Elementy Projektowania Inżynierskiego CALFEM Wybrane funkcje.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Elementy Projektowania Inżynierskiego CALFEM Wybrane funkcje."

Transkrypt

1 Elementy Projektowania Inżynierskiego CALFEM Wybrane funkcje. A B C E F P S assem() beam2d() beam2e() beam2s() coordxtr() eigen() eldia2() eldisp2() eldraw2() elflux2() eliso2() extract() flw2qe() flw2qs() pltscalb2() scalfact2() solveq() Strona 1/18

2 assem() Agreguje lokalne macierze sztywności i lokalne wektory obciążenia do macierzy globalnych. >> K = assem(edof, K, Ke) >> [K f] = assem(edof, K, Ke, f, fe) edof K Ke f fe K f macierz topologii elementu; globalna macierz sztywności; macierz sztywności elementu; globalny wektor obciążenia; wektor obciążenia elementu; nowa globalna macierz sztywności; nowy globalny wektor obciążenia; Strona 2/18

3 beam2d() Oblicza macierz sztywności, macierz mas i macierz tłumienia dla płaskiego, dwuwęzłowego, belkowego elementu skończonego o trzech stopniach swobody w węźle; >> [Ke Me] = beam2d(ex, ey, ep) >> [Ke Me Ce] = beam2d(ex, ey, ep) ex = [x1 x2] ey = [y1 y2] ep = [E A I m a b] macierz współrzędnych węzłów (oś x); macierz współrzędnych węzłów (oś y); parametry elementu: E - moduł Younga, A - pole powierzchni przekroju poprzecznego, I - moment bezwładności; m - masa odniesiona do długości elementu; a, b - współczynniki tłumienia (Ce = ame + bke)); Ke Me Ce macierz sztywności elementu (6x6); macierz mas (6x6); macierz tłumienia (6x6) Strona 3/18

4 beam2e() Oblicza macierz sztywności i wektor obciążenia dla płaskiego, dwuwęzłowego, belkowego elementu skończonego o trzech stopniach swobody w węźle. >> Ke = beam2e(ex, ey, ep) >> [Ke fe] = beam2e(ex, ey, ep, eq) ex = [x1 x2] ey = [y1 y2] ep = [E A I] eq = [qx qy] Ke Fe macierz współrzędnych węzłów (oś x); macierz współrzędnych węzłów (oś y); parametry elementu: E - moduł Younga, A - pole powierzchni przekroju poprzecznego, I - moment bezwładności; wartość obciążenia ciągłego w lokalnym układzie współrzędnych elementu; macierz sztywności elementu (6x6); wektor równoważników obciążenia ciągłego (6x1); Strona 4/18

5 beam2s() Oblicza uogólnione siły przekrojowe w płaskim elemencie belkowym. >> es = beam2s(ex, ey, ep, ed) >> es = beam2s(ex, ey, ep, ed, eq) >> [es edi eci] = beam2s(ex, ey, ep, ed, eq, n) ex = [x1 x2] ey = [y1 y2] ep = [E A I] ed = [u1... u6] eq = [qx qy] n macierz współrzędnych węzłów (oś x); macierz współrzędnych węzłów (oś y); parametry elementu: E - moduł Younga, A - pole powierzchni przekroju poprzecznego, I - moment bezwładności; przemieszczenia uogólnione elementu; wartość obciążenia ciągłego w lokalnym układzie współrzędnych elementu; liczba punktów w których obliczane są wartości sił przekrojowych, (domyślnie 2, na początku i końcu elementu); es = [N1 V1 M1 N2 V2 M2...] n sił przekrojowych (wzdłuż elementu skończonego) w lokalnym układzie współrzędnych elementu; edi = [u1 v1 u2 v2...] n wartości przemieszczeń (wzdłuż elementu skończonego) w lokalnym wkładzie współrzędnych elementu; eci = [x1 x2...] n wartości współrzędnej x punktów (wzdłuż elementu skończonego) w których obliczane są wartości sił przekrojowych; Strona 5/18

