ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY
|
|
- Oskar Szczepaniak
- 7 lat temu
- Przeglądów:
Transkrypt
1 ALGORYTM STATYCZNEJ ANALIZY MES DLA RATOWNICY Piotr Pluciński Jerzy Pamin Instytut Technologii Informatycznych w Inżynierii Lądowej Wydział Inżynierii Lądowej Politechniki rakowskiej Strona domowa: Metody obliczeniowe, 7 Model obliczeniowy i dyskretyzacja Wymagania wobec modelu W modelu obliczeniowym MES musimy zagwarantować: ciągłość przemieszczeń (w węzłach, gdzie łączą się elementy) spełnienie kinematycznych więzów podporowych spełnienie warunków równowagi dla całego układu i dowolnego podukładu (np. węzła lub elementu) Metody obliczeniowe, 7
2 Model obliczeniowy i dyskretyzacja Proces dyskretyzacji - generacja siatki onstrukcję kratową zamieniamy na układ dyskretny, składający się ze zbioru węzłów i zbioru elementów Proces dyskretyzacji zawiera następujące operacje: numeracja węzłów numeracja elementów zapisanie relacji przylegania między prętami i węzłami (topologia układu) e i j Metody obliczeniowe, 7 Opis elementu skończonego kratowego (D) Definicje wielkości mechanicznych Definicje przemieszczenia, odkształcenia i siły przekrojowej w pręcie rozciąganym (ściskanym) u(x) {u(x)}, e(x) {ε (x)}, s(x) {N(x)} Równania kinematyczne i fizyczne dla punktu P (x, y, z) P (x,, ) P (x) na osi pręta ε du dx e Lu, L d dx N EA ε s De, D EA Metody obliczeniowe, 7
3 Opis elementu skończonego kratowego (D) Aproksymacja pola przemieszczenia w lokalnym układzie współrzędnych elementu x e Liczba lokalnych stopni swobody węzła lss w and element lss e. d e u e e l e x e, u ξ xe l e d e u e d w {u w } d e { d e, d e } {u e, u e } u(ξ) {u(ξ)} N(ξ) de ( ξ) ξ de d e gdzie ξ xe bezwymiarowa współrzędna le Metody obliczeniowe, 7 Opis elementu skończonego kratowego (D) Aproksymacja pola odkształcenia i siły podłużnej w ES w lokalnym układzie współrzędnych x e e(ξ) {ε (ξ)} LN e (ξ) d e B(ξ) de de l e l e d e s(ξ) {N(ξ)} D B(ξ) de EAe de l e l e d e Macierz sztywności elementu w lokalnym układzie współrzędnych e le ( ) e EA B T DBdx L Metody obliczeniowe, 7
4 Opis elementu skończonego kratowego (D) Opis elementu kratowego w globalnym układzie xy y Liczba globalnych stopni swobody węzła LSS w, a elementu LSS e (c cos α e, s sin α e ) d e d e d e d e d e α e x d e e d d e c s d c s d e TeT de e d d d d w {u w, v w } d e {d, d, d, } e {u, v, u, v } T e de Metody obliczeniowe, 7 Opis elementu skończonego kratowego (D) Transformacja macierzy sztywności elementu y d e d e d e d e α e d e d e x Macierz sztywności elementu w układzie globalnym: ( ) cc cs cc cs e EA e (TT T) e cs ss cs ss L cc cs cc cs cs ss cs ss c cos α e, s sin α e e Metody obliczeniowe, 7
5 Schemat blokowy algorytmu rozwiązania zagadnienia statyki MES Dyskretyzacja Obliczenie macierzy sztywności i wektorów obciążeń dla elementów Agregacja Uwzględnienie warunków brzegowych Obliczenie wektora przemieszczeń węzłowych i wektora reakcji Powrót do elementu: obliczenie sił przywęzłowych w elementach Metody obliczeniowe, 7 Przykładowe obliczenia kratownicy D Zdefiniowanie zadania i dyskretyzacja d 5 d d d Metody obliczeniowe, 7
6 Przykładowe obliczenia kratownicy D Dane wejściowe Macierz sztywności e EA e (EA, l e ) l e EA l e EA EA l e l e Macierz topologii TOP Sztywność przekrojowa EA Macierz transformacji T e T e (cos α, sin α) cos α sin α cos α sin α Metody obliczeniowe, 7 Przykładowe obliczenia kratownicy D Obliczenie macierzy transformacji oraz macierzy sztywności w lokalnym i globalnym układzie współrzędnych dla elementu e (EA, l () ) T T T x (), y (), l () cos α x() l, sin () α y() l () T T e (cos α, sin α ) T x () + y () Metody obliczeniowe, 7
