Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D"

Transkrypt

1 Równanie konstytutywne opisujące sposób w jaki ciepło przepływa w materiale o danych właściwościach, prawo Fouriera Macierz konstytutywna (właściwości) materiału Wektor gradientu temperatury Wektor strumienia przepływu ciepła q i jego składowa normalna q n

2 Model matematyczny w sformułowaniu lokalnym: równanie Poissona Gdzie Q jest funkcją zadaną, opisującą ilość ciepła dostarczanego lub odbieranego z obszaru W, k=const D jest współczynnikiem przewodności cieplnej dla materiału jednorodnego i isotropowego. Rozwiązanie równania Poissona wymaga dołączenia odpowiednich warunków brzegowych

3 Skąd to równanie się wzięło? Z rozważania równania równowagi (bilansu cieplnego) dla problemu stacjonarnego (ustalonego) w dowolnym obszarze (załóżmy, że nasz obszar jest płaski i ma grubość t) Sumaryczna ilość ciepła dostarczonego/odebranego dla obszaru W Sumaryczna ilość ciepła dostarczonego/odebranego na brzegu G

4 Zastosowanie twierdzenia Gaussa o dywergencji do równania bilansu cieplnego

5 Równanie będzie spełnione jeśli wyrażenie pod całką będzie równe 0 Wprowadźmy do równania prawo fizyczne Fouriera Jeśli D = k=const (materiał jednorodny isotropowy) i t=const, otrzymujemy równanie w formie /tk

6 Przypomnijmy rozważany problem w sformułowaniu lokalnym gdzie:

7 Procedura rozwiązania MES Dyskretyzacja obszaru Słabe sformułowanie wariacyjne Bubnowa-Galerkina dla elementu skończonego Aproksymacja: funkcje kształtu Agregacja: budowa globalnego układu równań Rozwiązanie układu równań MES z uwzględnieniem warunków brzegowych Powrót do elementu skończonego Dyskretyzacja obszaru Do dyskretyzacji obszaru dwuwymiarowego możemy użyd elementów trójkątnych z trzema węzłami i/lub elementów czworokątnych z czterema węzłami

8 Słabe sformułowanie wariacyjne Bubnowa-Galerkina dla elementu skończonego Zgodnie z procedurą metody Bubnowa-Galerkina mnożymy rozważane równanie przez funkcję wagową v e i całkujemy w obszarze elementu skończonego W e v e T e x + T e y + Qe k e dxdy = 0 Uogólnionym twierdzeniem o całkowaniu przez części jest twierdzenie Greena-Gaussa = x y

9 Po wykorzystaniu twierdzenia Greena-Gaussa (dla = v e ), div(q) = T e otrzymujemy x + T e y Lub w zapisie macierzowym

10 Aproksymacja: funkcje kształtu Przyjmiemy, że obszar elementu skończonego W e będzie trójkątem, dalej że funkcje kształtu będą funkcjami bazowymi liniowej interpolacji Lagrange a a więc nasz element będzie opisany trzema węzłami z jednym stopniem swobody w węźle.

11 Funkcje kształtu Jak obliczyć funkcje kształtu N = a x + b y + c x y x y x y a b c = 0 0 a b c = x y x y x y 0 0 N = a x + b y + c x y x y x y a b c = 0 0 a b c = x y x y x y 0 0 a a a b b b = c c b x y x y x y N = a x + b y + c x y x y x y a b c = 0 0 a b c = x y x y x y 0 0

12 Aproksymacja T e (x, y) = N e (x, y)t e v e (x, y) = N e (x, y)c e

13 Pochodne (wektory gradientu) funkcji temperatury i funkcji wagowej = a a a b b b N = a x + b y + c N x = a N y = b N = a x + b y + c N x = a N y = b N = a x + b y + c N x = a N y = b

14 Wprowadzając aproksymacje funkcji T e i v e do równania wariacyjnego otrzymujemy układ równań MES dla elementu skończonego gdzie A e = x y x y x y Jeśli Q=const f e =

15 Agregacja: budowa globalnego układu równań Macierz topologii 5 element Węzeł () Węzeł () Węzeł () () () ()

16 Macierze i wektory Współrzędne węzłów 5 Węzeł x y 6 x y x y x y x y 5 x 5 y 5 6 x 6 y 6

17 Agregacja macierzy K = k k k k k k k k k 5 6 element Węzeł () Macierz topologii Węzeł () Węzeł () 5 6 k k 0 k 0 0 k k k 0 0 k

