9. 1. KOŁO. Odcinki w okręgu i kole
|
|
- Iwona Krystyna Wróblewska
- 8 lat temu
- Przeglądów:
Transkrypt
1 9.. KOŁO Odcinki w okęgu i kole Cięciwa okęgu (koła) odcinek łączący dwa dowolne punkty okęgu d Śednica okęgu (koła) odcinek łączący dwa dowolne punkty okęgu pzechodzący pzez śodek okęgu (koła) Pomień okęgu ( koła) kaŝdy odcinek łączący śodek okęgu z dowolnym punktem na okęgu. = d Kąty w okęgu Kąt śodkowy w okęgu (kole) kąt, któego wiezchołkiem jest śodek okęgu. kąt śodkowy AB jest opaty na łuku ACB A C B A W C B Kąt wpisany w okąg (koło) kąt, któego wiezchołek leŝy na okęgu, a amiona są półpostymi zawieającymi cięciwy okęgu. kąt wpisany AWB jest opaty na łuku ACB
2 Twiedzenia dotyczące kątów śodkowych i wpisanych Kąty wpisane opate na tym samym łuku są ówne Kąt wpisany w okąg jest ówny połowie kąta śodkowego opatego na tym samym łuku Pzykład 9... KaŜdy ysunek pzedstawia okąg o śodku. Oblicz miay kątów tójkąta ABC. = 55 Komentaz Miaa kąta CBA jest ówna 55 Kąt CBA jest kątem wpisanym opatym na tym samym łuku co kąt. Zatem na podstawie twiedzenia : Kąty wpisane opate na tym samym łuku są ówne, kąt CBA jest ówny kątowi Miaa kąta ACB jest ówna 90 Kąt ACB jest kątem wpisanym opatym na tym samym łuku co kąt śodkowy AB, któy ma miaę 80. Zatem na podstawie twiedzenia : Kąt wpisany w okąg jest ówny połowie kąta śodkowego opatego na tym samym łuku, kąt ACB jest ówny połowie kąta AB. Miaa kąta BAC jest ówna 35 Miaę kąta BAC obliczamy kozystając z własności: uma kątów wewnętznych tójkąta jest ówna 80.
3 tyczna do okęgu tyczna do okęgu jest postopadła do pomienia popowadzonego do punktu styczności Pzykład 9... tyczne do okęgu o pomieniu 5cm pzecinają się pod kątem 80. Jaka jest odległość punktu pzecięcia stycznych od śodka okęgu? Wynik podaj z dokładnością do pełnych cm. Komentaz tyczna jest postopadła do okęgu, zatem tójkąt AB jest postokątny. Kątem postym jest kąt BA. Dane: zukane: = 40 K = 5cm sin = K 5 sin 40 = K 5 0,648 = / K K 0,648K = 5/ : 0,648 K 8cm K obliczamy kozystając z funkcji sinus: sin = pzypostokatna _ napzeciw_ pzeciwpostokatna Z tablic z pzybliŝonymi watościami funkcji tygonometycznych odczytujemy pzybliŝoną watość sin 40 0, 648. Wynik podajemy z dokładnością do pełnych cm.
4 Pole wycinka koła i długość łuku l Wzó na pole wycinka koła Wzó na długość łuku P = π l = π Pzykład Punkty A, B leŝą na okęgu o śednicy 0 cm, Odległość między punktami A i B wynosi 5 cm. Ile jest ówna długość łuku AB? Komentaz Dane: zukane: = 0cm l długość łuku a = 5cm = 5 = l = π 5 0π l = 6 5π l = 3 AB A = B = 5cm =, zatem tójkąt AB jest tójkątem ównobocznym. W tójkącie ównobocznym kaŝdy kąt ma miaę 60. Obliczamy długość łuku AB kozystając ze wzou: l = π
5 Pole i obwód koła Wzó na pole koła P = π Wzó na obwód koła ( długość okęgu) Ob = π Pzykład Ile cali powinna mieć śednica koła oweu, aby na tasie o długości km koło obóciło się 433 azy.(cal =,54 cm) Komentaz Dane : zukane: s = km o = 433 o ilość obotów s = km = 00000cm = cal = 39370, 078cal,54 s 39370,078 Ob = = o ,078 π = ,078 3,4 = / : 3, Zamieniamy km na cale. Obliczamy obwód koła, któe na dodze s wykonuje o = 433 oboty. Obliczamy śednicę koła wykozystując wzó na obwód koła Ob = π i pzyjmując, Ŝe = 3, 4 π Odp. Koło ma śednicę około 9 cali.
