Silniki cieplne i rekurencje
|
|
- Patryk Edward Sokołowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 6 FOTO 33, Lao 6 Silniki cieplne i rekurencje Jakub Mielczarek Insyu Fizyki UJ Chciałbym Pańswu zaprezenować zagadnienie, kóre pozwala, rozważając emaykę sprawności układu silników cieplnych, zapoznać się z użyecznymi meodami rozwiązywania równań rekurencyjnych. Zagadnienie o można przedsawić w formie nasępującego problemu: Proszę znaleźć wyrażenie na wypadkową sprawność układu szeregowo połączonych silników cieplnych. Dany silnik w szeregu pobiera ciepło oddane przez jednego sąsiada, a wydzielone ciepło oddaje nasępnemu sąsiadowi. Wszyskie silniki pracują z jednakową sprawnością, równą η. Zadanie o, na pierwszy rzu oka, może sprawiać wrażenie dość oczywisego. Moglibyśmy pomyśleć, że sprawności sumują się w jakiś znany nam sposób, np. jak w równoległym połączeniu rezysorów. ic jednak bardziej mylnego. Reguła dodawania sprawności silników okazuje się mieć mniej oczywisą posać, sprawiającą, że znalezienie wyrażenia na wypadkową sprawność układu nie jes zadaniem prosym. Rozwiązanie ego problemu nie wymaga jednak zaawansowanej maemayki ylko rochę spryu i pomysłowości. Dlaego uważam, że może być ono ciekawą rozrywką inelekualną dla ambinych licealisów oraz sudenów pierwszych la na kierunkach ścisłych. Jeśli wzbudziłem Twoje zaineresowanie i chcesz podjąć wyzwanie, zachęcam do zmierzenia się z zadaniem. Jeśli sprawi ci ono rudność, odłóż je na kilka dni, po czym spróbuj zaaakować je jeszcze raz. Po zakończonych zmaganiach zapraszam ponownie do ego arykułu. Poniżej będziesz mógł/mogła skonfronować swój wynik z moimi obliczeniami oraz dowiedzieć się co nieco o równaniach rekurencyjnych. Powodzenia! I. Rozwiązanie Zanim podejmiemy wyzwanie rozwiązania pełnego problemu silników cieplnych waro wcześniej rozważyć przypadek połączenia szeregowego dwóch silników cieplnych, jednego o sprawności η, a drugiego o sprawności η. iech Q oznacza ciepło pobrane z grzejnicy przez pierwszy silnik, a Q o ciepło oddane przez en silnik chłodnicy. Praca wykonana przez czynnik roboczy pierwszego silnika wynosi W. Ponieważ energia wewnęrzna w pełnym cyklu nie zmienia się, na podsawie pierwszej zasady ermodynamiki, orzymujemy związek: Q + Q + W =, przy czym W i Q są ujemne. Sprawność pierwszego silnika
2 FOTO 33, Lao 6 7 W definiujemy jako, czyli sosunek wykonanej przez en silnik pracy do Q W dosarczonego ciepła. Analogicznie, sprawność drugiego silnika. Q 3 Przez Q 3 oznaczyliśmy uaj ciepło pobrane przez en silnik z grzejnicy. Ponieważ grzejnica silnika jes jednocześnie chłodnicą silnika, zachodzi związek Q 3 = Q. Ponado, przez W oznaczyliśmy pracę wykonaną podczas pełnego cyklu przez drugi silnik. Wypadkową sprawność rozważanego szeregowego układu możemy więc zapisać jako: W W Q Q 3, () Q Q gdzie wykorzysaliśmy wprowadzone wcześniej definicje sprawności η i η. Ponieważ Q 3 = Q = Q + W, dosajemy W, Q () a sąd, wykorzysując ponownie definicję η, oraz fak, że dla ujemnego W, zachodzi W = W, orzymujemy szukane wyrażenie:. (3) Sprawność układu szeregowego dwóch silników cieplnych wyraża się jako suma ich sprawności pomniejszona o iloczyn ych sprawności. Prawda, że mało inuicyjne? Orzymany wzór (3) chcielibyśmy eraz wykorzysać do obliczenia sprawności silników o zadanej warości, połączonych szeregowo. Oznaczmy aką sprawność przez η. Znając regułę sumowania sprawności (3) możemy eraz kolejno dodawać do siebie orzymywane sprawności, konsruując układ zawierający coraz o więcej elemenów. Jeśli każdy z silników ma sprawność η o oczywiście η = η. Wykorzysując nasępnie wzór (3), dla dwóch idenycznych silników, dosajemy. Chcąc orzymać wyrażenie na η 3, do układu o sprawności η, sosując ponownie równanie (3), dodajemy silnik z η = η, 3 dosając I ak dalej, i ak dalej. Szukamy jednak czegoś więcej, chcielibyśmy dysponować funkcją, kóra dla danego da nam bezpośrednio szukane wyrażenie. Jedną z meod na znalezienie jej posaci jes zgadywanie. Wypiszmy sobie na przykład pięć pierwszych wyrazów i spróbujmy znaleźć szukane wyrażenie. Dla wygody i przejrzysości oznaczmy, a ponieważ η jes funkcją, będziemy sosować zapis η (). Orzymane wyrażenia zebrano w abelce:
3 8 FOTO 33, Lao 6 ( ) Można z niej odczyać, że dla danego funkcja η () ma posać wielomianu sopnia. Co więcej, można zauważyć, że współczynniki przy poęgach sumują się do jedynki. Możemy więc wywnioskować, że η () =. Co jes zgodne z inuicją szeregowe połączenie silników idealnych jes również silnikiem idealnym. Oprócz ego, na podsawie powyższej abelki można swierdzić, że współczynnik przy najniższej poędze wynosi. Powyższe obserwacje mogą nam pomóc odgadnąć ogólne wyrażenie na η (). Co jednak mamy zrobić, gdy meoda zgadywania nie doprowadzi nas do oczekiwanego rezulau? Zauważmy, że zamias dodawać kolejne elemeny układu i dla każdej nowej konfiguracji obliczać wypadkową sprawność, możemy posawić sprawę rochę inaczej. Rozważny mianowicie układ silników o wypadkowej sprawności ( ) i połączmy go z silnikiem o sprawności. Korzysając ze wzoru (3) możemy sąd wyprowadzić wyrażenie na sprawność układu + silników znając sprawność układu silników: ( ) ( ) ( ) ( ) ( ), (4) razem z ak zwanym warunkiem począkowym η () =. Wyrażenie (4) jes przykładem równania rekurencyjnego, a dokładniej, jes o równanie rekurencyjne liniowe i niejednorodne. Liniowość odzwierciedla u fak, że prawa srona równania (4) nie zawiera poęg η () różnych od i. iejednorodność wskazuje naomias na obecność sałego członu. Isnieje wiele sposobów rozwiązywania ego ypu równań, z kórych u chciałbym przedyskuować dwa: meodę czynnika sumacyjnego oraz meodę funkcji worzących. arzędzia e są bardzo przydane przy rozwiązywaniu wielu problemów. Korzysając z dyskuowanego zagadnienia będziemy mogli wyłumaczyć zasadę ich działania. II. Meoda czynnika sumacyjnego Rozważmy pozornie niezwiązany problem. Mianowicie, obliczenie sumy S a a a a n n, gdzie a n są elemenami pewnego ciągu liczbowego. Isoną, z naszego punku widzenia, obserwacją jes o, że sumę S możemy przedsawić w posaci równania rekurencyjnego:
4 FOTO 33, Lao 6 9 S S a, (5) razem z warunkiem począkowym S = a. Sąd, S = S + a = a + a, a nasępnie S 3 = S + a 3 = a + a + a 3, i ak dalej, aż do warości, kórej porzebujemy. Porafiąc więc obliczyć sumę S, co niekiedy nie jes zadaniem rudnym, możemy znaleźć rozwiązanie równania (5). Równanie (4), kóre chcemy rozwiązać, różni się od równania (5). Są one jednak na yle podobne, że można je z sobą powiązać. Mianowicie, zasanówmy się, co należy zrobić żeby równanie (4) przekszałcić do posaci (5)? Po chwili zasanowienia, można zauważyć, że waro spróbować podzielić obusronnie równanie (4) przez czynnik ( ) +. Dosajemy wedy równanie ( ) ( ) ( ), w kórym pozbyliśmy się członu ( ) mnożącego η w równaniu (4). Z równań (5) i (6) można odczyać, że S oraz a. Funkcja ( ) ( ), kóra pozwoliła przekszałcić równanie (4) do posaci (5), nosi nazwę czynnika ( ) sumacyjnego. Wykorzysując orzymane wyrażenie na współczynniki a n, możemy zapisać n n n Osania suma jes przykładem n S a n n ( ). sumy ciągu geomerycznego, oznaczmy ją przez n (6) n. Dodając i odej- mując od ej sumy wyraz, możemy zapisać równanie, kóre, po rozwiązaniu, prowadzi do wyrażenia. Korzysając z ego wyniku, dla, dosajemy S n. (7) n ( ) Wykorzysując, znaleziony wcześniej związek pomiędzy S a η, orzymujemy poszukiwany wynik: ( ) ( ) S ( ). (8)
5 FOTO 33, Lao 6 III. Meoda funkcji worzących Przejdźmy eraz do alernaywnego sposobu znalezienia wyrażenia na η (), wykorzysując meodę funkcji worzących. W ym celu, zdefiniujmy nasępującą funkcję: f ( ) ( ), (9) gdzie <. Wyłączmy z powyższej sumy pierwszy wyraz i przemianujmy wskaźniki w pozosałej sumie: ( ) ( ) ( ) ( ). f () Współczynniki η + () możemy, w oparciu o równanie rekurencyjne (4), wyrazić za pomocą współczynników η (), co pozwala zapisać wyrażenie na funkcję f () w nasępującej posaci: f ( ) ( ) ( ) ( ) ( ) ( ) f ( ), () gdzie ponownie skorzysaliśmy z definicji (9). Pozosaje nam jeszcze suma. Ale o jes po prosu suma nieskończonego ciągu geomerycznego, kórej warość możemy z ławością obliczyć. Oznaczmy. Zapiszmy Σ = = + Σ, co wynika z faku, że suma a jes nieskończona. Rozwiązanie orzymanego równania Σ = + Σ ma posać. Alernaywnie, wynik en można uzyskać wykorzysując wcześniej znalezione wyraże- nie i rozważając granicę. Sąd, po podsawieniu obliczonej sumy do równania (), dosajemy równanie kóre, po rozwiązaniu na f (), można zapisać jako f ( ) ( ) f ( ), () f( ). ( )( ) (3)