18 Macierz topologii K = k k k k k k k k k element Węzeł () Węzeł () Węzeł () k +k k k k +k 0 0 k k k 0 k k 0 0 k +k 0 k k +k

19 Macierz topologii K = k k k k k k k k k 6 5 element Węzeł () Węzeł () Węzeł () k +k k k k +k 0 0 k k k 0 k k 0 0 k +k 0 k k +k +k k k k k k k k k

20 Macierz topologii K = k k k k k k k k k 6 element Węzeł () Węzeł () Węzeł () k +k k k k +k 0 0 k k k 0 k +k k +k 0 k k +k 0 k +k k +k +k +k k k +k k k k k k +k k k + k

21 Agregacja wektora 5 Macierz topologii 6 element Węzeł () Węzeł () 6 5 Węzeł () 6 F F = F F F F 0 F

22 Agregacja wektora 5 Macierz topologii 6 element Węzeł () Węzeł () 6 5 Węzeł () 6 F +F F = F F F F F F +F

23 Agregacja wektora 5 Macierz topologii 6 element Węzeł () Węzeł () 6 5 Węzeł () 6 F +F F = F F F 6 5 F F F +F +F 5 F 6 F

24 Agregacja wektora 5 Macierz topologii 6 element Węzeł () Węzeł () 6 5 Węzeł () 6 F +F F = F F F 6 F F +F F +F +F +F 5 F 6 F +F

25 Globalny układ równań MES k +k k k k +k 0 0 k k k 0 k +k k +k 0 k k +k 0 k +k k +k +k +k k k +k k k k 0 0 k k +k k k + k T T T * = T T 5 T 6 F +F F F +F F +F +F +F F F +F

26 Uwzględnienie warunków brzegowych 5 6 Na tym brzegu dana jest wartość przepływu ciepła q n. A więc dla węzłów należących do brzegu wyznaczane są równoważniki z: Uwaga: całkujemy po brzegu!!! Sprawa jest nieco łatwiejsza jeśli brzeg elementu jest linią równoległą do którejś z osi współrzędnych. P b = P P 6 P b = P 5 P P 0 6

27 Uwzględnienie warunków brzegowych 5 6 Dla węzłów brzegowych i wartości wektora P b nie są znane i będą podlegać wyznaczeniu. Uwaga: w tym przykładzie nie ma węzłów wewnątrz obszaru. Dla takich węzłów składowe wektora P b byłyby równe zero. Po agregacji otrzymujemy wektor globalny ze znanymi wartościami P, P, P 5, P 6 i z P nieznanymi P i P. P P b P = P P 5 P 6

28 Uwzględnienie warunków brzegowych 5 6 W przypadku brzegu na którym zadana jest wartość temperatury wektor będzie zawierał dwie znane wartości T i T i cztery nieznane T, T, T 5 i T 6. T = T T T T T 5 T 6

29 Globalny układ równań MES po uwzględnienie warunków brzegowych k k k k k 0 k 0 k k 0 k k 6 k k 0 k 6 k k 5 k 6 k 5 k 55 k 56 k 6 k 65 k 66 T T T T T 5 T 6 = f f f f f 5 f 6 + P P P P P 5 P 6 Niewiadome pierwotne Niewiadome wtórne

30 Powrót do elementu skończonego y p 5 6 Jaka jest wartość temperatury w wybranym punkcie o współrzędnych (x p,y p ). Punkt należy do elementu. Rozwiązaniem są wartości temperatury w węzłach siatki skończenie elementowej T T T T = T T 5 T 6 x p

31 Powrót do elementu skończonego Macierz topologii 5 element Węzeł () Węzeł () Węzeł () y p Z macierzy topologii odczytujemy, które wartości z wektora temperatury należą do elementu x p T = T T T

32 Powrót do elementu skończonego 5 y p 6 Wartość temperatury w punkcie obliczamy z użytej aproksymacji podstawiając za x=x p i y=y p oraz funkcje kształtu obliczone dla elementu T e (x, y) = N e (x, y)t e T (x, y) = N (x, y) N (x, y) N (x, y) T T T x p

33 Powrót do elementu skończonego 5 y p 6 Tak samo możemy znaleźć wektor strumienia przepływu ciepła podstawiając za x=x p i y=y p oraz pochodne funkcji kształtu obliczone dla elementu q x, y = kb T T T x p