7 Przykładowe obliczenia kratownicy D Obliczenie macierzy transformacji oraz macierzy sztywności w lokalnym i globalnym układzie współrzędnych dla elementu e (EA, l () ) T T T x (), y (), l () cos α x() l, sin () α y() l () T T e (cos α, sin α ) T x () + y () Metody obliczeniowe, 7 Przykładowe obliczenia kratownicy D Obliczenie macierzy transformacji oraz macierzy sztywności w lokalnym i globalnym układzie współrzędnych dla elementu x (), y (), l () x () + y () cos α x() l, sin () α y() l () T T e (cos α, sin α ) T e (EA, l () ) T T T Metody obliczeniowe, 7
8 Przykładowe obliczenia kratownicy D Agregacja macierzy sztywności elementu do globalnej macierzy sztywności układu.... Metody obliczeniowe, 7 Przykładowe obliczenia kratownicy D Agregacja macierzy sztywności elementu do globalnej macierzy sztywności układu Metody obliczeniowe, 7
9 Przykładowe obliczenia kratownicy D Agregacja macierzy sztywności elementu do globalnej macierzy sztywności układu Metody obliczeniowe, 7 Przykładowe obliczenia kratownicy D Wektor obciążenia od siły skupionej i wektor zastępczych sił wywołanych przez narzucone przemieszczenie kn w d5 d dbc. m. f w d bc Metody obliczeniowe, 7
10 Przykładowe obliczenia kratownicy D Uwzględnienie warunków brzegowych ˆ, f ˆf d d + R R R R 5 d d d ˆ, ˆf f f Metody obliczeniowe, 7 Przykładowe obliczenia kratownicy D Wyznaczenie przemieszczeń węzłowych d ˆ ˆf + dwb. d.5. d 5 Metody obliczeniowe, 7
11 Przykładowe obliczenia kratownicy D Wyznaczenie reakcji podporowych r d w r 5.7 r r.7 r r. Metody obliczeniowe, 7 Przykładowe obliczenia kratownicy D Powrót do elementu - siły przywęzłowe - wykres sił podłużnych Element d d d d, r T ( d ).7 r.7 Element d d d 5, r T ( d ) r Element d d d d 5, r T ( d ) r Metody obliczeniowe, 7
12 ratownica płaska - drugi przykład Definicja problemu i dyskretyzacja 5kN y d5 5kN/m x x α α x d T e d d x. d 8 d 7 Sztywność EA kn Elem.: l, c, s Elem.: l 5, c., s.8 Elem.: l, c, s Macierz topologii e EA L e TOP cos α e sin α e cos α e sin α e cc cs cc cs cs ss cs ss cc cs cc cs cs ss cs ss Metody obliczeniowe, 7 ratownica płaska - drugi przykład Macierze sztywności elementów w globalnych współrzędnych i agregacja Metody obliczeniowe, 7
13 ratownica płaska - drugi przykład Zastępcze siły węzłowe dla obciążonych elementów i agregacja z z z 5 z e z l e N T p x (x)dx, N x x dx xe l e, xe l e z (T ) T z 5 y y z z z 5 x z z 5 z 8 z7 75 z 75 z x z, z z e z e Metody obliczeniowe, 7 ratownica płaska - drugi przykład Układ równań, warunki brzegowe, rozwiązanie y 5kN/m 5kN d5 x d 8 d 7 w T {,,,, 5,,, } r T {R, R, R, R,,, R 7, R 8 } Warunki brzegowe: d d d d 7 d 8,. x α α x d d d x. d z + w + r Wykreślamy wiersze i kolumny dla których d i, otrzymujemy układ ˆˆd ẑ + ŵ + ˆr Metody obliczeniowe, 7
14 ratownica płaska - drugi przykład Rozwiązanie, przemieszczenia węzłów d 5. d 5 75 R R d 5.8,. d..8. Metody obliczeniowe, 7 ratownica płaska - drugi przykład Rozwiązanie, reakcje podpór r d z w r Sprawdzenie równowagi układu: X Y M Metody obliczeniowe, 7
15 ratownica płaska - drugi przykład Powrót do elementu celem obliczenia sił przywęzłowych Element d d d d 5 Element d d d 5 Element d d5 d 7 d 8,,, f T ( d z ) 88. f. f T ( d ) 9. f 9. f T ( d z ) 59. f Wykres sił normalnych N kn Sprawdź równowagę węzła Metody obliczeniowe, 7
Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE
METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody
PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA Dla zadanego układu należy 1) Dowolną metodą znaleźć rozkład sił normalnych
Zagadnienie statyki kratownicy płaskiej
Zagadnini statyki kratownicy płaskij METODY OBLICZENIOWE Budownictwo, studia I stopnia, smstr 6 Instytut L-5, Wydział Inżynirii Lądowj, Politchnika Krakowska Ewa Pabisk () Równania MES dla ustrojów prętowych
PRZYKŁADOWE ZADANIA. ZADANIE 1 (ocena dostateczna)
PRZYKŁADOWE ZADANIA ZADANIE (ocena dostateczna) Obliczyć reakcje, siły wewnętrzne oraz przemieszczenia dla kratownicy korzystając z Metody Elementów Skończonych. Zweryfikować poprawność obliczeń w mathcadzie
DYNAMIKA RAM WERSJA KOMPUTEROWA
DYNAMIKA RAM WERSJA KOMPTEROWA Parametry przekrojów belek: E=205MPa=205 10 6 kn m 2 =205109 N m 2 1 - IPE 220 Pręty: 1, 3, 4: I y =2770cm 4 =0,00002770 m 4 EI =5678500 Nm 2 A=33,4 cm 4 =0,00334 m 2 EA=684700000
Stateczność ramy. Wersja komputerowa
Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 2 Stateczność ramy. Wersja komputerowa Daniel Sworek gr. KB2 Rok akademicki 1/11 Semestr 2, II Grupa: KB2 Daniel
Stateczność ramy - wersja komputerowa
Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych
Rozwiązanie stateczności ramy MES
Rozwiązanie stateczności ramy MES Rozwiążemy stateczność ramy pokazanej na Rys.. λkn EA24.5 kn EI4kNm 2 d 5,r 5 d 6,r 6 2 d 4,r 4 4.m e e2 d 3,r 3 d,r X d 9,r 9 3 d 7,r 7 3.m d 2,r 2 d 8,r 8 Y Rysunek
gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:
1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]
[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)
PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]
OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA
POLECHNA POZNAŃSA WYDZAŁ BUDOWNCWA NŻYNER ŚRODOWSA NSYU ONSRUCJ BUDOWLANYCH ZAŁAD ECHAN BUDOWL OBLCZANE RA EODĄ PRZEESZCZEŃ WERSJA OPUEROWA Ćwiczenie projektowe nr z echani budowli Wykonał: aciej BYCZYŃS
ROZWIĄZANIE PROBLEMU NIELINIOWEGO
Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Jerzy Pamin Tematyka zajęć 1 Dyskretyzacja
ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI
Łukasz Faściszewski, gr. KBI2, sem. 2, Nr albumu: 75 201; rok akademicki 2010/11. ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Stateczność ram wersja komputerowa 1. Schemat statyczny ramy i dane materiałowe
1. METODA PRZEMIESZCZEŃ
.. METODA PRZEMIESZCZEŃ.. Obliczanie sił wewnętrznych od obciążenia zewnętrznego q = kn/m P= kn Rys... Schemat konstrukcji φ φ u Rys... Układ podstawowy metody przemieszczeń Do wyliczenia mamy niewiadome:
METODY KOMPUTEROWE W MECHANICE
METODY KOMPUTEROWE W MECHANICE wykład dr inż. Paweł Stąpór laboratorium 15 g, projekt 15 g. dr inż. Paweł Stąpór dr inż. Sławomir Koczubiej Politechnika Świętokrzyska Wydział Zarządzania i Modelowania
MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych
MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki
gruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił
1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] 2. Ustalenie stopnia statycznej
PROJEKT NR 1 METODA PRZEMIESZCZEŃ
POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
Modelowanie układów prętowych
Modelowanie kładów prętowych Elementy prętowe -definicja Elementami prętowymi można modelować - elementy konstrkcji o stosnk wymiarów poprzecznych do podłżnego poniżej 0.1, - elementy, które są wąskie