6 FOTO 33, Lao 6 Ławo zauważyć, że powyższą funkcję można zapisać przez sumę ułamków prosych: f( ). (4) ( ) Korzysając naomias z reprezenacji funkcji y w posaci szeregu Taylora możemy funkcję f () wyrazić jako y, y (5) (6) f ( ) ( ) ( ), gdzie wyraz = nauralnie nie daje wkładu do powyższej sumy. Ponieważ równania (9) i (6) są równoważnymi wyrażeniami na funkcję f (), porównując ich prawe srony dochodzimy do wniosku, że IV. Wnioski ( ) ( ). (7) Powracając do oryginalnych oznaczeń = η, obydwie zasosowane meody pozwalają nam wyprowadzić szukaną wypadkową sprawność połączonych szeregowo silników cieplnych, każdy o sprawności η : ( ). (8) Waro zauważyć, że ponieważ η <, o w granicy, wypadkowa sprawność szeregowego układu połączonych silników będzie dążyła do jedności (lim ), czyli zwiększając będziemy zbliżać się do przypadku silnika o idealnej sprawności. ie jes o wynik sprzeczny z oczekiwaniami, kiedy rozważymy szczególny przypadek silnika Carnoa. W silniku Carnoa zarówno pobieranie jak i oddawanie ciepła przez subsancję roboczą nasępuje przy sałej emperaurze procesy wymiany ciepła przebiegają izoermicznie. iech w akim przypadku, pierwsza grzejnica w układzie ma emperaurę T, pierwsze chłodnica, kóra jes zarazem grzejnicą dla silnika, ma emperaurę T i ak dalej, aż do, zamykającej szereg, chłodnicy o emperaurze T. Schemaycznie, syuację ę przedsawiono na rysunku poniżej.
7 FOTO 33, Lao 6 W przypadku szeregu silników Carnoa, sprawność każdego z silników można wyrazić poprzez sosunek emperaury chłodnicy względem grzejnicy: T T T (9). T T T Ponieważ założyliśmy równość sprawności poszczególnych silników, dla każdego z nich sosunek emperaury chłodnicy względem emperaury grzejnicy będzie wyrażał się jako: T. () T Sąd ławo dojść do wniosku, że sosunek emperaury osaniej chłodnicy do emperaury pierwszej grzejnicy dany jes przez wyrażenie: T T ( ), () co po podsawieniu do równania (8) daje nam nasępujące wyrażenie na sprawność szeregowego układu silników Carnoa: T. () T Orzymana wypadkowa sprawność wyraża się więc idenycznie jak sprawność pojedynczego silnika Carnoa o emperaurze grzejnicy T i emperaurze chłodnicy T. a podsawie równania () widzimy, że przy usalonym T emperaura osaniej chłodnicy maleje w posępie geomerycznym wraz ze wzrosem. W granicy orzymujemy więc T, co przekłada się na η.
Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona
Całka nieoznaczona Andrzej Musielak Sr Całka nieoznaczona Całkowanie o operacja odwrona do liczenia pochodnych, zn.: f()d = F () F () = f() Z definicji oraz z abeli pochodnych funkcji elemenarnych od razu
Bardziej szczegółowoDYNAMIKA KONSTRUKCJI
10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej
Bardziej szczegółowo2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)
Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza
Bardziej szczegółowoC d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:
Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili
Bardziej szczegółowo4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego
4.. Obliczanie przewodów grzejnych meodą dopuszczalnego obciążenia powierzchniowego Meodą częściej sosowaną w prakyce projekowej niż poprzednia, jes meoda dopuszczalnego obciążenia powierzchniowego. W
Bardziej szczegółowoRównania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.
Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać
Bardziej szczegółowoψ przedstawia zależność
Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi
Bardziej szczegółowoDobór przekroju żyły powrotnej w kablach elektroenergetycznych
Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego
Bardziej szczegółowoPodstawowe wyidealizowane elementy obwodu elektrycznego Rezystor ( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( τ ) i t i t u ( ) u t u t i ( ) i t. dowolny.