6 Pzykład Z mateiału w kształcie kwadatu o boku 40 cm wycięto koło o maksymalnej śednicy. Oblicz pole skawków, któe pozostaną po wycięciu koła. Wynik zaokąglij do dwóch cyf po pzecinku. Komentaz Jeśli z mateiału w kształcie kwadatu wycięto koło o największej śednicy, to koło jest wpisane w ten kwadat. Dane: zukane: Wzoy: a = 40cm P = a = 0 P = a π Pole skawków jest ówne óŝnicy pola kwadatu i pola koła. Pomień koła jest ówny połowie boku kwadatu. P 40 3,4 0 = 344 Obliczamy P pzyjmując, Ŝe π = 3, 4 Odp. Pole skawków jest ówne około 344cm ĆWICZENIA Ćwiczenie 9... (3pkt ) Pomień okęgu jest ówny. Znajdź kąty,, γ. a)(3pkt.) b) (3pkt.) c)(3pkt.) γ γ γ
7 schemat oceniania Nume odpowiedzi Odpowiedź Liczba punktów Podanie watości kąta Podanie watości kąta 3 Podanie watości kąta γ Ćwiczenie 9... (pkt ) Dane są dwa okęgi współśodkowe. Cięciwa większego okęgu styczna do mniejszego okęgu ma długość 0 cm. Oblicz pole pieścienia utwozonego pzez te okęgi. schemat oceniania Nume odpowiedzi Odpowiedź Liczba punktów Podanie watości óŝnicy R, gdzie R pomień większego okęgu, pomień mniejszego okęgu. Podanie pola pieścienia utwozonego pzez okęgi Ćwiczenie (3pkt ) Długość śednicy koła jest ówna 0 cm. Oblicz, ile obotów w ciągu godziny wykona to koło, gdy samochód jedzie z pędkością 70 km/h schemat oceniania Nume odpowiedzi Odpowiedź Liczba punktów Podanie dogi w cm jaką pzejedzie koło w ciągu godziny. Podanie obwodu koła. NaleŜy pzyjąć, Ŝe π = 3, 4. 3 Podanie ilości obotów wykonanych pzez koło w pzybliŝeniu do pełnego obotu.
GEOMETRIA PŁASZCZYZNY
GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
Konkusy w województwie podkapackim w oku szkolnym 08/09 KONKURS Z MTEMTYKI L UZNIÓW SZKÓŁ POSTWOWYH ETP REJONOWY KLUZ OPOWIEZI Zasady pzyznawania punktów za każdą popawną odpowiedź punkt za błędną odpowiedź
9. PLANIMETRIA. Cięciwa okręgu (koła) odcinek łączący dwa dowolne punkty okręgu
9. PLANIMETIA 9.. Okąg i koło ) Odinki w okęgu i kole S Cięiw okęgu (koł) odinek łąząy dw dowolne punkty okęgu d S Śedni okęgu (koł) odinek łąząy dw dowolne punkty okęgu pzeodząy pzez śodek okęgu (koł)
11. 3.BRYŁY OBROTOWE. Walec bryła obrotowa powstała w wyniku obrotu prostokąta dokoła prostej zawierającej jeden z jego boków
..BRYŁY OBROTOWE Wae była obotowa powstała w wyniku obotu postokąta dokoła postej zawieająej jeden z jego boków pomień podstawy waa wysokość waa twoząa waa Pzekój osiowy waa postokąt o boka i Podstawa
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ODPOWIEDZI DO ARKUSZA ROZSZERZONEGO Zadanie ( pkt) A Zadanie ( pkt) C Zadanie ( pkt) A, bo sinα + cosα sinα + cosα cos sinα sin cosα + π π + π sin α π A więc musi
Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony
Modele odpowiedzi do akusza Póbnej Matuy z OPERONEM Matematyka Poziom ozszezony Listopad 00 W kluczu są pezentowane pzykładowe pawidłowe odpowiedzi. Należy ównież uznać odpowiedzi ucznia, jeśli są inaczej
Konkurs Matematyczny dla uczniów gimnazjów województwa lubuskiego 19 stycznia 2012 r. zawody II stopnia (rejonowe)
Kod ucznia:. Ilość punktów: Konkus Matematyczny dla uczniów gimnazjów województwa lubuskiego 19 stycznia 2012. zawody II stopnia (ejonowe) Witamy Cię na dugim etapie Konkusu Matematycznego. Pzed pzystąpieniem
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony
KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listopad 0 W ni niej szym sche ma cie oce nia nia za dań otwa tych są pe zen to wa ne pzy kła do we po paw ne od po wie
KURS GEOMETRIA ANALITYCZNA
KURS GEOMETRIA ANALITYCZNA Lekcja 2 Działania na wektoach w układzie współzędnych. ZADANIE DOMOWE www.etapez.pl Stona 1 Część 1: TEST Zaznacz popawną odpowiedź (tylko jedna jest pawdziwa). Pytanie 1 Któe
MECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla
1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.
Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,
IKONY CZĘŚĆ I 1. WIELOKĄTY I OKRĘGI
CZĘŚĆ I 1. WIELOKĄTY I OKRĘGI 1.1. Okąg opisny n wielokącie (s. 10) Zdni utwljące (s. ) 1.. Okąg wpisny w wielokąt (s. 4) Zdni utwljące (s. 35) 1.3. Wielokąty foemne (s. 37) Zdni utwljące (s. 43) Zdni
11. DYNAMIKA RUCHU DRGAJĄCEGO
11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie
KINEMATYCZNE WŁASNOW PRZEKŁADNI
KINEMATYCZNE WŁASNOW ASNOŚCI PRZEKŁADNI Waunki współpacy pacy zazębienia Zasada n 1 - koła zębate mogą ze sobą współpacować, kiedy mają ten sam moduł m. Czy to wymaganie jest wystaczające dla pawidłowej
11. STEREOMETRIA. V - objętość bryły D H. c p. Oznaczenia stosowane w stereometrii: - pole powierzchni całkowitej bryły - pole podstawy bryły
. STEREOMETRIA Oznczeni stosowne w steeometii: Pc - poe powiezcni cłkowitej yły Pp - poe podstwy yły P - poe powiezcni ocznej yły V - ojętość yły.. Gnistosłupy D Podstwy gnistosłup - dw ównoegłe i pzystjące
Równania prostych i krzywych; współrzędne punktu
Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej
CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH
Politecnika Rzeszowska Wydział Budowy Maszyn i Lotnictwa Kateda Samolotów i Silników Lotniczyc Pomoce dydaktyczne Wytzymałość Mateiałów CHRKTERYSTYKI GEOMETRYCZNE FIGUR PŁSKICH Łukasz Święc Rzeszów, 18
Ruch obrotowy. Wykład 6. Wrocław University of Technology
Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.
WYZNACZANIE MOMENTU BEZWŁADNOSCI KRĄŻKA
Ćwiczenie -7 WYZNACZANE OENTU BEZWŁADNOSC KRĄŻKA. Cel ćwiczenia: zapoznanie się z teoią momentu bezwładności. Wyznaczenie momentu bezwładności były względem osi obotu z siłą tacia i bez tej siły, wyznaczenie
20 ELEKTROSTATYKA. PRAWO COULOMBA.
Włodzimiez Wolczyński Pawo Coulomba 20 ELEKTROSTATYKA. PRAWO COULOMBA. POLE CENTRALNE I JEDNORODNE Q q = k- stała, dla póżni = 9 10 = 1 4 = 8,9 10 -stała dielektyczna póżni ε względna stała dielektyczna
Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną)
Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną) Zadania zamknięte (jedna poprawna odpowiedź) 1 punkt Wyrażenia algebraiczne Zadanie 1. Wartość wyrażenia 3 x 3x
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Zasady zachowania: enegia mechaniczna E E const. k p E p ()+E k (v) = 0 W układzie zachowawczym odosobnionym całkowita enegia mechaniczna, czyli suma enegii potencjalnej, E p, zaówno
Znajdowanie analogii w geometrii płaskiej i przestrzennej
Gimnzjum n 17 im. Atu Gottge w Kkowie ul. Litewsk 34, 30-014 Kków, Tel. (12) 633-59-12 Justyn Więcek, Atu Leśnik Znjdownie nlogii w geometii płskiej i pzestzennej opiekun pcy: mg Doot Szczepńsk Kków, mzec
SCENARIUSZ LEKCJI MATEMATYKI Temat: Zadania na dowodzenie w trygonometrii. Cel: Uczeń tworzy łańcuch argumentów i uzasadnia jego poprawność.