34 Zadanie obliczeniowe

35 Dyskretyzacja Węzeł x y

36 Obliczenia

37 Obliczenia

38 Rozwiązanie

39 Rozwiązanie

40 Rozwiązanie ABAQUS

41 Rozwiązanie ABAQUS q x (x,y) T(x,y) q y (x,y)

METODY KOMPUTEROWE W MECHANICE

METODY KOMPUTEROWE W MECHANICE METODY KOMPUTEROWE W MECHANICE wykład dr inż. Paweł Stąpór laboratorium 15 g, projekt 15 g. dr inż. Paweł Stąpór dr inż. Sławomir Koczubiej Politechnika Świętokrzyska Wydział Zarządzania i Modelowania

Bardziej szczegółowo

Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład

Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład Inżynierskie metody numeryczne II Konsultacje: wtorek 8-9:30 Wykład Metody numeryczne dla równań hiperbolicznych Równanie przewodnictwa cieplnego. Prawo Fouriera i Newtona. Rozwiązania problemów 1D metodą

Bardziej szczegółowo

Przykład przedstawia rozwiązanie problemu brzegowego 7u +3xu=9x 2 +4 u ( 1)=3 u(2)= 2

Przykład przedstawia rozwiązanie problemu brzegowego 7u +3xu=9x 2 +4 u ( 1)=3 u(2)= 2 Przykład przedstawia rozwiązanie problemu brzegowego 7u +3xu=9x 2 +4 u ()=3 u(2)= 2 (1) metodami residuów ważonych i MES. Metoda residuów ważonych Zanim zaczniemy obliczenia metodami wariacyjnymi zamienimy

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności:

7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności: 7. ELEMENTY PŁYTOWE 1 7. 7. ELEMENTY PŁYTOWE Rys. 7.1. Element płytowy Aby rozwiązać zadanie płytowe należy: zdefiniować geometrię płyty, dokonać podziału płyty na elementy, zdefiniować węzły, wprowadzić

Bardziej szczegółowo

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia) PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie

Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie Wprowadzenie Metoda Elementów Skończonych (MES) należy do numerycznych metod otrzymywania przybliżonych rozwiązań

Bardziej szczegółowo

Łagodne wprowadzenie do Metody Elementów Skończonych

Łagodne wprowadzenie do Metody Elementów Skończonych Łagodne wprowadzenie do Metody Elementów Skończonych dr inż. Grzegorz DZIERŻANOWSKI dr hab. inż. Wojciech GILEWSKI Katedra Mechaniki Budowli i Zastosowań Informatyki 10 XII 2009 - część I 17 XII 2009 -

Bardziej szczegółowo

1 Symulacja procesów cieplnych 1. 2 Algorytm MES 2. 3 Implementacja rozwiązania 2. 4 Całkowanie numeryczne w MES 3. k z (t) t ) k y (t) t )

1 Symulacja procesów cieplnych 1. 2 Algorytm MES 2. 3 Implementacja rozwiązania 2. 4 Całkowanie numeryczne w MES 3. k z (t) t ) k y (t) t ) pis treści ymulacja procesów cieplnych Algorytm ME 3 Implementacja rozwiązania 4 Całkowanie numeryczne w ME 3 ymulacja procesów cieplnych Procesy cieplne opisuje równanie różniczkowe w postaci: ( k x (t)

Bardziej szczegółowo

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY ALGORYTM STATYCZNEJ ANALIZY MES DLA RATOWNICY Piotr Pluciński e-mail: p.plucinski@l5.pk.edu.pl Jerzy Pamin e-mail: jpamin@l5.pk.edu.pl Instytut Technologii Informatycznych w Inżynierii Lądowej Wydział

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści

Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.

Bardziej szczegółowo

Wzornictwo Przemysłowe I stopień (I stopień / II stopień) akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Wzornictwo Przemysłowe I stopień (I stopień / II stopień) akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2014/2015

Bardziej szczegółowo

ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP

ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP. Podstawowe związki (równania równowagi, liniowe i nieliniowe związki geometrczne, związki fizczne, warunki brzegowe) w zapisie wskaźnikowm

Bardziej szczegółowo

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody

Bardziej szczegółowo

Γ D Γ Ν. Metoda elementów skończonych, problemy dwuwymiarowe. problem modelowy: w Ω. warunki brzegowe: Dirichleta. na Γ D. na Γ N.