Tema. Opracował: esław Dereń Kaedra Teorii Sygnałów Insyu Telekomunikacji Teleinformayki i Akusyki Poliechnika Wrocławska Prawa auorskie zasrzeżone Podsawowe wyidealizowane elemeny obwodu elekrycznego
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )
Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa
Bardziej szczegółowoE k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny
E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,
Bardziej szczegółowoZasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim
Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając
Bardziej szczegółowoPobieranie próby. Rozkład χ 2
Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie
Bardziej szczegółowoWykład 4 Metoda Klasyczna część III
Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)
Bardziej szczegółowoWYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera.
7. Całka Fouriera w posaci rzeczywisej. Wykład VII Przekszałcenie Fouriera. Doychczas rozparywaliśmy szeregi Fouriera funkcji w ograniczonym przedziale [ l, l] lub [ ] Teraz pokażemy analogicznie przedsawienie
Bardziej szczegółowoRÓWNANIA RÓŻNICZKOWE WYKŁAD 13
RÓWNANIA RÓŻNICZKOWE WYKŁAD 13 Geomeria różniczkowa Geomeria różniczkowa o dział maemayki, w kórym do badania obieków geomerycznych wykorzysuje się meody opare na rachunku różniczkowym. Obieky geomeryczne
Bardziej szczegółowoWNIOSKOWANIE STATYSTYCZNE
Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml
Bardziej szczegółowoDOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH
Franciszek SPYRA ZPBE Energopomiar Elekryka, Gliwice Marian URBAŃCZYK Insyu Fizyki Poliechnika Śląska, Gliwice DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH. Wsęp Zagadnienie poprawnego
Bardziej szczegółowoĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie
ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna
Bardziej szczegółowoSzeregi Fouriera. Powyższe współczynniki można wyznaczyć analitycznie z następujących zależności:
Trygonomeryczny szereg Fouriera Szeregi Fouriera Każdy okresowy sygnał x() o pulsacji podsawowej ω, spełniający warunki Dirichlea:. całkowalny w okresie: gdzie T jes okresem funkcji x(), 2. posiadający
Bardziej szczegółowoKombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz
Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia
Bardziej szczegółowoPOLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH
POLIECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGEYKI INSYU MASZYN i URZĄDZEŃ ENERGEYCZNYCH IDENYFIKACJA PARAMERÓW RANSMIANCJI Laboraorium auomayki (A ) Opracował: Sprawdził: Zawierdził:
Bardziej szczegółowo( ) ( ) ( τ) ( t) = 0
Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany
Bardziej szczegółowoWojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut
Wojewódzki Konkurs Maemayczny dla uczniów gimnazjów. Eap szkolny 5 lisopada 2013 Czas 90 minu ZADANIA ZAMKNIĘTE Zadanie 1. (1 punk) Liczby A = 0, 99, B = 0, 99 2, C = 0, 99 3, D = 0, 99, E=0, 99 1 usawiono
Bardziej szczegółowo( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =
ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:
Bardziej szczegółowo20. Wyznaczanie ciepła właściwego lodu c pl i ciepła topnienia lodu L
20. Wyznaczanie ciepła właściwego lodu c pl i ciepła opnienia lodu L I. Wprowadzenie 1. Ciepło właściwe lodu i ciepło opnienia lodu wyznaczymy meodą kalorymeryczną sporządzając odpowiedni bilans cieplny.
Bardziej szczegółowoWykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie
Wykład 5 Elemeny eorii układów liniowych sacjonarnych odpowiedź na dowolne wymuszenie Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska
Bardziej szczegółowoRozwiązywanie zależności rekurencyjnych metodą równania charakterystycznego
Rozwiązywanie zależności rekurencyjnych metodą równania charakterystycznego WMS, 2019 1 Wstęp Niniejszy dokument ma na celu prezentację w teorii i na przykładach rozwiązywania szczególnych typów równań
Bardziej szczegółowoANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,
Bardziej szczegółowoPojęcia podstawowe 1
Tomasz Lubera Pojęcia podsawowe aa + bb + dd + pp + rr + ss + Kineyka chemiczna dział chemii fizycznej zajmujący się przebiegiem reakcji chemicznych w czasie, ich mechanizmami oraz wpływem różnych czynników
Bardziej szczegółowoĆWICZENIE NR 43 U R I (1)
ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości
Bardziej szczegółowoRuch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.
Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych
Bardziej szczegółowoĆw. S-II.2 CHARAKTERYSTYKI SKOKOWE ELEMENTÓW AUTOMATYKI
Dr inż. Michał Chłędowski PODSAWY AUOMAYKI I ROBOYKI LABORAORIUM Ćw. S-II. CHARAKERYSYKI SKOKOWE ELEMENÓW AUOMAYKI Cel ćwiczenia Celem ćwiczenia jes zapoznanie się z pojęciem charakerysyki skokowej h(),
Bardziej szczegółowoDYNAMICZNE MODELE EKONOMETRYCZNE
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika
Bardziej szczegółowoBEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW. W tym krótkim i matematycznie bardzo prostym artykule pragnę osiągnąc 3 cele:
1 BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW Leszek S. Zaremba (Polish Open Universiy) W ym krókim i maemaycznie bardzo prosym arykule pragnę osiągnąc cele: (a) pokazac że kupowanie
Bardziej szczegółowoGr.A, Zad.1. Gr.A, Zad.2 U CC R C1 R C2. U wy T 1 T 2. U we T 3 T 4 U EE
Niekóre z zadań dają się rozwiązać niemal w pamięci, pamięaj jednak, że warunkiem uzyskania różnej od zera liczby punków za każde zadanie, jes przedsawienie, oprócz samego wyniku, akże rozwiązania, wyjaśniającego
Bardziej szczegółowoUkłady sekwencyjne asynchroniczne Zadania projektowe
Układy sekwencyjne asynchroniczne Zadania projekowe Zadanie Zaprojekować układ dwusopniowej sygnalizacji opycznej informującej operaora procesu o przekroczeniu przez konrolowany paramer warości granicznej.
Bardziej szczegółowospecyfikacji i estymacji modelu regresji progowej (ang. threshold regression).
4. Modele regresji progowej W badaniach empirycznych coraz większym zaineresowaniem cieszą się akie modele szeregów czasowych, kóre pozwalają na objaśnianie nieliniowych zależności między poszczególnymi
Bardziej szczegółowoModelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA HAZARDU
Modelowanie ryzyka kredyowego MODELOWANIE ZA POMOCA PROCESU HAZARDU Mariusz Niewęgłowski Wydział Maemayki i Nauk Informacyjnych, Poliechniki Warszawskiej Warszawa 2014 hazardu Warszawa 2014 1 / 18 Proces
Bardziej szczegółowoPolitechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych
Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II
Bardziej szczegółowoy 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =
Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,
Bardziej szczegółowoPraca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Zad Stoisz na brzegu oceanu, pogoda jest idealna,
Praca domowa nr. Meodologia Fizyki. Grupa. Szacowanie warości wielkości fizycznych Zad... Soisz na brzegu oceanu, pogoda jes idealna, powierze przeźroczyse; proszę oszacować jak daleko od Ciebie znajduje
Bardziej szczegółowoWYKORZYSTANIE TESTU OSTERBERGA DO STATYCZNYCH OBCIĄŻEŃ PRÓBNYCH PALI
Prof. dr hab.inż. Zygmun MEYER Poliechnika zczecińska, Kaedra Geoechniki Dr inż. Mariusz KOWALÓW, adres e-mail m.kowalow@gco-consul.com Geoechnical Consuling Office zczecin WYKORZYAIE EU OERERGA DO AYCZYCH
Bardziej szczegółowoESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków
Bardziej szczegółowoWykład X. ε, ε, ε = ε oznaczają współrzędne tensora odkształcenia, u i w są współrzędnymi wektora WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ
Wykład X ROZWIĄZANIE RÓWNAŃ RÓŻNICZKOWYC Z WYKORZYSTANIEM TRANSFORMACJI LAPLACE A i FOURIERA CIĄG DALSZY. Konsolidacja półprzesrzeni konsolidujące pod działaniem ruchomego obciążenia skupionego. Rozważmy
Bardziej szczegółowoMETROLOGICZNE WŁASNOŚCI SYSTEMU BADAWCZEGO
PROBLEY NIEONWENCJONALNYCH ŁADÓW ŁOŻYSOWYCH Łódź, 4 maja 999 r. Jadwiga Janowska, Waldemar Oleksiuk Insyu ikromechaniki i Fooniki, Poliechnika Warszawska ETROLOGICZNE WŁASNOŚCI SYSTE BADAWCZEGO SŁOWA LCZOWE:
Bardziej szczegółowoLABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ
INSTTUTU TECHNIKI CIEPLNEJ WDZIAŁ INŻNIERII ŚRODOWISKA I ENERGETKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORJNA Tema ćwiczenia: WZNACZANIE WSPÓŁCZNNIKA PRZEWODZENIA CIEPŁA CIAŁ STAŁCH METODĄ STANU UPORZĄDKOWANEGO
Bardziej szczegółowoD:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora.