SCENAIUSZ LEKCJI MATEMATYKI Temat: Zadania na dowodzenie w tygonometii Cel: Uczeń twozy łańcuch agumentów i uzasadnia jego popawność Czas: godzina lekcyjna Cele zajęć: Uczeń po zajęciach: wykozystuje definicje
Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne
Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką
Zastosowanie zasad dynamiki Newtona.
Wykład z fizyki. Piot Posmykiewicz 33 W Y K Ł A D IV Zastosowanie zasad dynamiki Newtona. W wykładzie tym zostanie omówione zastosowanie zasad dynamiki w zagadnieniach związanych z taciem i uchem po okęgu.
Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:
Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony
KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listopad W niniejszym schemacie oceniania zadań otwatych są pezentowane pzykładowe popawne odpowiedzi. W tego typu ch należy
dr inż. Zbigniew Szklarski
ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele
Zadania egzaminacyjne - matematyka
Zad.1 Zad.2 Zad.3 Zad.4 Zad.5 1 Zad.6 Zad.7 2 Zad.8 Zad.9 Zad.10 3 Zad.11 Zad.12 Zad.13 Zad.14 Zad.15 4 Zad.16 Zad.17 Zad.18 Zad.19 Zade.20 5 Zad.21 Zad.22 Zad.23 Zad.24 Zad.25 Zad.26 6 Zad.27 Zad.28 Zad.29
SPRAWDZIAN NR Zaznacz poprawne dokończenie zdania. 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych skonstruuj kąt o
SPRAWDZIAN NR 1 ANNA KLAUZA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Średnica koła jest o 4 cm dłuższa od promienia. Pole tego koła jest równe 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych
Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10
Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10, ACE = 60, ADB = 40 i BEC = 20. Oblicz miarę kąta CAD. B C A D E Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym
KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe:
KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe: ZAKRES PODSTAWOWY 7. Planimetria. Uczeń: 1) rozpoznaje trójkąty podobne i wykorzystuje (także w kontekstach praktycznych)
Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =
/9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n
Fizyka. Wykład 2. Mateusz Suchanek
Fizyka Wykład Mateusz Suchanek Zadanie utwalające Ruch punktu na płaszczyźnie okeślony jest ównaniai paaetycznyi: x sin(t ) y cos(t gdzie t oznacza czas. Znaleźć ównanie tou, położenie początkowe punktu,
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 8 gudnia KOLOKWIUM W pzyszłym tygodniu więcej infomacji o pytaniach i tym jak pzepowadzimy te kolokwium 2 Moment bezwładności Moment bezwładności masy punktowej m pouszającej się
Wyznaczanie współczynnika sztywności drutu metodą dynamiczną.