Metoda elementów skończonych
Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną
1. Silos Strona:1 Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu ...
1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu... Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] Strona:1 2. Ustalenie stopnia
METODA SIŁ KRATOWNICA
Część. METDA SIŁ - RATWNICA.. METDA SIŁ RATWNICA Sposób rozwiązywania kratownic statycznie niewyznaczalnych metodą sił omówimy rozwiązują przykład liczbowy. Zadanie Dla kratownicy przedstawionej na rys..
Zad.1 Zad. Wyznaczyć rozkład sił wewnętrznych N, T, M, korzystając z komputerowej wersji metody przemieszczeń. schemat konstrukcji:
Zad. Wznaczć rozkład sił wewnętrznch N, T, M, korzstając z komputerowej wersji metod przemieszczeń. schemat konstrukcji: ϕ 4, kn 4, 4, macierz transformacji (pręt nr): α = - ϕ = -, () 5 () () E=5GPa; I
Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D
Równanie konstytutywne opisujące sposób w jaki ciepło przepływa w materiale o danych właściwościach, prawo Fouriera Macierz konstytutywna (właściwości) materiału Wektor gradientu temperatury Wektor strumienia
MES dla ustrojów prętowych (statyka)
MES dla ustrojów prętowych (statyka) Jrzy Pamin -mail: jpamin@l5.pk.du.pl Piotr Pluciński -mail: pplucin@l5.pk.du.pl Instytut Tchnologii Informatycznych w Inżynirii Lądowj Wydział Inżynirii Lądowj Politchniki
2kN/m Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeń dobieram wstępne przekroje prętów.
2kN/m -20 C D 5kN 0,006m A B 0,004m +0 +20 0,005rad E 4 2 4 [m] Układ prętów ma dwie tarcze i osiem reakcji w podporach. Stopień statycznej niewyznaczalności SSN= 2, ponieważ, przy dwóch tarczach powinno
7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności:
7. ELEMENTY PŁYTOWE 1 7. 7. ELEMENTY PŁYTOWE Rys. 7.1. Element płytowy Aby rozwiązać zadanie płytowe należy: zdefiniować geometrię płyty, dokonać podziału płyty na elementy, zdefiniować węzły, wprowadzić
ORIGIN 1. E 10GPa - moduł Younga drewna. 700 kg m 3. g - ciężar właściwy drewna g m s 2. 6cm b2 6cm b3 5cm 12cm h2 10cm h3 8cm. b1 h1.