6 coordxtr() Tworzy macierz współrzędnych węzłów elementów z globalnej macierzy współrzędnych węzłów. >> [Ex Ey Ez] = coordxtr(edof, Coord, Dof, nen) Edof Coord Dof nen Ex, Ey, Ez macierz topologii; globalna macierz współrzędnych węzłów; globalna macierz stopni swobody; liczba stopni swobody w węźle elementu; macierze współrzędnych węzłów elementów, pojedynczy wiersz macierzy zawiera współrzędne jednego elementu; Strona 6/18

7 eigen() Rozwiązuje niestandardowy algebraiczny problem własny. >> L = eigen(k, M) >> L = eigen(k, M, b) >> [L X] = eigen(k, M) >> [L X] = eigen(k, M, b) K M b L X globalna macierz sztywności; globalna macierz mas; globalna macierz tłumienia; wektor wartości własnych; wektory własne; Strona 7/18

8 eldia2() Rysuje wykresy sił przekrojowych płaskiego elementu belkowego. >> eldia2(ex, ey, es, plotpar, sfac) >> eldia2(ex, ey, es, plotpar, sfac, eci) >> sfac = eldia2(ex, ey, es) >> sfac = eldia2(ex, ey, es, plotpar) ex = [x1 x2] ey = [y1 y2] macierz współrzędnych węzłów (oś x); macierz współrzędnych węzłów (oś y); es = [X1 X2...] n wartości siły przekrojowej (wzdłuż elementu skończonego); plotpar = [linecolor elementcolor] - parametry wykresu: linecolor = 1 - kolor czarny; 2 - kolor niebieski; 3 - kolor purpurowy; 4 - kolor czerwony; elementcolor = 1 - kolor czarny; 2 - kolor niebieski; 3 - kolor purpurowy; 4 - kolor czerwony; sfac współczynnik skali; eci = [X1 X2...] n wartości współrzędnej x punktów w których obliczone są wartości siły przekrojowe (wzdłuż elementu skończonego) j; sfac współczynnik skali; Strona 8/18

9 eldisp2() Rysuje zdeformowaną siatkę pojedynczego elementu skończonego lub grupy elementów skończonych. Obsługiwane elementy: prętowy (2 węzły); belkowy (2 węzły); płaski trójkątny (3 węzły); płaski czworokątny (4 węzły); płaski 8-węzłowy, izoparametryczny; >> eldisp2(ex, ey, ed, plotpar, sfac) >> sfac = eldisp2(ex, ey, ed, plotpar) >> sfac = eldisp2(ex, ey, ed) ex, ey ed współrzędne elementu (elementów); przemieszczenia, siły przekrojowe, etc; plotpar = [linetype linecolor nodemark] - parametry wykresu: linetype = 1 - linia ciągła; 2 - linia przerywana; 3 - linia punktowa; linecolor = 1 - kolor czarny; 2 - kolor niebieski; 3 - kolor purpurowy; 4 - kolor czerwony; nodemark = 0 - znacznik okrągły; 1 - znacznik gwiazdka; 2 - bez znacznika; sfac sfac współczynnik skali rysunku; współczynnik skali rysunku; Strona 9/18

10 eldraw2() Rysuje niezdeformowaną siatkę pojedynczego elementu skończonego lub grupy elementów skończonych. Obsługiwane elementy: prętowy (2 węzły); belkowy (2 węzły); płaski trójkątny (3 węzły); płaski czworokątny (4 węzły); płaski 8-węzłowy, izoparametryczny; >> eldraw2(ex, ey, plotpar, elnum) >> eldraw2(ex, ey, plotpar) >> eldraw2(ex, ey) ex, ey współrzędne elementu (elementów); plotpar = [linetype linecolor nodemark] parametry wykresu: linetype = 1 - linia ciągła; 2 - linia przerywana; 3 - linia punktowa; linecolor = 1 - kolor czarny; 2 - kolor niebieski; 3 - kolor purpurowy; 4 - kolor czerwony; nodemark = 0 - znacznik okrągły; 1 - znacznik gwiazdka; 2 - bez znacznika; elnum numery elementów; Strona 10/18