D:\maerialy\Maemayka a GISIP I rok DOC\7 Pochode\8ADOC -wrz-5, 7: 89 Obliczaie graic fukcji w pukcie przy pomocy wzoru Taylora Wróćmy do wierdzeia Taylora (wzory (-( Tw Szczególie waża dla dalszych R rozważań
Bardziej szczegółowoBadanie funktorów logicznych TTL - ćwiczenie 1
adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami
Bardziej szczegółowoWYKORZYSTANIE RACHUNKU WARIACYJNEGO DO ANALIZY WAHAŃ PRODUKCJI W PRZEDSIĘBIORSTWACH
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36, T. 1 Sefan Grzesiak * WYKORZYSTANIE RACHUNKU WARIACYJNEGO DO ANALIZY WAHAŃ PRODUKCJI W PRZEDSIĘBIORSTWACH STRESZCZENIE W arykule podjęo problem
Bardziej szczegółowoPROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1
PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,
Bardziej szczegółowoWyznaczanie temperatury i wysokości podstawy chmur
Wyznaczanie emperaury i wysokości podsawy chmur Czas rwania: 10 minu Czas obserwacji: dowolny Wymagane warunki meeorologiczne: pochmurnie lub umiarkowane zachmurzenie Częsoliwość wykonania: 1 raz w ciągu
Bardziej szczegółowoMatematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 6/15 Sumy Oto dwie konwencje zapisu skończonych sum wyrazów: (notacja Sigma, Fourier, 1820) Czasami stosowana jest ogólniejsza notacja,
Bardziej szczegółowoMatematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.
Komisja Egzaminacyjna dla Akuariuszy XXXVIII Egzamin dla Akuariuszy z 20 marca 2006 r. Część I Maemayka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minu 1 1. Ile
Bardziej szczegółowoMetody badania wpływu zmian kursu walutowego na wskaźnik inflacji
Agnieszka Przybylska-Mazur * Meody badania wpływu zmian kursu waluowego na wskaźnik inflacji Wsęp Do oceny łącznego efeku przenoszenia zmian czynników zewnęrznych, akich jak zmiany cen zewnęrznych (szoki
Bardziej szczegółowoWYKŁAD FIZYKAIIIB 2000 Drgania tłumione
YKŁD FIZYKIIIB Drgania łumione (gasnące, zanikające). F siła łumienia; r F r b& b współczynnik łumienia [ Nm s] m & F m & && & k m b m F r k b& opis różnych zjawisk izycznych Niech Ce p p p p 4 ± Trzy
Bardziej szczegółowoGłównie występuje w ośrodkach gazowych i ciekłych.
W/g ermodynamiki - ciepło jes jednym ze sposobów ransporu energii do/z bila, zysy przepływ ciepła może wysąpić jedynie w ciałach sałych pozosających w spoczynku. Proces wymiany ciepla: przejmowanie ciepła
Bardziej szczegółowoPodstawy elektrotechniki
Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 7 320 320
Bardziej szczegółowoCIĄGI wiadomości podstawowe
1 CIĄGI wiadomości podstawowe Jak głosi definicja ciąg liczbowy to funkcja, której dziedziną są liczby naturalne dodatnie (w zadaniach oznacza się to najczęściej n 1) a wartościami tej funkcji są wszystkie
Bardziej szczegółowoLaboratorium z PODSTAW AUTOMATYKI, cz.1 EAP, Lab nr 3
I. ema ćwiczenia: Dynamiczne badanie przerzuników II. Cel/cele ćwiczenia III. Wykaz użyych przyrządów IV. Przebieg ćwiczenia Eap 1: Przerzunik asabilny Przerzuniki asabilne służą jako generaory przebiegów
Bardziej szczegółowodr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW
Kaedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Sposoby usalania płac w gospodarce Jednym z głównych powodów, dla kórych na rynku pracy obserwujemy poziom bezrobocia wyższy
Bardziej szczegółowo4.4. Obliczanie elementów grzejnych
4.4. Obiczanie eemenów grzejnych Po wyznaczeniu wymiarów przewodu grzejnego naeży zaprojekować eemen grzejny, a więc okreśić wymiary skręki grzejnej czy eemenu faisego (wężownicy grzejnej, meandra grzejnego).
