, czy
GEOMETRIA ANALITYCZNA W PRZESTRZENI
GEOMETRIA ANALITYCZNA W PRZESTRZENI Położenie punktu w przestrzeni określamy za pomocą trzech liczb (x, y, z). Liczby te odpowiadają rzutom na osie układu współrzędnych: każdy rzut wzdłuż płaszczyzny równoległej
Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
Algebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści strona główna 1 Wyrażenia algebraiczne, indukcja matematyczna 2 2 Geometria analityczna w R 2 Liczby zespolone 4 4 Wielomiany
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera
Algebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Wyrażenia algebraiczne, indukcja matematyczna 2 II Geometria analityczna w R 2 4 III Liczby zespolone 5
Spis treści. Spis treści 2
Spis treści Spis treści Algebra. Liczby zespolone.................................................. Liczby zespolone - odpowiedzi.......................................... 5. Macierze......................................................
Geometria Lista 0 Zadanie 1
Geometria Lista 0 Zadanie 1. Wyznaczyć wzór na pole równoległoboku rozpiętego na wektorach u, v: (a) nie odwołując się do współrzędnych tych wektorów; (b) odwołując się do współrzędnych względem odpowiednio
Odległośc w układzie współrzędnych. Środek odcinka.
GEOMETRIA ANALITYCZNA ZADANIA. Odległośc w układzie współrzędnych. Środek odcinka. Zad. 1 Wyznacz odległość między punktami A i B (długość odcinka AB) jeżeli: d = Zad. 2 a) A=(5,-3) B=(-2,3) b) A=(-2,2)
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM ROZSZERZONY 25 LUTEGO 2017 CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 15! jest podzielna
Zadania do samodzielnego rozwiązania zestaw 11
Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 142395 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Które z podanych
Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X
Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X ILOCZYN SKALARNY Iloczyn skalarny operator na przestrzeni liniowej przypisujący
GEOMETRIA ANALITYCZNA. Poziom podstawowy
GEOMETRIA ANALITYCZNA Poziom podstawowy Zadanie (4 pkt.) Dana jest prosta k opisana równaniem ogólnym x + y 6. a) napisz równanie prostej k w postaci kierunkowej. b) podaj współczynnik kierunkowy prostej
Równania prostych i krzywych; współrzędne punktu
Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej
ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN
ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN Gr. 1 Zad. 1. Dane są punkty: P = (-, 1), R = (5, -1), S = (, 3). a) Oblicz odległość między punktami R i S. b) Wyznacz współrzędne środka odcinka PR. c) Napisz równanie
Geometria analityczna
Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY+ 19 MARCA 2011 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Wskaż nierówność, która
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY+ MARCA 0 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT.) Liczba 5, 4, 4 π jest równa A)
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;
AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI
UTORK: ELŻBIET SZUMIŃSK NUCZYCIELK ZESPOŁU SZKÓŁ OGÓLNOKSZTŁCĄCYCH SCHOLSTICUS W ŁODZI ZNNE RÓWNNI PROSTEJ N PŁSZCZYŹNIE I W PRZESTRZENI SPIS TREŚCI: PROST N PŁSZCZYŻNIE Str 1. Równanie kierunkowe prostej
Algebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści 0 Wyrażenia algebraiczne, indukcja matematyczna 2 2 2 1 Geometria analityczna w R 2 3 3 3 2 Liczby zespolone 4 4 4 3
I. Potęgi. Logarytmy. Funkcja wykładnicza.
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Potęgi. Logarytmy. Funkcja wykładnicza. dobrą, bardzo - oblicza potęgi o wykładnikach wymiernych; - zna
11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).
1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego
1. Potęgi. Logarytmy. Funkcja wykładnicza
1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ Lista zadań dla kursów mających ćwiczenia co dwa tygodnie. Zadania po symbolu potrójne karo omawiane są na ćwiczeniach rzadko, ale warto też poświęcić im nieco uwagi. Przy
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 14 KWIETNIA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 5 30 2 3 5
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji
KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI
KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI PRACA KONTROLNA nr 1 październik 1999 r 1. Stop składa się z 40% srebra próby 0,6, 30% srebra próby 0,7 oraz 1 kg srebra próby 0,8. Jaka jest waga i jaka
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 17 KWIETNIA 2010 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Jeżeli liczba 3b
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 17 KWIETNIA 2010 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Jeżeli liczba 3b
ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE PIERWSZEJ.