11 elflux2() Rysuje wektor intensywności strumienia przepływu ciepła w pojedynczym elemencie lub grupie elementów. Obsługiwane elementy: płaski trójkątny (3 węzły); płaski czworokątny (4 węzły); >> elflux2(ex, ey, es, plotpar, sfac) >> sfac = elflux2(ex, ey, es, plotpar) >> sfac = elflux2(ex, ey, es) ex, ey es=[qx qy] współrzędne elementu (elementów); wektor intensywności strumienia przepływu ciepła; plotpar = [arrowtype arrowcolor] - parametry wykresu: arrowtype = 1 - linia ciągła; = 2 - linia przerywana; = 3 - linia punktowa; arrowcolor = 1 kolor czarny; 2 - kolor niebieski; 3 - kolor purpurowy; 4 - kolor czerwony; sfac sfac współczynnik skali rysunku; współczynnik skali rysunku; Strona 11/18

12 eliso2() Rysuje wykres warstwicowy w pojedynczym elemencie lub grupie elementów. Obsługiwane elementy: płaski trójkątny (3 węzły); płaski czworokątny (4 węzły); >> eliso2(ex, ey, ed, isov) >> eliso2(ex, ey, ed, isov, plotpar) ex, ey ed isov współrzędne elementu (elementów); wartości węzłowe; wektor wartości warstwic, jeśli poda się tylko jedną wartość będzie ona traktowana jak liczba warstwic w elemencie; plotpar = [linetype linecolor textfcn] - parametry wykresu: linetype = 1 - linia ciągła; 2 - linia przerywana; 3 - linia punktowa; linecolor = 1 - kolor czarny; 2 - kolor niebieski; 3 - kolor purpurowy; 4 - kolor czerwony; textfcn = 0 - nie wyświetla wartości warstwicy; 1 - wyświetla wartość warstwicy; 2 - wyświetla wartość warstwicy po wskazaniu i kliknięciu myszką; Strona 12/18

13 extract() Tworzy macierz przemieszczeń uogólnionych dla elementu z globalnej macierzy przemieszczeń uogólnionych. ed = extract(edof, a) a edof ed globalny wektor przemieszczeń uogólnionych; macierz topologii; wektor przemieszczeń uogólnionych elementu; Strona 13/18

14 flw2qe() Oblicza macierz sztywności (przewodnictwa) i wektor obciążenia dla płaskiego czterowęzłowego elementu skończonego o jednym stopniu swobody w węźle. Ke = flw2qe(ex, ey, ep, D) [Ke fe] = flw2qe(ex, ey, ep, D, eq) ex = [x1 x2 x3 x4] ey = [y1 y2 y3 y4] ep = [t] D = [kxx kxy kyx kyy] eq = [Q] Ke Fe macierz współrzędnych węzłów (oś x); macierz współrzędnych węzłów (oś y); parametry elementu: t - grubość elementu; macierz konstytutywna (współczynników przewodnictwa cieplnego); funkcja skalarna zdefiniowana przez intensywność generacji ciepła; macierz sztywności elementu (4x4); wektor obciążenia (4x1) Strona 14/18

15 flw2qs() Oblicza wektor intensywności strumienia przepływu ciepła i wektor gradientów temperatury w płaskim czterowęzłowym elemencie skończonym o jednym stopniu swobody w węźle. >> [es et] = flw2qs(ex, ey, ep, D, ed, eq) ex = [x1 x2 x3 x4] ey = [y1 y2 y3 y4] ep = [t] D = [kxx kxy kyx kyy] ed = [u1 u2 u3 u4] eq = [Q] es=[qx qy] et=[qx qy] macierz współrzędnych węzłów (oś x); macierz współrzędnych węzłów (oś y); parametry elementu: t - grubość elementu; macierz konstytutywna (współczynników przewodnictwa cieplnego); temperatura w węzłach; intensywność generacji ciepła; wektor intensywności strumienia przepływu ciepła; wektor gradientów temperatury; Strona 15/18