Γ D Γ Ν. Metoda elementów skończonych, problemy dwuwymiarowe. problem modelowy: w Ω. warunki brzegowe: Dirichleta. na Γ D. na Γ N. Metoda elementów skończonych, problemy dwuwymiarowe Ω Γ D v problem modelowy: Γ Ν warunki brzegowe: na Γ D w Ω Dirichleta na Γ N Neumanna problem ma jednoznaczne rozwiązanie, jeśli brzeg Γ D nie ma zerowej

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Elementy Projektowania Inżynierskiego CALFEM Wybrane funkcje.

Elementy Projektowania Inżynierskiego CALFEM Wybrane funkcje. Elementy Projektowania Inżynierskiego CALFEM Wybrane funkcje. A B C E F P S assem() beam2d() beam2e() beam2s() coordxtr() eigen() eldia2() eldisp2() eldraw2() elflux2() eliso2() extract() flw2qe() flw2qs()

Bardziej szczegółowo

Karta (sylabus) przedmiotu

Karta (sylabus) przedmiotu Karta (sylabus) przedmiotu [Budownictwo] Studia I stopnia Przedmiot: Metody obliczeniowe Rok: III Semestr: VI Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 15 16 Ćwiczenia

Bardziej szczegółowo

1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH

1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH 1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH Ośrodki materialne charakteryzują dwa rodzaje różniących się zasadniczo od siebie wielkości fizycznych: globalne (ekstensywne) przypisane obszarowi przestrzeni fizycznej,

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia Metody obliczeniowe Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych,

Bardziej szczegółowo

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie

Bardziej szczegółowo

Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop

Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop. 2015 Spis treści Przedmowa do wydania pierwszego 7 Przedmowa do wydania drugiego 9

Bardziej szczegółowo

Metody rozwiązania równania Schrödingera

Metody rozwiązania równania Schrödingera Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania

Bardziej szczegółowo

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy Wstęp Numeryczne Modeowanie Układów Ciągłych Podstawy Metody Eementów Skończonych Metoda Eementów Skończonych służy do rozwiązywania probemów początkowo-brzegowych, opisywanych równaniami różniczkowymi

Bardziej szczegółowo

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ.

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Jolanta Zimmerman 1. Wprowadzenie do metody elementów skończonych Działanie rzeczywistych

Bardziej szczegółowo

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

Interpolacja funkcji

Interpolacja funkcji Interpolacja funkcji Interpolacja funkcji Interpolacja funkcji Wielomianowa Splajny Lagrange a Trygonometryczna Interpolacja Newtona (wzór I ) Czebyszewa Newtona (wzór II ) ( Wielomiany Czebyszewa ) Załóżmy,

Bardziej szczegółowo

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa

Bardziej szczegółowo

Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron)

Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Jerzy Wyrwał Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Uwaga. Załączone materiały są pomyślane jako pomoc do zrozumienia informacji podawanych na wykładzie. Zatem ich

Bardziej szczegółowo

Ćwiczenia nr 7. TEMATYKA: Krzywe Bézier a

Ćwiczenia nr 7. TEMATYKA: Krzywe Bézier a TEMATYKA: Krzywe Bézier a Ćwiczenia nr 7 DEFINICJE: Interpolacja: przybliżanie funkcji za pomocą innej funkcji, zwykle wielomianu, tak aby były sobie równe w zadanych punktach. Poniżej przykład interpolacji

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 8 Interpolacja Interpolacja polega na budowaniu tzw. funkcji interpolujących ϕ(x) na podstawie zadanych

Bardziej szczegółowo

składa się z m + 1 uporządkowanych niemalejąco liczb nieujemnych. Pomiędzy p, n i m zachodzi następująca zależność:

składa się z m + 1 uporządkowanych niemalejąco liczb nieujemnych. Pomiędzy p, n i m zachodzi następująca zależność: TEMATYKA: Krzywe typu Splajn (Krzywe B sklejane) Ćwiczenia nr 8 Krzywe Bezier a mają istotne ograniczenie. Aby uzyskać kształt zawierający wiele punktów przegięcia niezbędna jest krzywa wysokiego stopnia.