Ćwiczenie M- Wyznaczanie współczynnika sztywności dutu metodą dynamiczną.. Ce ćwiczenia: pomia współczynnika sztywności da stai metodą dgań skętnych.. Pzyządy: dwa kążki metaowe, statyw, dut staowy, stope,
cz.2 dr inż. Zbigniew Szklarski
Wykład 11: Gawitacja cz. d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Pawo Gaussa - PZYKŁADY: Masa punktowa: ds Powiezchnia Gaussa M g g S g ds S g ds 0 cos180 S gds
KURS CAŁKI WIELOKROTNE
KURS CAŁKI WIELOKROTNE Lekcja Całki potójne ZADANIE DOMOWE www.etapez.pl Stona 1 Częśd 1: TEST Zaznacz popawną odpowiedź (tylko jedna jest pawdziwa). Pytanie 1 Obszaem całkowania w całce potójnej jest:
( ) 2. 4πε. Prawo Coulomba
Pawo Coulomba. Cztey identyczne ładunki dodatnie q umieszczono w wiezchołkach kwadatu o boku a. W śodku symetii kwadatu umieszczono ładunek ujemny taki, Ŝe cały układ pozostaje w ównowadze. Znaleźć watość
Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :
Mechanika ogólna Wykład n 13 Zasady zachowania w dynamice. Dynamika były sztywnej. Dynamika układu punktów mateialnych. 1 Zasady zachowania w dynamice Zasada: zachowania pędu; zachowania momentu pędu (kętu);
Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A
Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A Imię i nazwisko. Klasa. Drogi uczniu! Masz przed sobą test sprawdzający Twoją wiedzę i umiejętności, które nabyłeś na wcześniejszych
Magnetyzm. A. Sieradzki IF PWr. Pole magnetyczne ŁADUNEK ELEKTRYCZNY ŁADUNEK MAGNETYCZNY POLE ELEKTRYCZNE POLE MAGNETYCZNE
Magnetyzm Wykład 5 1 Wocław Univesity of Technology 14-4-1 Pole magnetyczne ŁADUNEK ELEKTRYCZNY ŁADUNEK MAGNETYCZNY? POLE ELEKTRYCZNE POLE MAGNETYCZNE Jak wytwozyć pole magnetyczne? 1) Naładowane elektycznie
Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)
1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej
Scenariusz lekcji. Temat: Podsumowanie wiadomości o walcu. Cele lekcji
opacowała: Maia Kukułka Scenaiusz lekcji Temat: Podsumowanie wiadomości o walcu. Cele lekcji Uczeń potafi: ozpoznać walec wśód innych był obliczyć pole powiezchni walca obliczyć objętość walca zaznaczyć
DŁUGOŚĆ OKRĘGU. POLE KOŁA
Zadania za 1 punkt Zadanie 1.1 Zadanie 1.2 Pole koła o promieniu długości 9 m A. 81π m 2 C. 18π m 2 B. 81 m 2 D. 9π m 2 Długość okręgu o średnicy 4 cm A. 4 cm C. 8π cm B. 4π cm D. 16π cm Zadanie 1.3 Zadanie
Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów
Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów stycznych, c) rozpoznaje trójkąty podobne i wykorzystuje
Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM
Zespól Szkół Ogólnokształcących i Zawodowych w Ciechanowcu 23 czerwca 2017r. Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM Strona 1 z 9 1. Geometria płaska trójkąty zna
θ = s r, gdzie s oznacza długość łuku okręgu o promieniu r odpowiadającą kątowi 2. Rys Obrót ciała wokół osi z
IX. OBROTY 9.1. Zmienne obotowe W celu opisania uchu obotowego ciała wokół ustalonej osi (zwanej osią obotu) należy wybać linię postopadłą do osi obotu, któa jest związana z ciałem i któa obaca się waz
ZADANIA PRZED EGZAMINEM KLASA I LICEUM
ZADANIA PRZED EGZAMINEM KLASA I LICEUM + 7. Równanie = 0 : + A. ma tylko jedno rozwiązanie równe 7 B. ma tylko jedno rozwiązania równe 7 C. ma tylko jedno rozwiązanie równe D. nie ma rozwiązań.. Do przedziału,
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 12 lutego 2015 Czas 90 minut
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 12 lutego 2015 Czas 90 minut Rozwiązania i punktacja Zadanie 1. (1 punkt) Średnia arytmetyczna liczb 0, 3 10 2015 i 2, 2 10 201 jest
Podstawy Konstrukcji Maszyn
Podstay Konstukcji Maszyn Wykład 8 Pzekładnie zębate część D inŝ. Jacek zanigoski Klasyfikacja pzekładni zębatych. Ze zględu na miejsce zazębienia O zazębieniu zenętznym O zazębieniu enętznym Klasyfikacja
Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie
Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu
KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH
...... kod pracy ucznia pieczątka nagłówkowa szkoły KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję
Siła. Zasady dynamiki
Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,
Matematyka podstawowa VII Planimetria Teoria
Matematyka podstawowa VII Planimetria Teoria 1. Rodzaje kątów: a) Kąty wierzchołkowe; tworzą je dwie przecinające się proste, mają takie same miary. b) Kąty przyległe; mają wspólne jedno ramię, ich suma
Dział I FUNKCJE TRYGONOMETRYCZNE
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: III Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE TRYGONOMETRYCZNE Lp. Zagadnienie Osiągnięcia ucznia. 1. Miara kąta. Sprawnie operuje pojęciami:
Zrobotyzowany system docierania powierzchni płaskich z zastosowaniem plików CL Data
MECHANIK NR 8-9/2015 25 Zobotyzowany system docieania powiezcni płaskic z zastosowaniem plików CL Data Robotic system fo flat sufaces lapping using CLData ADAM BARYLSKI NORBERT PIOTROWSKI * DOI: 10.17814/mecanik.2015.8-9.335
PROBNY EGZAMIN GIMNAZJALNY
IMIE I NAZWISKO PROBNY EGZAMIN GIMNAZJALNY 25 PAŹDZIERNIKA 2012 CZAS PRACY: 90 MIN. ZADANIE 1 W tabeli zapisano cztery liczby. I (0, 2) 10 II (2, 5) 5 ( III 25 ) 2 ( 25 ) 3 IV 2 5 5 1 Liczba (0, 4) 5 jest
Skrypt 29. Przygotowanie do egzaminu Koło i okrąg. Opracowanie: GIM3. 1. Obliczanie obwodów i pól kół - powtórzenie
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 29 Przygotowanie do egzaminu Koło i okrąg
h a V. GEOMETRIA PŁASKA TRÓJKĄT :
pitgos..pl V. GEOMETRIA PŁASKA TRÓJKĄT : Wunek utwozeni tójkąt: sum ługośi wó kótszy oków musi yć większ o ługośi njłuższego oku. Śoek okęgu opisnego wyznzją symetlne oków. Śoek okęgu wpisnego wyznzją
KLASA IV ZESTAW 1. Zadanie 1 Na ile różnych sposobów można wydać resztę 7gr za pomocą monet 5gr, 2gr, 1gr?
KLASA IV Na ile różnych sposobów można wydać resztę 7gr za pomocą monet 5gr, 2gr, 1gr? Anna, Beata i Cecylia rozmawiają między sobą. Anna: Jestem o 5 lat starsza od Beaty. Beata: Jestem młodsza od Cecylii
POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął
POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego
BRYŁA SZTYWNA. Umowy. Aby uprościć rozważania w tym dziale będziemy przyjmować następujące umowy:
Niektóe powody aby poznać ten dział: BRYŁA SZTYWNA stanowi dobe uzupełnienie mechaniki punktu mateialnego, opisuje wiele sytuacji z życia codziennego, ma wiele powiązań z innymi działami fizyki (temodynamika,
GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.
GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.
KURS MATURA PODSTAWOWA Część 2
KURS MATURA PODSTAWOWA Część 2 LEKCJA 7 Planimetria ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kąt na poniższym rysunku ma miarę:
Radomski Ośrodek Doskonalenia Nauczycieli, Radomski Oddział SNM Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A
Radomski Ośrodek Doskonalenia Nauczycieli, Radomski Oddział SNM Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A Imię i nazwisko. Klasa. Drogi uczniu! Masz przed sobą test
PLANIMETRIA - TRÓJKATY (2) ZDANIA ŁATWE
PLANIMETRIA - TRÓJKATY (2) ZDANIA ŁATWE ZADANIE 1 Jeżeli wysokość trójkata równobocznego wynosi 2, to długość jego boku jest równa A) 6 B) 4 3 3 C) 2 3 D) 4 3 ZADANIE 2 Pole trójkata o bokach a = 4 cm
ι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej?
ozwiazania zadań z zestawu n 7 Zadanie Okag o pomieniu jest na ladowany ze sta l a gestości a liniowa λ > 0 W śodku okegu umieszczono ladunek q < 0, któy może sie swobodnie pouszać Czy śodek okegu jest
Planimetria VII. Wymagania egzaminacyjne:
Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych
ZADANIE 2 Czy istnieje taki wielokat, który ma 2 razy więcej przekatnych niż boków?