16 pltscalb2() Rysuje słupek skali. >> pltscalb2(sfac, magnitude) >> pltscalb2(sfac, magnitude, plotpar) sfac magnitude = [ref x y] plotpar = [linecolor] współczynnik skali rysunku; parametry: Ref - całkowita długość słupka; x, y - współrzędne początku słupka; parametry wykresu: linecolor = 1 - kolor czarny; 2 - kolor niebieski; 3 - kolor purpurowy; 4 - kolor czerwony; Strona 16/18

17 scalfact2() Szacuje wartość współczynnika skali do rysowania wykresów wyników obliczeń (przemieszczenia, siły przekrojowe, etc); >> sfac = scalfact2(ex, ey, ed, rat) >> sfac = scalfact2(ex, ey, ed) ex, ey ed rat współrzędne elementu (elementów); przemieszczenia, siły przekrojowe, etc; stosunek wielkości elementu do rysowanych wyników, domyślnie równy 0,2; sfact współczynnik skali; Strona 17/18

18 solveq() Rozwiązuje układ równań algebraicznych MES. >> a = solveq(k, f) >> [a Q] = solveq(k, f, bc) K f bc a Q globalna macierz sztywności; globalny wektor obciążenia; wektor warunków brzegowych; rozwiązanie układu równań MES; wektor reakcji; Strona 18/18

PRZYKŁADOWE ZADANIA. ZADANIE 1 (ocena dostateczna)

PRZYKŁADOWE ZADANIA. ZADANIE 1 (ocena dostateczna) PRZYKŁADOWE ZADANIA ZADANIE (ocena dostateczna) Obliczyć reakcje, siły wewnętrzne oraz przemieszczenia dla kratownicy korzystając z Metody Elementów Skończonych. Zweryfikować poprawność obliczeń w mathcadzie

Bardziej szczegółowo

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY ALGORYTM STATYCZNEJ ANALIZY MES DLA RATOWNICY Piotr Pluciński e-mail: p.plucinski@l5.pk.edu.pl Jerzy Pamin e-mail: jpamin@l5.pk.edu.pl Instytut Technologii Informatycznych w Inżynierii Lądowej Wydział

Bardziej szczegółowo

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody

Bardziej szczegółowo

Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D

Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D Równanie konstytutywne opisujące sposób w jaki ciepło przepływa w materiale o danych właściwościach, prawo Fouriera Macierz konstytutywna (właściwości) materiału Wektor gradientu temperatury Wektor strumienia

Bardziej szczegółowo

Analiza obciążeń baneru reklamowego za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów)

Analiza obciążeń baneru reklamowego za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów) Politechnika Łódzka Wydział Technologii Materiałowych i Wzornictwa Tekstyliów Katedra Materiałoznawstwa Towaroznawstwa i Metrologii Włókienniczej Analiza obciążeń baneru reklamowego za pomocą oprogramowania

Bardziej szczegółowo

DYNAMIKA RAM WERSJA KOMPUTEROWA

DYNAMIKA RAM WERSJA KOMPUTEROWA DYNAMIKA RAM WERSJA KOMPTEROWA Parametry przekrojów belek: E=205MPa=205 10 6 kn m 2 =205109 N m 2 1 - IPE 220 Pręty: 1, 3, 4: I y =2770cm 4 =0,00002770 m 4 EI =5678500 Nm 2 A=33,4 cm 4 =0,00334 m 2 EA=684700000

Bardziej szczegółowo

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki

Bardziej szczegółowo

Analiza obciążeń baneru reklamowego za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów)

Analiza obciążeń baneru reklamowego za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów) Politechnika Łódzka Wydział Technologii Materiałowych i Wzornictwa Tekstyliów Katedra Materiałoznawstwa Towaroznawstwa i Metrologii Włókienniczej Analiza obciążeń baneru reklamowego za pomocą oprogramowania

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia) PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]

Bardziej szczegółowo

Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop

Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop. 2015 Spis treści Przedmowa do wydania pierwszego 7 Przedmowa do wydania drugiego 9

Bardziej szczegółowo

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: 1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]