Statyka kratownicy drewnianej o różnych przekrojach prętów, obciążonej siłai, wilgocią i ciężare własny ORIGIN - ustawienie sposobu nueracji wierszy i kolun acierzy E GPa - oduł Younga drewna αw. ρ - współczynnik
WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH
Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1 1.. 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1.1. Wstęp echanika budowli stanowi dział mechaniki technicznej zajmującej się statyką, dynamiką,
Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17
Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1 MECHANIKA OGÓLNA - lista zadań 2016/17 Część 1 analiza kinematyczna układów płaskich Przeprowadzić analizę kinematyczną układu. Odpowiednią
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY
Część 2. METODA PRZEMIESZCZEŃ PRZYKŁAD LICZBOWY.. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY.. Działanie sił zewnętrznych Znaleźć wykresy rzeczywistych sił wewnętrznych w ramie o schemacie i obciążeniu podanym
Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów
1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu rysunek jest w skali True 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek
Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia
MES skończony Najprostszy element Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F+R, u A R f f F
ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE. A) o trzech reakcjach podporowych N=3
ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE A) o trzech reakcjach podporowych N=3 B) o liczbie większej niż 3 - reakcjach podporowych N>3 A) wyznaczanie reakcji z równań
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI
Katedra Mechaniki Konstrukcji Wydział Budownictwa i Inżynierii Środowiska Politechniki Białostockiej... (imię i nazwisko)... (grupa, semestr, rok akademicki) ĆWICZENIE PROJEKTOWE NR Z MECHANIKI BUDOWLI
Elementy Projektowania Inżynierskiego CALFEM Wybrane funkcje.
Elementy Projektowania Inżynierskiego CALFEM Wybrane funkcje. A B C E F P S assem() beam2d() beam2e() beam2s() coordxtr() eigen() eldia2() eldisp2() eldraw2() elflux2() eliso2() extract() flw2qe() flw2qs()
1. Obciążenie statyczne
. Obciążenie statyczne.. Obliczenie stopnia kinematycznej niewyznaczalności n = Σ ϕ + Σ = + = p ( ) Σ = w p + d u = 5 + 5 + 0 0 =. Schemat podstawowy metody przemieszczeń . Schemat odkształceń łańcucha
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 1 LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH Prowadzący: mgr inż. A. Kaczor STUDIUM ZAOCZNE, II
F + R = 0, u A = 0. u A = 0. f 0 f 1 f 2. Relację pomiędzy siłami zewnętrznymi i wewnętrznymi
MES Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F + R, u A R f f F R + f, f + f, f + F, u A Równania
Analiza płyt i powłok MES
Analiza płyt i powłok MES Jerzy Pamin e-mails: JPamin@L5.pk.edu.pl Podziękowania: M. Radwańska, A. Wosatko ANSYS, Inc. http://www.ansys.com Tematyka zajęć Klasyfikacja modeli i elementów skończonych Elementy
Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy
Wstęp Numeryczne Modeowanie Układów Ciągłych Podstawy Metody Eementów Skończonych Metoda Eementów Skończonych służy do rozwiązywania probemów początkowo-brzegowych, opisywanych równaniami różniczkowymi
ĆWICZENIE 6 Kratownice
ĆWICZENIE 6 Kratownice definicja konstrukcja składająca się z prętów prostych połączonych przegubowo w węzłach, dla której jedynymi obciążeniami są siły skupione przyłożone w węzłach. Umowa: jeśli konstrukcja
6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH
Część 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6. 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6.. Wyznaczanie przemieszczeń z zastosowaniem równań pracy wirtualnej w układach prętowych W metodzie pracy
Obliczanie układów statycznie niewyznaczalnych metodą sił.