PLANIMETRIA 2 ZADANIE 1 W rombie jedna z przekatnych jest dłuższa od drugiej o 3 cm. Dla jakich długości przekatnych pole rombu jest większe od 5cm 2? 1 ZADANIE 2 Czy istnieje taki wielokat, który ma 2
- substancje zawierające swobodne nośniki ładunku elektrycznego:
Pzewodniki - substancje zawieające swobodne nośniki ładunku elektycznego: elektony metale, jony wodne oztwoy elektolitów, elektony jony zjonizowany gaz (plazma) pzewodnictwo elektyczne metali pzewodnictwo
00502 Podstawy kinematyki D Część 2 Iloczyn wektorowy i skalarny. Wektorowy opis ruchu. Względność ruchu. Prędkość w ruchu prostoliniowym.
1 00502 Kinematyka D Dane osobowe właściciela akusza 00502 Podstawy kinematyki D Część 2 Iloczyn wektoowy i skalany. Wektoowy opis uchu. Względność uchu. Pędkość w uchu postoliniowym. Instukcja dla zdającego
Fizyka 10. Janusz Andrzejewski
Fizyka 10 Pawa Keplea Nauki Aystotelesa i Ptolemeusza: wszystkie planety i gwiazdy pouszają się wokół Ziemi po skomplikowanych toach( będących supepozycjami uchów Ppo okęgach); Mikołaj Kopenik(1540): planety
Wykład 10. Reinhard Kulessa 1
Wykład 1 14.1 Podstawowe infomacje doświadczalne cd. 14. Pąd elektyczny jako źódło pola magnetycznego 14..1 Pole indukcji magnetycznej pochodzące od nieskończenie długiego pzewodnika z pądem. 14.. Pawo
Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym
1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci
ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ
ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II
Pędu Momentu pędu Ładunku Liczby barionowej. Przedmiot: Fizyka. Przedmiot: Fizyka. Wydział EAIiE Kierunek: Elektrotechnika.
ZASADY ZACHOWANIA W FIZYCE ZASADY ZACHOWANIA: Enegii Pęd Moent pęd Ładnk Liczby baionowej ZASADA ZACHOWANIA ENERGII W = E calk Paca siły zewnętznej Jeżeli W=0 to E calk =0 Ziana enegii całkowitej Ziana
SZABLONY ŁUKOWE (24h): "D", "Dl", Dp", "E", "El", "Ep".
CZ.I. SZABLONY (24h): ŁUKOWE i LODOWE. Co uczynię, by wpisać byłę w sfeę, żeby wszystkie wiezchołki tej były stykały się z punktami, wewnątz sfey. TESTY: Z czym macie Państwo doczynienie, patząc na poniższe
Ruch jednostajny po okręgu
Ruch jednostajny po okęgu W uchu jednostajnym po okęgu pędkość punktu mateialnego jest stała co do watości ale zmienia się jej kieunek. Kieunek pędkości jest zawsze styczny do okęgu będącego toem. Watość
Grzegorz Kornaś. Powtórka z fizyki
Gzegoz Konaś Powtóka z fizyki - dla uczniów gimnazjów, któzy chcą wiedzieć to co tzeba, a nawet więcej, - dla uczniów liceów, któzy chcą powtózyć to co tzeba, aby zozumieć więcej, - dla wszystkich, któzy
II.6. Wahadło proste.
II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia
Obroty. dθ, cząstka W Y K Ł A D VIII. Prędkość kątowa i przyspieszenie kątowe.