Bardziej szczegółowo

ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI

ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Łukasz Faściszewski, gr. KBI2, sem. 2, Nr albumu: 75 201; rok akademicki 2010/11. ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Stateczność ram wersja komputerowa 1. Schemat statyczny ramy i dane materiałowe

Bardziej szczegółowo

gruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił

gruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił 1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] 2. Ustalenie stopnia statycznej

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Wzór Żurawskiego. Belka o przekroju kołowym. Składowe naprężenia stycznego można wyrazić następująco (np. [1,2]): T r 2 y ν ) (1) (2)

Wzór Żurawskiego. Belka o przekroju kołowym. Składowe naprężenia stycznego można wyrazić następująco (np. [1,2]): T r 2 y ν ) (1) (2) Przykłady rozkładu naprężenia stycznego w przekrojach belki zginanej nierównomiernie (materiał uzupełniający do wykładu z wytrzymałości materiałów I, opr. Z. Więckowski, 11.2018) Wzór Żurawskiego τ xy

Bardziej szczegółowo

7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności:

7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności: 7. ELEMENTY PŁYTOWE 1 7. 7. ELEMENTY PŁYTOWE Rys. 7.1. Element płytowy Aby rozwiązać zadanie płytowe należy: zdefiniować geometrię płyty, dokonać podziału płyty na elementy, zdefiniować węzły, wprowadzić

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

Analiza obciążeń belki obustronnie podpartej za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów)

Analiza obciążeń belki obustronnie podpartej za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów) Politechnika Łódzka Wydział Technologii Materiałowych i Wzornictwa Tekstyliów Katedra Materiałoznawstwa Towaroznawstwa i Metrologii Włókienniczej Analiza obciążeń belki obustronnie podpartej za pomocą

Bardziej szczegółowo

Drgania układu o wielu stopniach swobody

Drgania układu o wielu stopniach swobody Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach

Bardziej szczegółowo

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe)

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) METODA ELEMENTÓW W SKOŃCZONYCH 1 Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) stałych własnościach

Bardziej szczegółowo

1. Silos Strona:1 Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu ...

1. Silos Strona:1 Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu ... 1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu... Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] Strona:1 2. Ustalenie stopnia

Bardziej szczegółowo

Modelowanie układów prętowych

Modelowanie układów prętowych Modelowanie kładów prętowych Elementy prętowe -definicja Elementami prętowymi można modelować - elementy konstrkcji o stosnk wymiarów poprzecznych do podłżnego poniżej 0.1, - elementy, które są wąskie

Bardziej szczegółowo

Metody komputerowe i obliczeniowe Metoda Elementów Skończonych. Element dwuwymiarowy liniowy : rama 2D

Metody komputerowe i obliczeniowe Metoda Elementów Skończonych. Element dwuwymiarowy liniowy : rama 2D Metody komputerowe i obliczeniowe Metoda Elementów Skończonych Element dwuwymiarowy liniowy : rama D Jest to element dwuwymiarowy o róŝnych współrzędnych lokalnych i globalnych węzłów niezbędne są transformacje

Bardziej szczegółowo

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17 Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1 MECHANIKA OGÓLNA - lista zadań 2016/17 Część 1 analiza kinematyczna układów płaskich Przeprowadzić analizę kinematyczną układu. Odpowiednią

Bardziej szczegółowo

WPROWADZENIE DO PROGRAMU FEAS - KAM Wersja r.

WPROWADZENIE DO PROGRAMU FEAS - KAM Wersja r. Mechanika Budowli I FINITE ELEMENT ANALYSIS SYSTEM WPROWADZENIE DO PROGRAMU FEAS - KAM Wersja - 04.11.2006 r. Opracował: mgr inż. Piotr Bilko Katedra Geotechniki i Mechaniki Budowli Informacje ogólne Program

Bardziej szczegółowo

Analiza obudowy sztolni

Analiza obudowy sztolni Przewodnik Inżyniera Nr 23 Aktualizacja: 01/2017 Analiza obudowy sztolni Program: MES Plik powiązany: Demo_manual_23.gmk Celem przedmiotowego przewodnika jest przedstawienie analizy sztolni drążonej z