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt wykonał: Krzysztof Wójtowicz Konsultacje: dr inż. Przemysław Litewka Obliczanie układów statycznie niewyznaczalnych
Część ZADANIA - POWTÓRKA ZADANIA - POWTÓRKA. Zadanie 1
Część 6. ZADANIA - POWTÓRKA 6. 6. ZADANIA - POWTÓRKA Zadanie Wykorzystując metodę przemieszczeń znaleźć wykres momentów zginających dla ramy z rys. 6.. q = const. P [m] Rys. 6.. Rama statycznie niewyznaczalna
Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron)
Jerzy Wyrwał Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Uwaga. Załączone materiały są pomyślane jako pomoc do zrozumienia informacji podawanych na wykładzie. Zatem ich
TENSOMETRIA ZARYS TEORETYCZNY
TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba
4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ
4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów
Defi f nicja n aprę r żeń
Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania
TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika
PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A
PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej
MECHANIKA BUDOWLI I. Prowadzący : dr inż. Hanna Weber pok. 225, email: weber@zut.edu.pl strona: www.weber.zut.edu.pl
MECHANIKA BUDOWLI I Prowadzący : pok. 5, email: weber@zut.edu.pl strona: www.weber.zut.edu.pl Literatura: Dyląg Z., Mechanika Budowli, PWN, Warszawa, 989 Paluch M., Mechanika Budowli: teoria i przykłady,
3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA
3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie
Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z
Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z wykorzystaniem Metody Sił Temat zadania rozwiązanie
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MACHANIKI BUDOWLI
POLIECHNIKA POZNAŃSKA INSYU KONSRUKCJI BUDOWLANYCH ZAKŁAD MACHANIKI BUDOWLI ĆWICZENIE PROJEKOWE NR 2 DYNAMIKA RAM WERSJA KOMPUEROWA Z PRZEDMIOU MECHANIKA KONSRUKCJI Wykonał: Kamil Sobczyński WBiIŚ; SUM;
Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z
Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z wykorzystaniem Metody Sił Temat zadania rozwiązanie
Obliczanie układów statycznie niewyznaczalnych. metodą sił
Politechnika Poznańska Instytut Konstrukcji Budowlanych Zakład echaniki Budowli Obliczanie układów statycznie niewyznaczalnych metodą sił. Rama Dla układu pokazanego poniŝej naleŝy: - Oblicz i wykonać
Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III
KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli
Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeo dobieram wstępne przekroje prętów.
2kN/m -20 C D 5kN 0,006m A B 0,004m +0 +20 3 0,005rad E 4 2 4 [m] Układ prętów ma dwie tarcze i osiem reakcji w podporach. Stopieo statycznej niewyznaczalności SSN= 2, ponieważ, przy dwóch tarczach powinno
Łagodne wprowadzenie do Metody Elementów Skończonych
Łagodne wprowadzenie do Metody Elementów Skończonych dr inż. Grzegorz DZIERŻANOWSKI dr hab. inż. Wojciech GILEWSKI Katedra Mechaniki Budowli i Zastosowań Informatyki 10 XII 2009 - część I 17 XII 2009 -
STATECZNOŚĆ RAM WERSJA KOMPUTEROWA
Politechnika Poznańska Wydział Budownictwa i Inżynierii Środowiska Instytut Konstrukcji Budowlanych Zakład Mechaniki Budowli Studia Stacjonarne II Stopnia I rok Semestr II 21/211 STATECZNOŚĆ RAM WERSJA
Wytrzymałość Materiałów
Wytrzymałość Materiałów Zginanie Wyznaczanie sił wewnętrznych w belkach i ramach, analiza stanu naprężeń i odkształceń, warunek bezpieczeństwa Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości,
ANALIZA STATYCZNA MES DLA USTROJÓW POWIERZNIOWYCH
ANALIZA STATYCZNA MES DLA USTROJÓW POWIERZNIOWYCH Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska
5.1. Kratownice płaskie
.. Kratownice płaskie... Definicja kratownicy płaskiej Kratownica płaska jest to układ prętowy złożony z prętów prostych, które są połączone między sobą za pomocą przegubów, Nazywamy je węzłami kratownicy.
Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach. Krzysztof Żurek Gdańsk,
Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach Krzysztof Żurek Gdańsk, 2015-06-10 Plan Prezentacji 1. Manipulatory. 2. Wprowadzenie do Metody Elementów Skończonych (MES).
UTRATA STATECZNOŚCI. O charakterze układu decyduje wielkośćobciążenia. powrót do pierwotnego położenia. stabilnego do stanu niestabilnego.