Bardziej szczegółowoMatematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d
C. Bagiński Materiały dydaktyczne 1 Matematyka Dyskretna /008 rozwiązania 1. W każdym z następujących przypadków podać jawny wzór na s n i udowodnić indukcyjnie jego poprawność: (a) s 0 3, s 1 6, oraz
Bardziej szczegółowo7. CIĄGI. WYKŁAD 5. Przykłady :
WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na
Bardziej szczegółowoMatematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 6/14 Sumy Oto dwie konwencje zapisu skończonych sum wyrazów: (notacja Sigma, Fourier, 1820) Czasami stosowana jest ogólniejsza notacja,
Bardziej szczegółowoKinematyka W Y K Ł A D I. Ruch jednowymiarowy. 2-1 Przemieszczenie, prędkość. x = x 2 - x x t
Wykład z fizyki. Pior Posmykiewicz W Y K Ł A D I Ruch jednowymiarowy Kinemayka Zaczniemy wykład z fizyki od badania przedmioów będących w ruchu. Dział fizyki, kóry zajmuje się badaniem ruchu ciał bez wnikania
Bardziej szczegółowoPrognozowanie średniego miesięcznego kursu kupna USD
Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska
Bardziej szczegółowoLista nr Znaleźć rozwiązania ogólne następujących równań różniczkowych: a) y = y t,
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE B Lisa nr 1 1. Napisać równanie różniczkowe, jakie spełnia napięcie u = u() na okładkach kondensaora w obwodzie zawierającym połączone szeregowo oporność R i pojemność C,
Bardziej szczegółowoMatematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia
Maemayka A kolokwium maja rozwia zania Należy przeczyać CA LE zadanie PRZED rozpocze ciem rozwia zywania go!. Niech M. p. Dowieść że dla każdej pary liczb ca lkowiych a b isnieje aka para liczb wymiernych
Bardziej szczegółowoPostęp techniczny. Model lidera-naśladowcy. Dr hab. Joanna Siwińska-Gorzelak
Posęp echniczny. Model lidera-naśladowcy Dr hab. Joanna Siwińska-Gorzelak Założenia Rozparujemy dwa kraje; kraj 1 jes bardziej zaawansowany echnologicznie (lider); kraj 2 jes mniej zaawansowany i nie worzy
Bardziej szczegółowoWZROST GOSPODARCZY A BEZROBOCIE
Wojciech Pacho & WZROST GOSPODARCZ A BEZROBOCIE Celem niniejszego arykułu jes pokazanie związku pomiędzy ezroociem a dynamiką wzrosu zagregowanej produkcji. Poszukujemy oowiedzi na pyanie czy i jak silnie
Bardziej szczegółowoĆwiczenie XII: PRAWO PODZIAŁU NERNSTA
Ćwiczenie XII: PRAWO PODZIAŁU NERNSTA opracowanie: Wojciech Solarski Wprowadzenie Prawo podziału sformułowane przez Walera H. Nensa opisuje układ rójskładnikowy, z czego dwa składniki o rozpuszczalniki
Bardziej szczegółowoE5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO
E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy
Bardziej szczegółowoANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM
Budownicwo Mariusz Poński ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM Wprowadzenie Coraz większe ograniczenia czasowe podczas wykonywania projeków
Bardziej szczegółowoDyskretny proces Markowa
Procesy sochasyczne WYKŁAD 4 Dyskreny roces Markowa Rozarujemy roces sochasyczny X, w kórym aramer jes ciągły zwykle. Będziemy zakładać, że zbiór sanów jes co najwyżej rzeliczalny. Proces X, jes rocesem
Bardziej szczegółowoFunkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
Bardziej szczegółowoProgramowanie celowe #1
Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem
Bardziej szczegółowoWykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I. Kinemayka punku maerialnego Kaedra Opyki i Fooniki Wydział Podsawowych Problemów Techniki Poliechnika Wrocławska hp://www.if.pwr.wroc.pl/~wozniak/fizyka1.hml Miejsce konsulacji: pokój
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,
Bardziej szczegółowoWygładzanie metodą średnich ruchomych w procesach stałych
Wgładzanie meodą średnich ruchomch w procesach sałch Cel ćwiczenia. Przgoowanie procedur Średniej Ruchomej (dla ruchomego okna danch); 2. apisanie procedur do obliczenia sandardowego błędu esmacji;. Wizualizacja
Bardziej szczegółowoWykład Temperatura termodynamiczna 6.4 Nierówno
ykład 8 6.3 emperatura termodynamiczna 6.4 Nierówność Clausiusa 6.5 Makroskopowa definicja entropii oraz zasada wzrostu entropii 6.6 Entropia dla czystej substancji 6.8 Cykl Carnota 6.7 Entropia dla gazu
Bardziej szczegółowoBadania trakcyjne samochodu.
Uniwersye Technologiczno-Humanisyczny im. Kazimierza Pułaskiego w Radomiu Wydział Mechaniczny Insyu Eksploaacji Pojazdów i Maszyn Budowa samochodów i eoria ruchu Insrukcja do ćwiczenia Badania rakcyjne
Bardziej szczegółowoDefinicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Bardziej szczegółowoq s,t 1 r k 1 t k s q k 1 q k... q n 1 q n q 1 i ef e, v 1 q,
Maemayka finanowa i ubezpieczeniowa - 3 Przepływy pienięŝne 1 Warość akualna i przyzła przepływów dykrenych i ciągłych Oprocenowanie - dykonowanie ciągłe ze zmienną opą (iłą). 1. Sopy przedziałami ałe
Bardziej szczegółowoPropozycje rozwiązań zadań z matematyki - matura rozszerzona
Jacek Kredenc Propozycje rozwiązań zadań z matematyki - matura rozszerzona Zadanie 1 Zastosujmy trójkąt Paskala 1 1 1 1 2 1 1 3 3 1 Przy iloczynie będzie stał współczynnik 3. Zatem Odpowiedź : C Zadanie
Bardziej szczegółowoWykład z równań różnicowych
Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.