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji

Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Ćwiczenie nr 7 Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji Analiza statyczna obciążonego kątownika

Bardziej szczegółowo

Stateczność ramy - wersja komputerowa

Stateczność ramy - wersja komputerowa Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych

Bardziej szczegółowo

OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA

OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA POLECHNA POZNAŃSA WYDZAŁ BUDOWNCWA NŻYNER ŚRODOWSA NSYU ONSRUCJ BUDOWLANYCH ZAŁAD ECHAN BUDOWL OBLCZANE RA EODĄ PRZEESZCZEŃ WERSJA OPUEROWA Ćwiczenie projektowe nr z echani budowli Wykonał: aciej BYCZYŃS

Bardziej szczegółowo

ROBOT Millennium wersja 20.0 - Podręcznik użytkownika (PRZYKŁADY) strona: 29

ROBOT Millennium wersja 20.0 - Podręcznik użytkownika (PRZYKŁADY) strona: 29 ROBOT Millennium wersja 20.0 - Podręcznik użytkownika (PRZYKŁADY) strona: 29 1.3. Płyta żelbetowa Ten przykład przedstawia definicję i analizę prostej płyty żelbetowej z otworem. Jednostki danych: (m)

Bardziej szczegółowo

Osiadanie kołowego fundamentu zbiornika

Osiadanie kołowego fundamentu zbiornika Przewodnik Inżyniera Nr 22 Aktualizacja: 01/2017 Osiadanie kołowego fundamentu zbiornika Program: MES Plik powiązany: Demo_manual_22.gmk Celem przedmiotowego przewodnika jest przedstawienie analizy osiadania

Bardziej szczegółowo

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia MES skończony Najprostszy element Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F+R, u A R f f F

Bardziej szczegółowo

Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład

Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład Inżynierskie metody numeryczne II Konsultacje: wtorek 8-9:30 Wykład Metody numeryczne dla równań hiperbolicznych Równanie przewodnictwa cieplnego. Prawo Fouriera i Newtona. Rozwiązania problemów 1D metodą

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

F + R = 0, u A = 0. u A = 0. f 0 f 1 f 2. Relację pomiędzy siłami zewnętrznymi i wewnętrznymi

F + R = 0, u A = 0. u A = 0. f 0 f 1 f 2. Relację pomiędzy siłami zewnętrznymi i wewnętrznymi MES Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F + R, u A R f f F R + f, f + f, f + F, u A Równania

Bardziej szczegółowo

Stateczność ramy. Wersja komputerowa

Stateczność ramy. Wersja komputerowa Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 2 Stateczność ramy. Wersja komputerowa Daniel Sworek gr. KB2 Rok akademicki 1/11 Semestr 2, II Grupa: KB2 Daniel

Bardziej szczegółowo

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN ZACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY Instrukcja do ćwiczeń laboratoryjnych z metody

Bardziej szczegółowo

Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach. Krzysztof Żurek Gdańsk,

Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach. Krzysztof Żurek Gdańsk, Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach Krzysztof Żurek Gdańsk, 2015-06-10 Plan Prezentacji 1. Manipulatory. 2. Wprowadzenie do Metody Elementów Skończonych (MES).

Bardziej szczegółowo

Stateczność ramy drewnianej o 2 różnych przekrojach prętów, obciążonej siłą skupioną

Stateczność ramy drewnianej o 2 różnych przekrojach prętów, obciążonej siłą skupioną Stateczność ray drewnianej o różnych przekrojach prętów, obciążonej siłą skupioną ORIGIN - Ustawienie sposobu nueracji wierszy i kolun acierzy E GPa - Moduł Younga drewna Wyiary przekrojów a 7c b 7c a

Bardziej szczegółowo

Kilka spraw praktycz-

Kilka spraw praktycz- Kilka spraw praktycz- MES2 2 nych Część I Uproszczenia, cd. Symetria konstrukcji Zasada nr. Uwzględniamy symetrię rakz -displ. y-displ.=z-displ. z z y y z y rak z-displ. rak z-displ. W tym przypadku wystarczy