Wykład z fzyk, Pot Posmykewcz 84 W Y K Ł A D VIII Oboty. Ruch obotowy jest wszędze wokół nas; od atomów do galaktyk. Zema obaca sę wokół własnej os. Koła, pzekładne, slnk, śmgła, CD, łyŝwaka wykonująca
KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie
KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie
Skrypt 13. Koło i okrąg. Opracowanie: GIM3. 1. Okrąg i koło - podstawowe pojęcia (promień, średnica, cięciwa) 2. Wzajemne położenie dwóch okręgów
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 13 Koło i okrąg 1. Okrąg i koło - podstawowe
Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16)
Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
Próba określenia miary jakości informacji na gruncie teorii grafów dla potrzeb dydaktyki
Póba okeślenia miay jakości infomacji na guncie teoii gafów dla potzeb dydaktyki Zbigniew Osiak E-mail: zbigniew.osiak@gmail.com http://ocid.og/0000-0002-5007-306x http://via.og/autho/zbigniew_osiak Steszczenie
PLANIMETRIA pp 2015/16. WŁASNOŚCI TRÓJKĄTÓW (nierówność trójkąta, odcinek łączący środki boków, środkowe, wysokość z kąta prostego)
PLNIMETRI pp 2015/16 WŁSNOŚI TRÓJKĄTÓW (nierówność trójkąta, odcinek łączący środki boków, środkowe, wysokość z kąta prostego) Zad.1 Wyznacz kąty trójkąta jeżeli stosunek ich miar wynosi 5:3:1. Zad.2 Znajdź
MATURA Przygotowanie do matury z matematyki
MATURA 2012 Przygotowanie do matury z matematyki Część VII: Planimetria ROZWIĄZANIA Powtórka jest organizowana przez redaktorów portalu MatmaNa6.pl we współpracy z dziennikarzami Gazety Lubuskiej. Witaj,
Podstawy Procesów i Konstrukcji Inżynierskich. Ruch obrotowy INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Pocesów Konstukcj Inżyneskch Ruch obotowy Keunek Wyóżnony pzez PKA 1 Ruch jednostajny po okęgu Ruch cząstk nazywamy uchem jednostajnym po okęgu jeśl pousza sę ona po okęgu lub kołowym łuku z pędkoścą
Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.
C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty
9.1 POMIAR PRĘDKOŚCI NEUTRINA W CERN
91 POMIAR PRĘDKOŚCI NEUTRINA W CERN Rozdział należy do teoii pt "Teoia Pzestzeni" autostwa Daiusza Stanisława Sobolewskiego http: wwwtheoyofspaceinfo Z uwagi na ozważania nad pojęciem czasu 1 możemy pzyjąć,
9. PLANIMETRIA zadania
Zad.9.1. Czy boki trójkąta mogą mieć długości: a),6, 10 b) 5,8, 10 9. PLANIMETRIA zadania Zad.9.. Dwa kąty trójkąta mają miary: 5, 40. Jaki to trójkąt: ostrokątny, prostokątny, czy rozwartokątny? Zad.9..
Zadania z treścią na ekstrema funkcji
Zadania z treścią na ekstrema funkcji Zad. 1: W trójkąt równoramienny, którego boki zawierają się w prostych: AB o równaniu y =, AC o równaniu x y + 1 = 0 i BC o równaniu x + y 6 = 0, wpisano równoległobok
dr inż. Zbigniew Szklarski
ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele
XIX. PRAWO COULOMBA Prawo Coulomba
XIX PRAWO COULOMBA 191 Pawo Coulomba Wielkość oddziaływania cząstki z otaczającymi ją obiektami zależy od jej ładunku elektycznego, zwykle oznaczanego pzez Ładunek elektyczny może być dodatni lub ujemny
MATURA Powtórka do matury z matematyki. Część VII: Planimetria ROZWIĄZANIA. Organizatorzy: MatmaNa6.p l i Dziennik.pl
MATURA 2012 Powtórka do matury z matematyki Część VII: Planimetria ROZWIĄZANIA Organizatorzy: MatmaNa6.p l i Dziennik.pl Witaj, otrzymałeś już siódmą z dziesięciu części materiałów powtórkowych do matury
Zasady dynamiki ruchu obrotowego
DYNAMIKA (cz.) Dynamika układu punktów Śodek masy i uch śodka masy Dynamika były sztywnej Moment bezwładności, siły i pędu Zasada zachowania momentu pędu Pawo Steinea Zasady dynamiki uchu obotowego Politechnika
Tematy próbnego pisemnego egzaminu dojrzałości z matematyki
Tematy próbnego pisemnego egzaminu dojrzałości z matematyki Zadanie Rozwiąż nierówność: [ +log 0, ( x- )] + [ +log 0, ( x- )] + [ +log 0, ( x- )] ++ + [ + log 0, ( x- )] Zadanie Odcinek AB, gdzie A = (,
WOJEWÓDZKI KONKURS MATEMATYCZNY
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 08/09 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź uczeń otrzymuje punkt. Numer zadania Poprawna odpowiedź...