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PODSTAWY MODELOWANIA PROCESÓW WYTWARZANIA Fundamentals of manufacturing processes modeling Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj

Bardziej szczegółowo

INTERPOLACJA I APROKSYMACJA FUNKCJI

INTERPOLACJA I APROKSYMACJA FUNKCJI Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega

Bardziej szczegółowo

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Ćwiczenie audytoryjne pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Autor: dr inż. Radosław Łyszkowski Warszawa, 2013r. Metoda elementów skończonych MES FEM - Finite Element Method przybliżona

Bardziej szczegółowo

Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach. Krzysztof Żurek Gdańsk,

Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach. Krzysztof Żurek Gdańsk, Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach Krzysztof Żurek Gdańsk, 2015-06-10 Plan Prezentacji 1. Manipulatory. 2. Wprowadzenie do Metody Elementów Skończonych (MES).

Bardziej szczegółowo

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia MES skończony Najprostszy element Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F+R, u A R f f F

Bardziej szczegółowo

Metoda elementów brzegowych

Metoda elementów brzegowych Metoda elementów brzegowych Tomasz Chwiej, Alina Mreńca-Kolasińska 9 listopada 8 Wstęp Rysunek : a) Geometria układu z zaznaczonymi: elementami brzegu (czerwony), węzłami (niebieski). b) Numeracja: elementów

Bardziej szczegółowo

F + R = 0, u A = 0. u A = 0. f 0 f 1 f 2. Relację pomiędzy siłami zewnętrznymi i wewnętrznymi

F + R = 0, u A = 0. u A = 0. f 0 f 1 f 2. Relację pomiędzy siłami zewnętrznymi i wewnętrznymi MES Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F + R, u A R f f F R + f, f + f, f + F, u A Równania

Bardziej szczegółowo

Metody numeryczne. Sformułowanie zagadnienia interpolacji

Metody numeryczne. Sformułowanie zagadnienia interpolacji Ćwiczenia nr 4. Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n i wartości y 0,..., y n, takie że i=0,...,n y i = f (x i )). Szukamy funkcji F (funkcji interpolującej), takiej

Bardziej szczegółowo

Wprowadzenie do MES. Krzysztof Banaś. 24 października 2012

Wprowadzenie do MES. Krzysztof Banaś. 24 października 2012 Wprowadzenie do MES Krzysztof Banaś 24 października 202 MES (Metoda Elementów Skończonych 2 ) jest jednym z podstawowych narzędzi komputerowego wspomagania badań naukowych i analiz inżynierskich, o bardzo

Bardziej szczegółowo

PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA

PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA Dla zadanego układu należy 1) Dowolną metodą znaleźć rozkład sił normalnych

Bardziej szczegółowo

- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.

- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd. 4. Równania dyfuzji 4.1. Prawo zachowania masy cd. Równanie dyfuzji jest prostą konsekwencją prawa zachowania masy, a właściwie to jest to prawo zachowania masy zapisane dla procesu dyfuzji i uwzględniające

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a11x1 a12x2... a1nxn b1 a21x1 a22x2... a2nxn b2... an 1x1 an2x2...

Bardziej szczegółowo

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia

Bardziej szczegółowo

TENSOMETRIA ZARYS TEORETYCZNY

TENSOMETRIA ZARYS TEORETYCZNY TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba

Bardziej szczegółowo

x y

x y Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Lokalna odwracalność odwzorowań, odwzorowania uwikłane

Lokalna odwracalność odwzorowań, odwzorowania uwikłane Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie

Bardziej szczegółowo

Metoda elementów brzegowych

Metoda elementów brzegowych Metoda elementów brzegowych Lu=f plus warunki brzegowe możliwe podejścia: 1) Metoda różnic skończonych 2) Metoda elementów skończonych silna postać równania + ilorazy różnicowe obszar podzielony na elementy,

Bardziej szczegółowo

Elementy równań różniczkowych cząstkowych

Elementy równań różniczkowych cząstkowych Elementy równań różniczkowych cząstkowych Magdalena Jakubek kwiecień 2016 1 Równania różniczkowe cząstkowe Problem brzegowy i problem początkowy Klasyfikacja równań Rodzaje warunków brzegowych Najważniejsze

Bardziej szczegółowo

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej

Bardziej szczegółowo

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: 1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]