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

1. Obciążenie statyczne

1. Obciążenie statyczne . Obciążenie statyczne.. Obliczenie stopnia kinematycznej niewyznaczalności n = Σ ϕ + Σ = + = p ( ) Σ = w p + d u = 5 + 5 + 0 0 =. Schemat podstawowy metody przemieszczeń . Schemat odkształceń łańcucha

Bardziej szczegółowo

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy Wstęp Numeryczne Modeowanie Układów Ciągłych Podstawy Metody Eementów Skończonych Metoda Eementów Skończonych służy do rozwiązywania probemów początkowo-brzegowych, opisywanych równaniami różniczkowymi

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA

Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA Obliczenia statycznie obciążonej belki Szczecin

Bardziej szczegółowo

2kN/m Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeń dobieram wstępne przekroje prętów.

2kN/m Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeń dobieram wstępne przekroje prętów. 2kN/m -20 C D 5kN 0,006m A B 0,004m +0 +20 0,005rad E 4 2 4 [m] Układ prętów ma dwie tarcze i osiem reakcji w podporach. Stopień statycznej niewyznaczalności SSN= 2, ponieważ, przy dwóch tarczach powinno

Bardziej szczegółowo

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia

Bardziej szczegółowo

ADVANCE Design SP1 Co nowego.

ADVANCE Design SP1 Co nowego. ADVANCE Design 2012 SP1 Co nowego www.graitec.com Pierwszy service pack dla ADVANCE Design 2012 zawiera ponad 150 usprawnień i poprawek. Service pack 1 jest przeznaczony dla Advance Design 2012 SP0, który

Bardziej szczegółowo

Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z

Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z wykorzystaniem Metody Sił Temat zadania rozwiązanie

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA

Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA Obliczenia ramy płaskiej obciążonej siłą skupioną

Bardziej szczegółowo

PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA

PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA Dla zadanego układu należy 1) Dowolną metodą znaleźć rozkład sił normalnych

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie

Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie Wprowadzenie Metoda Elementów Skończonych (MES) należy do numerycznych metod otrzymywania przybliżonych rozwiązań

Bardziej szczegółowo

1 Symulacja procesów cieplnych 1. 2 Algorytm MES 2. 3 Implementacja rozwiązania 2. 4 Całkowanie numeryczne w MES 3. k z (t) t ) k y (t) t )

1 Symulacja procesów cieplnych 1. 2 Algorytm MES 2. 3 Implementacja rozwiązania 2. 4 Całkowanie numeryczne w MES 3. k z (t) t ) k y (t) t ) pis treści ymulacja procesów cieplnych Algorytm ME 3 Implementacja rozwiązania 4 Całkowanie numeryczne w ME 3 ymulacja procesów cieplnych Procesy cieplne opisuje równanie różniczkowe w postaci: ( k x (t)

Bardziej szczegółowo

Analiza numeryczna ścianki szczelnej

Analiza numeryczna ścianki szczelnej Przewodnik Inżyniera Nr 24 Aktualizacja: 06/2017 Analiza numeryczna ścianki szczelnej Program: MES Plik powiązany: Demo_manual_24.gmk Celem niniejszego przewodnika jest analiza stanu odkształcenia oraz

Bardziej szczegółowo

Analiza stateczności zbocza

Analiza stateczności zbocza Przewodnik Inżyniera Nr 25 Aktualizacja: 06/2017 Analiza stateczności zbocza Program: MES Plik powiązany: Demo_manual_25.gmk Celem niniejszego przewodnika jest analiza stateczności zbocza (wyznaczenie

Bardziej szczegółowo

Rozwiązanie stateczności ramy MES

Rozwiązanie stateczności ramy MES Rozwiązanie stateczności ramy MES Rozwiążemy stateczność ramy pokazanej na Rys.. λkn EA24.5 kn EI4kNm 2 d 5,r 5 d 6,r 6 2 d 4,r 4 4.m e e2 d 3,r 3 d,r X d 9,r 9 3 d 7,r 7 3.m d 2,r 2 d 8,r 8 Y Rysunek

Bardziej szczegółowo

DWUWYMIAROWE ZADANIE TEORII SPRĘŻYSTOŚCI. BADANIE WSPÓŁCZYNNIKÓW KONCENTRACJI NAPRĘŻEŃ.