ZADANIA PRZYGOTOWUJĄCE DO PRAWDZIANÓW W KLAIE PIERWZEJ I Działania w zbiorze liczb rzeczywistych Zad Dane są liczby: i y + Oblicz: a) sumę i y ; b) różnicę i y ; c) iloczyn i y ; d) iloraz i y ( usuń niewymierność
Grafika komputerowa Wykład 4 Geometria przestrzenna
Grafika komputerowa Wykład 4 Geometria przestrzenna Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1 Geometria 3D - podstawowe
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 78353 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 5 4 jest
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 22 MARCA 2014 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Dwadzieścia dziewczat
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
Scenariusz lekcji matematyki w klasie trzeciej technikum po zasadniczej szkole zawodowej
Scenariusz lekcji matematyki w klasie trzeciej technikum po zasadniczej szkole zawodowej Temat: Geometria analityczna powtórzenie. Cele lekcji: Głównym celem lekcji jest diagnoza stopnia osiągnięcia standardów
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 155364 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Dla jakiej wartości
KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie
KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie
Wektory. Algebra. Aleksander Denisiuk. Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi Gdańsk
Algebra Wektory Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Wektory Najnowsza wersja
Rachunek różniczkowy funkcji wielu zmiennych
Wydział Matematyki Stosowanej Zestaw zadań nr 7 Akademia Górniczo-Hutnicza w Krakowie WFiIS, informatyka stosowana, I rok Elżbieta Adamus 13 grudnia 2018r. Rachunek różniczkowy funkcji wielu zmiennych
Iloczyn wektorowy. Autorzy: Michał Góra
Iloczyn wektorowy Autorzy: Michał Góra 019 Iloczyn wektorowy Autor: Michał Góra DEFINICJA Definicja 1: Iloczyn wektorowy Iloczynem wektorowym wektorów v = ( v x, v y, v z ) R 3 oraz w = ( w x, w y, w z
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 194057 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) { 21x 14y = 28 Rozwiazaniem
GEOMETRIA PRZESTRZENNA (STEREOMETRIA)
GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy
Informatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a
Działania na zbiorach i ich własności Informatyka Stosowana 1. W dowolnym zbiorze X określamy działanie : a b = b. Pokazać, że jest to działanie łączne. 2. W zbiorze Z określamy działanie : a b = a 2 +
Kryteria oceniania z matematyki Klasa III poziom podstawowy
Kryteria oceniania z matematyki Klasa III poziom podstawowy Potęgi Zakres Dopuszczający Dostateczny Dobry Bardzo dobry oblicza potęgi o wykładnikach wymiernych; zna prawa działań na potęgach i potrafi
TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH )
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH ) PAKIET ZADAŃ (zadania wybrano ze zbiorów autorów i wydawnictw: Kiełbasa, Res Polona,
Algebra z geometrią Lista 1 - Liczby zespolone
Algebra z geometrią Lista 1 - Liczby zespolone 1. Oblicz a) (1 + i)(2 i); b) (3 + 2i) 2 ; c) (2 + i)(2 i); d) (3 i)/(1 + i); e) (1 + i 3)/(2 + i 3); f) (2 + i) 3 ; g) ( 3 i) 3 ; h) ( 2 + i 3) 2 2. Korzystając
Elementy geometrii w przestrzeni R 3
Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi
Repetytorium z matematyki ćwiczenia
Spis treści 1 Liczby rzeczywiste 1 2 Geometria analityczna. Prosta w układzie kartezjańskim Oxy 4 3 Krzywe drugiego stopnia na płaszczyźnie kartezjańskiej 6 4 Dziedzina i wartości funkcji 8 5 Funkcja liniowa
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A06 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Wartość wyrażenia 1 3 + 1 + 3
ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),
ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j
FUNKCJA LINIOWA, OKRĘGI
FUNKCJA LINIOWA, OKRĘGI. Napisz równanie prostej przechodzącej przez początek układu i prostopadłej do prostej 3x-y+=0.. Oblicz pole trójkąta ograniczonego osiami układy i prostą x+y-6=0. 3. Odcinek o
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 4 MARCA 201 CZAS PRACY: 10 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Suma sześciu kolejnych liczb
PODSTAWY RACHUNKU WEKTOROWEGO
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)
M10. Własności funkcji liniowej
M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji
1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania ). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY MARZEC 205 Instrukcja dla zdającego Czas pracy: 70 minut. Sprawdź, czy arkusz egzaminacyjny zawiera 4 stron
LUBELSKA PRÓBA PRZED MATURA
NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI LUBELSKA PRÓBA PRZED MATURA DLA KLAS TRZECICH POZIOM PODSTAWOWY GRUPA I 1 STYCZNIA 011 CZAS PRACY: 170 MINUT Zadania zamknięte ZADANIE 1 (1 PKT.) Liczba
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 147380 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) W trójkacie prostokatnym
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI (zakres podstawowy) Rok szkolny 2018/2019 - klasa 3a, 3b, 3c 1, Ciągi
Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +
Badanie funkcji Zad : Funkcja f jest określona wzorem f( ) = + a) RozwiąŜ równanie f() = 5 b) Znajdź przedziały monotoniczności funkcji f c) Oblicz największą i najmniejszą wartość funkcji f w przedziale
Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.