Bardziej szczegółowoAnaliza matematyczna dla informatyków 3 Zajęcia 14
Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:
Bardziej szczegółowoMatematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji
Bardziej szczegółowo, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x
Meody aeaycze w echologii aeriałów Uwaga: Proszę paięać, że a zajęciach obowiązuje akże zajoość oówioych w aeriałach przykładów!!! CAŁKOWANIE FUNKCJI WYMIERNYCH Fukcją wyierą azyway fukcję posaci P ( )
Bardziej szczegółowozestaw laboratoryjny (generator przebiegu prostokątnego + zasilacz + częstościomierz), oscyloskop 2-kanałowy z pamięcią, komputer z drukarką,
- Ćwiczenie 4. el ćwiczenia Zapoznanie się z budową i działaniem przerzunika asabilnego (muliwibraora) wykonanego w echnice dyskrenej oraz TTL a akże zapoznanie się z działaniem przerzunika T (zwanego
Bardziej szczegółowoSformułowanie Schrödingera mechaniki kwantowej. Fizyka II, lato
Sformułowanie Schrödingera mechaniki kwanowej Fizyka II, lao 018 1 Wprowadzenie Posać funkcji falowej dla fali de Broglie a, sin sin k 1 Jes o przypadek jednowymiarowy Posać a zosała określona meodą zgadywania.
Bardziej szczegółowoStruktura sektorowa finansowania wydatków na B+R w krajach strefy euro
Rozdział i. Srukura sekorowa finansowania wydaków na B+R w krajach srefy euro Rober W. Włodarczyk 1 Sreszczenie W arykule podjęo próbę oceny srukury sekorowej (sekor przedsiębiorsw, sekor rządowy, sekor
Bardziej szczegółowoPrzemysław Klęsk. Słowa kluczowe: analiza składowych głównych, rozmaitości algebraiczne
Przemysław Klęsk O ALGORYTMIE PRINCIPAL MANIFOLDS OPARTYM NA PCA SŁUŻACYM DO ZNAJDOWANIA DZIEDZIN JAKO ROZMAITOŚCI ALGEBRAICZNYCH NA PODSTAWIE ZBIORU DANYCH, PROPOZYCJA MIAR JAKOŚCI ROZMAITOŚCI Sreszczenie
Bardziej szczegółowoTemat 6. ( ) ( ) ( ) k. Szeregi Fouriera. Własności szeregów Fouriera. θ możemy traktować jako funkcje ω, których dziedziną jest dyskretny zbiór
ema 6 Opracował: Lesław Dereń Kaedra eorii Sygnałów Insyu eleomuniacji, eleinformayi i Ausyi Poliechnia Wrocławsa Prawa auorsie zasrzeżone Szeregi ouriera Jeżeli f ( ) jes funcją oresową o oresie, czyli
Bardziej szczegółowoĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym
ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami
Bardziej szczegółowoOCENA ATRAKCYJNOŚCI INWESTYCYJNEJ AKCJI NA PODSTAWIE CZASU PRZEBYWANIA W OBSZARACH OGRANICZONYCH KRZYWĄ WYKŁADNICZĄ
Tadeusz Czernik Daniel Iskra Uniwersye Ekonomiczny w Kaowicach Kaedra Maemayki Sosowanej adeusz.czernik@ue.kaowice.pl daniel.iskra@ue.kaowice.pl OCEN TRKCYJNOŚCI INWESTYCYJNEJ KCJI N PODSTWIE CZSU PRZEBYWNI
Bardziej szczegółowoTERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku
TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak
Bardziej szczegółowoSZEREGI LICZBOWE I FUNKCYJNE
Mając dowolny ciąg można z niego utworzyć nowy ciąg sum częściowych: Ten nowy rodzaj ciągu nazywamy szeregiem liczbowym, a jeśli to mamy do czynienia z nieskończonym szeregiem liczbowym, który oznaczany
Bardziej szczegółowo4. OBLICZANIE REZYSTANCYJNYCH PRZEWODÓW I ELEMENTÓW GRZEJ- NYCH
4. OBLICZANIE REZYSTANCYJNYCH PRZEWODÓW I ELEMENTÓW GRZEJ- NYCH Wybór wymiarów i kszału rezysancyjnych przewodów czy elemenów grzejnych mających wchodzić w skład urządzenia elekroermicznego zależny jes,
Bardziej szczegółowoMetoda eliminacji Gaussa. Autorzy: Michał Góra
Metoda eliminacji Gaussa Autorzy: Michał Góra 9 Metoda eliminacji Gaussa Autor: Michał Góra Przedstawiony poniżej sposób rozwiązywania układów równań liniowych jest pewnym uproszczeniem algorytmu zwanego
Bardziej szczegółowo