Metody obiczeniowe w biomechanice UTRATA STATECZNOŚCI STATECZNOŚĆ odpornośćna małe zaburzenia. Układ stabiny po małym odchyeniu od stanu równowagi powrót do pierwotnego położenia. Układ niestabiny po małym
Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są
PODPORY SPRĘŻYSTE Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są wprost proporcjonalne do reakcji w nich
3. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE
Część. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE.. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE Istotę metody przemieszczeń, najwygodniej jest przedstawić przez porównanie jej do metody sił, którą wcześniej już poznaliśmy
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki
Uwaga: Linie wpływu w trzech prętach.
Zestaw nr 1 Imię i nazwisko zadanie 1 2 3 4 5 6 7 Razem punkty Zad.1 (5p.). Narysować wykresy linii wpływu sił wewnętrznych w przekrojach K i L oraz reakcji w podporze R. Zad.2 (5p.). Narysować i napisać
Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA
POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA Obliczenia kratownicy płaskiej Wykonał: dr
TARCZOWE I PŁYTOWE ELEMENTY SKOŃCZONE
PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika
Metody komputerowe i obliczeniowe Metoda Elementów Skończonych. Element dwuwymiarowy liniowy : rama 2D
Metody komputerowe i obliczeniowe Metoda Elementów Skończonych Element dwuwymiarowy liniowy : rama D Jest to element dwuwymiarowy o róŝnych współrzędnych lokalnych i globalnych węzłów niezbędne są transformacje
WPROWADZENIE DO PROGRAMU FEAS - KAM Wersja r.
Mechanika Budowli I FINITE ELEMENT ANALYSIS SYSTEM WPROWADZENIE DO PROGRAMU FEAS - KAM Wersja - 04.11.2006 r. Opracował: mgr inż. Piotr Bilko Katedra Geotechniki i Mechaniki Budowli Informacje ogólne Program
Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop
Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop. 2015 Spis treści Przedmowa do wydania pierwszego 7 Przedmowa do wydania drugiego 9
Z1/1. ANALIZA BELEK ZADANIE 1
05/06 Z1/1. NLIZ LK ZNI 1 1 Z1/1. NLIZ LK ZNI 1 Z1/1.1 Zadanie 1 Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/1.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej
PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE
PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE Podstawy statyki budowli: Pojęcia podstawowe Model matematyczny, w odniesieniu do konstrukcji budowlanej, opisuje ją za pomocą zmiennych. Wartości zmiennych
Mechanika teoretyczna
Inne rodzaje obciążeń Mechanika teoretyczna Obciążenie osiowe rozłożone wzdłuż pręta. Obciążenie pionowe na pręcie ukośnym: intensywność na jednostkę rzutu; intensywność na jednostkę długości pręta. Wykład
ROZDZIAŁ II. STATYKA PŁASKICH KONSTRUKCJI KRATOWYCH
ROZDZIAŁ II. STATYKA PŁASKICH KONSTRUKCJI KRATOWYCH Kratownice płaskie są jednym z najczęściej stosowanych typów konstrukcji. Budowa kratownicy sprawia, że jest to układ ekonomiczny pod względem ciężaru,
Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej
POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 1 Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej
ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP
ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP. Podstawowe związki (równania równowagi, liniowe i nieliniowe związki geometrczne, związki fizczne, warunki brzegowe) w zapisie wskaźnikowm
Rama statycznie wyznaczalna
Rama statycznie wyznaczalna m 5kN/m 1m 2m 3m Rama statycznie wyznaczalna 3m Obciążenie ramy statycznie wyznaczalnej: siła skupioną P =, momentem skupionym M = 10 knm, obciążeniem ciągłym równomiernie rozłożonym
Analiza statyczna MES dla dźwigarów powierzchniowych