Bardziej szczegółowo

Rozwiązanie stateczności ramy MES

Rozwiązanie stateczności ramy MES Rozwiązanie stateczności ramy MES Rozwiążemy stateczność ramy pokazanej na Rys.. λkn EA24.5 kn EI4kNm 2 d 5,r 5 d 6,r 6 2 d 4,r 4 4.m e e2 d 3,r 3 d,r X d 9,r 9 3 d 7,r 7 3.m d 2,r 2 d 8,r 8 Y Rysunek

Bardziej szczegółowo

Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki

Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki dr inż. Marek Wojtyra Instytut Techniki Lotniczej

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI BUDOWLANYCH

DYNAMIKA KONSTRUKCJI BUDOWLANYCH DYNAMIKA KONSTRUKCJI BUDOWLANYCH Roman Lewandowski Wydawnictwo Politechniki Poznańskiej, Poznań 2006 Książka jest przeznaczona dla studentów wydziałów budownictwa oraz inżynierów budowlanych zainteresowanych

Bardziej szczegółowo

Elementy projektowania inżynierskiego

Elementy projektowania inżynierskiego Elementy projektowania inżynierskiego dr inż. Sławomir Koczubiej Politechnika Świętokrzyska Wydział Zarządzania i Modelowania Komputerowego Katedra Informatyki i Matematyki Stosowanej (7 listopada 017)

Bardziej szczegółowo

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne

UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a + a +... + ann b a + a +... + ann b... an + an+... + annn bn który

Bardziej szczegółowo

1. Silos Strona:1 Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu ...

1. Silos Strona:1 Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu ... 1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu... Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] Strona:1 2. Ustalenie stopnia

Bardziej szczegółowo

Stateczność ramy. Wersja komputerowa

Stateczność ramy. Wersja komputerowa Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 2 Stateczność ramy. Wersja komputerowa Daniel Sworek gr. KB2 Rok akademicki 1/11 Semestr 2, II Grupa: KB2 Daniel

Bardziej szczegółowo

Kubatury Gaussa (całka podwójna po trójkącie)

Kubatury Gaussa (całka podwójna po trójkącie) Kubatury Gaussa (całka podwójna po trójkącie) Całka podwójna po trójkącie Dana jest funkcja dwóch zmiennych f (x, y) ciągła i ograniczona w obszarze trójkątnym D. Wierzchołki trójkąta wyznaczają punkty

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

Przedmowa Przewodność cieplna Pole temperaturowe Gradient temperatury Prawo Fourier a...15

Przedmowa Przewodność cieplna Pole temperaturowe Gradient temperatury Prawo Fourier a...15 Spis treści 3 Przedmowa. 9 1. Przewodność cieplna 13 1.1. Pole temperaturowe.... 13 1.2. Gradient temperatury..14 1.3. Prawo Fourier a...15 1.4. Ustalone przewodzenie ciepła przez jednowarstwową ścianę

Bardziej szczegółowo

PRZYKŁADY ROZWIĄZAŃ MES. Piotr Nikiel

PRZYKŁADY ROZWIĄZAŃ MES. Piotr Nikiel PRZYKŁADY ROZWIĄZAŃ MES Piotr Nikiel Metoda elementów skooczonych Metoda elementów skooczonych jest metodą rozwiązywania zadao brzegowych. MES jest wykorzystywana obecnie praktycznie we wszystkich dziedzinach

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

Interpolacja. Interpolacja wykorzystująca wielomian Newtona

Interpolacja. Interpolacja wykorzystująca wielomian Newtona Interpolacja Funkcja y = f(x) jest dana w postaci dyskretnej: (1) y 1 = f(x 1 ), y 2 = f(x 2 ), y 3 = f(x 3 ), y n = f(x n ), y n +1 = f(x n +1 ), to znaczy, że w pewny przedziale x 1 ; x 2 Ú ziennej niezależnej

Bardziej szczegółowo

DYNAMIKA RAM WERSJA KOMPUTEROWA

DYNAMIKA RAM WERSJA KOMPUTEROWA DYNAMIKA RAM WERSJA KOMPTEROWA Parametry przekrojów belek: E=205MPa=205 10 6 kn m 2 =205109 N m 2 1 - IPE 220 Pręty: 1, 3, 4: I y =2770cm 4 =0,00002770 m 4 EI =5678500 Nm 2 A=33,4 cm 4 =0,00334 m 2 EA=684700000

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (II)

Równanie przewodnictwa cieplnego (II) Wykład 5 Równanie przewodnictwa cieplnego (II) 5.1 Metoda Fouriera dla pręta ograniczonego 5.1.1 Pierwsze zagadnienie brzegowe dla pręta ograniczonego Poszukujemy rozwiązania równania przewodnictwa spełniającego

Bardziej szczegółowo

y i b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta

y i b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta przedział (a,b) dzielimy na siatkę, powiedzmy o stałym kroku: punkty siatki: u A y i w metodzie strzałów używamy

Bardziej szczegółowo

Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor.

Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor. Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor. Dany jest stan naprężenia w układzie x 1,x 2,x 3 T 11 12 13 [ ] 21 23 31 32 33 Znaleźć wektor naprężenia w płaszczyźnie o normalnej

Bardziej szczegółowo

Wprowadzenie do Metody Elementu Skończonego

Wprowadzenie do Metody Elementu Skończonego Wprowadzenie do Metody Elementu Skończonego Krzysztof Balonek, Sławomir Gozdur Wydział Fizyki i Informatyki Stosowanej, AGH, Kraków, Poland email: kbalonek@g10.pl, slagozd@gmail.com Praca dostępna w internecie:

Bardziej szczegółowo

Podstawy mechaniki komputerowej

Podstawy mechaniki komputerowej Podstawy mechaniki komputerowej dr inż. Sławomir Koczubiej Politechnika Świętokrzyska Wydział Zarządzania i Modelowania Komputerowego Katedra Informatyki i Matematyki Stosowanej (8 maja 6) Koczubiej Podstawy

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą

Bardziej szczegółowo

Metody numeryczne rozwiązywania równań różniczkowych

Metody numeryczne rozwiązywania równań różniczkowych Metody numeryczne rozwiązywania równań różniczkowych Marcin Orchel Spis treści Wstęp. Metody przybliżone dla równań pierwszego rzędu................ Metoda kolejnych przybliżeń Picarda...................2

Bardziej szczegółowo

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku Egzamin pisemny zestaw. ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x n, to funkcja x0 x gx ( ) + [ gx (

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA

POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA Wykorzystanie pakietu MARC/MENTAT do modelowania naprężeń cieplnych Spis treści Pole temperatury Przykład

Bardziej szczegółowo

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26 Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Kinematyka płynów - zadania

Kinematyka płynów - zadania Zadanie 1 Zadane jest prawo ruchu w zmiennych Lagrange a x = Xe y = Ye t 0 gdzie, X, Y oznaczają współrzędne materialne dla t = 0. Wyznaczyć opis ruchu w zmiennych Eulera. Znaleźć linię prądu. Pokazać,

Bardziej szczegółowo

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe)

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) METODA ELEMENTÓW W SKOŃCZONYCH 1 Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) stałych własnościach

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

22. CAŁKA KRZYWOLINIOWA SKIEROWANA CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

Metoda Różnic Skończonych (MRS)

Metoda Różnic Skończonych (MRS) Metoda Różnic Skończonych (MRS) METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek () Równania różniczkowe zwyczajne

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

Rozdział XV CAŁKI KRZYWOLINIOWE. CAŁKA STIELTJESA

Rozdział XV CAŁKI KRZYWOLINIOWE. CAŁKA STIELTJESA Księgarnia PWN: Grigorij M. Fichtenholz Rachunek różniczkowy i całkowy. T. 3 Rozdział XV CAŁKI KRZYWOLINIOWE. CAŁKA STIELTJESA 1. Całki krzywoliniowe pierwszego rodzaju 543. Definicja całki krzywoliniowej

Bardziej szczegółowo

ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI

ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Łukasz Faściszewski, gr. KBI2, sem. 2, Nr albumu: 75 201; rok akademicki 2010/11. ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Stateczność ram wersja komputerowa 1. Schemat statyczny ramy i dane materiałowe

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele

Bardziej szczegółowo

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku Egzamin pisemny zestaw czerwca 0 roku Imię i nazwisko:.... ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

gruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił

gruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił 1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] 2. Ustalenie stopnia statycznej

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

Równania różniczkowe cząstkowe drugiego rzędu

Równania różniczkowe cząstkowe drugiego rzędu Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia

MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia Przedmiot: Drgania Mechaniczne Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MBM 1 S 0 5 61-1_0 Rok: III Semestr: 5 Forma studiów: Studia stacjonarne

Bardziej szczegółowo