1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory
SPIS RZECZY. GEOMETRJA ANALITYCZNA NA PŁASZCZYŹNIE.
SPIS RZECZY. CZĘŚĆ PIERWSZA. GEOMETRJA ANALITYCZNA NA PŁASZCZYŹNIE. ROZDZIAŁ I. Współrzędne na płaszczyźnie. Wektory. 1. Uwaga wstępna 1 2. Współrzędne punktu 1 3. Położenie wektora na osi 4 4. Kąt między
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 1949 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Trzecia część liczby
1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
Prosta, płaszczyzna, powierzchnie drugiego. stopnia. stopnia. JJ, IMiF UTP
JJ, IMiF UTP 16 PŁASZCZYZNA W R 3 Równanie płaszczyzny prostopadłej do wektora n = [A, B, C] i przechodzącej przez punkt P 1 (x 1, y 1, z 1 ): A(x x 1 ) + B(y y 1 ) + C(z z 1 ) = 0. n = [A, B, C] P 1 (x
Położenia, kierunki, płaszczyzny
Położenia, kierunki, płaszczyzny Dalsze pojęcia Osie krystalograficzne; Parametry komórki elementarnej; Wskaźniki punktów kierunków i płaszczyzn; Osie krystalograficzne Osie krystalograficzne: układ osi
POWTÓRKA ROZDZIAŁU III FUNKCJA LINIOWA
POWTÓRKA ROZDZIAŁU III FUNKCJA LINIOWA I. Wykresy funkcji 1. Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y=ax+b. Jakie znaki mają współczynniki a i b? A. a
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 89195 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Punkty A = ( 6
DEFINICJE: Punkt, prosta, płaszczyzna i przestrzeń są pojęciami pierwotnymi przyjmowanymi bez definicji,
TEMATYKA: Współliniowość Współpłaszczyznowość Ćwiczenia nr DEFINICJE: Punkt, prosta, płaszczyzna i przestrzeń są pojęciami pierwotnymi przyjmowanymi bez definicji, Podstawowe aksjomaty (zdanie, którego
Kurs Start plus - matematyka poziom podstawowy, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.
Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus - matematyka
ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY
ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY Zadanie Wskaż w zbiorze A = Zadanie Usuń niewymierność z wyrażenia,(0); 0,9; ; 0; 8; 0; 0 liczby wymierne 6 Zadanie Rozwiąż nierówność x + > Rozwiązanie
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 16 KWIETNIA 2016 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Wskaż rysunek, na
3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B
1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =
Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x.
Blok III: Funkcje elementarne III. Narysuj wykres funkcji: a) y = x y = x y = x y = x III. Narysuj wykres funkcji: a) y = x + y = 4 x III. Znajdź miejsca zerowe funkcji: a) y = 6 x y = x e) y = x f) y
Spis treści 1. Macierze, wyznaczniki, równania liniowe 2 2. Geometria analityczna 7 3. Granice, pochodne funkcji i ich zastosowania 10 4.
Spis treści Macierze wyznaczniki równania liniowe Geometria analityczna 7 Granice pochodne funkcji i ich zastosowania 0 4 Liczby zespolone 6 5 Całki nieoznaczone 8 6 Zastosowania geometryczne całek 0 7
Spis treści 1. Liczby zespolone 2 2. Macierze, wyznaczniki, równania liniowe 4 3. Geometria analityczna 9 4. Granice, pochodne funkcji i ich
Spis treści Liczby zespolone Macierze wyznaczniki równania liniowe 4 Geometria analityczna 9 4 Granice pochodne funkcji i ich zastosowania 5 Całki nieoznaczone 8 6 Zastosowania geometryczne całek 0 7 Pochodne