Adam Wosatko PODZIĘKOWANIA DLA: Marii Radwańskiej, Anny Stankiewicz, Sławomira Milewskiego, Jerzego Pamina, Piotra Plucińskiego Tematyka zajęć 1 Analiza statyczna MES algorytm, porównanie z MRS 2 ES tarczowe
Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych. Pręty obciążone osiowo Kratownice
Tematyka wykładu 2 Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych ręty obciążone osiowo Kratownice Mechanika budowli - kratownice Kratownicą lub układem kratowym nazywamy układ prostoliniowych
Podstawy mechaniki komputerowej
Podstawy mechaniki komputerowej dr inż. Sławomir Koczubiej Politechnika Świętokrzyska Wydział Zarządzania i Modelowania Komputerowego Katedra Informatyki i Matematyki Stosowanej (8 maja 6) Koczubiej Podstawy
Elementy projektowania inżynierskiego
Elementy projektowania inżynierskiego dr inż. Sławomir Koczubiej Politechnika Świętokrzyska Wydział Zarządzania i Modelowania Komputerowego Katedra Informatyki i Matematyki Stosowanej (7 listopada 017)
Twierdzenia o wzajemności
Twierdzenia o wzajemności Praca - definicja Praca iloczyn skalarny wektora siły i wektora drogi jaką pokonuje punkt materialny pod wpływem działania tej siły. L S r r F( s) o ds r F( s) cos ( α ) ds F
MES w zagadnieniach nieliniowych
MES w zagadnieniach nieliniowych Jerzy Pamin e-mail: JPamin@L5.pk.edu.pl Podziękowania: A. Wosatko, A. Winnicki ADINA R&D, Inc.http://www.adina.com ANSYS, Inc. http://www.ansys.com TNO DIANA http://www.tnodiana.com
STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH
Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH.. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Rozwiązując układy niewyznaczalne dowolnie obciążone, bardzo często pomijaliśmy wpływ sił normalnych i
ĆWICZENIE 1. (8.10) Rozciąganie statycznie wyznaczalne, pręty o skokowo zmiennym przekroju, kratownice, Obciążenia termiczne.
ĆWICZENIE 1 (8.10) Rozciąganie statycznie wyznaczalne, pręty o skokowo zienny przekroj, kratownice, Obciążenia tericzne. Rozciąganie - przykłady statycznie wyznaczalne Zadanie Zadanie jest zaprojektowanie
{H B= 6 kn. Przykład 1. Dana jest belka: Podać wykresy NTM.
Przykład 1. Dana jest belka: Podać wykresy NTM. Niezależnie od sposobu rozwiązywania zadania, zacząć należy od zastąpienia podpór reakcjami. Na czas obliczania reakcji można zastąpić obciążenie ciągłe
Metody energetyczne. Metoda Maxwella Mohra Układy statycznie niewyznaczalne Metoda sił Zasada minimum energii
Metody energetyczne Metoda Maxwella Mohra Układy statycznie niewyznaczalne Metoda sił Zasada minimum energii dv 1 N dx Ndu EA dv dv S 1 M dx M sdϕ GI 1 M gdx M gdϑ EI S Energia sprężysta układu prętowego
Rys. 32. Widok perspektywiczny budynku z pokazaniem rozmieszczenia kratownic
ROZDZIAŁ VII KRATOW ICE STROPOWE VII.. Analiza obciążeń kratownic stropowych Rys. 32. Widok perspektywiczny budynku z pokazaniem rozmieszczenia kratownic Bezpośrednie obciążenie kratownic K5, K6, K7 stanowi
Zadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć:
adanie 3. elki statycznie wyznaczalne. 15K la belek statycznie wyznaczalnych przedstawionych na rysunkach rys., rys., wyznaczyć: 18K 0.5m 1.5m 1. składowe reakcji podpór, 2. zapisać funkcje sił przekrojowych,
Analiza wrażliwości tarczy z wykorzystaniem metody elementów skończonych
Analiza wrażliwości tarczy z wykorzystaniem metody elementów skończonych Mgr inż. Tomasz Ferenc Politechnika Gdańska, Wydział Inżynierii Lądowej i Środowiska Projektowanie wszelkiego rodzaju konstrukcji
DYNAMIKA KONSTRUKCJI BUDOWLANYCH
DYNAMIKA KONSTRUKCJI BUDOWLANYCH Roman Lewandowski Wydawnictwo Politechniki Poznańskiej, Poznań 2006 Książka jest przeznaczona dla studentów wydziałów budownictwa oraz inżynierów budowlanych zainteresowanych