DWUWYMIAROWE ZADANIE TEORII SPRĘŻYSTOŚCI. BADANIE WSPÓŁCZYNNIKÓW KONCENTRACJI NAPRĘŻEŃ. Cw1_Tarcza.doc 2015-03-07 1 DWUWYMIAROWE ZADANIE TEORII SPRĘŻYSTOŚCI. BADANIE WSPÓŁCZYNNIKÓW KONCENTRACJI NAPRĘŻEŃ. 1. Wprowadzenie Zadanie dwuwymiarowe teorii sprężystości jest szczególnym przypadkiem

Bardziej szczegółowo

Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie

Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie materiały pomocnicze do zajęć audytoryjnych i projektowych opracowanie: dr inż. Piotr Dębski, dr inż. Dariusz Zaręba

Bardziej szczegółowo

Element cięgnowy. Rysunek: Element LINK1. Jakub J. Słowiński (IMMT PWr) Wykład 4 09 i 16.03.2012 51 / 74

Element cięgnowy. Rysunek: Element LINK1. Jakub J. Słowiński (IMMT PWr) Wykład 4 09 i 16.03.2012 51 / 74 Elementy 1D Element cięgnowy Element LINK1 jest elementem 2D, dwuwęzłowym, posiadającym jedynie dwa stopnie swobody - translację w kierunku x oraz y. Można zadeklarować pole jego przekroju oraz odkształcenie

Bardziej szczegółowo

ROZWIAZANIE PROBLEMU USTALONEGO PRZEPLYWU CIEPLA W SYSTEMIE ADINA 900 Nodes Version 8.2

ROZWIAZANIE PROBLEMU USTALONEGO PRZEPLYWU CIEPLA W SYSTEMIE ADINA 900 Nodes Version 8.2 1 Wstęp ROZWIAZANIE PROBLEMU USTALONEGO PRZEPLYWU CIEPLA W SYSTEMIE ADINA 900 Nodes Version 8.2 Struktura systemu ADINA (Automatic Dynamic Incremental Nonlinear Analysis) jest to system programów opartych

Bardziej szczegółowo

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli

Bardziej szczegółowo

Spis treści. Wstęp Część I STATYKA

Spis treści. Wstęp Część I STATYKA Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.

Bardziej szczegółowo

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość

Bardziej szczegółowo

INSTRUKCJA UŻYTKOWANIA PROGRAMU MEB EDYTOR 1. Dane podstawowe Program MEB edytor oblicza zadania potencjalne Metodą Elementów Brzegowych oraz umożliwia ich pre- i post-processing. Rozwiązywane zadanie

Bardziej szczegółowo

Obsługa programu Soldis

Obsługa programu Soldis Obsługa programu Soldis Uruchomienie programu Po uruchomieniu, program zapyta o licencję. Można wybrać licencję studencką (trzeba założyć konto na serwerach soldisa) lub pracować bez licencji. Pliki utworzone

Bardziej szczegółowo

METODY KOMPUTEROWE W MECHANICE

METODY KOMPUTEROWE W MECHANICE METODY KOMPUTEROWE W MECHANICE wykład dr inż. Paweł Stąpór laboratorium 15 g, projekt 15 g. dr inż. Paweł Stąpór dr inż. Sławomir Koczubiej Politechnika Świętokrzyska Wydział Zarządzania i Modelowania

Bardziej szczegółowo

Wykresy. Lekcja 10. Strona 1 z 11

Wykresy. Lekcja 10. Strona 1 z 11 Lekcja Strona z Wykresy Wykresy tworzymy:. Z menu Insert Graph i następnie wybieramy rodzaj wykresu jaki chcemy utworzyć;. Z menu paska narzędziowego "Graph Toolbar" wybierając przycisk z odpowiednim wykresem;

Bardziej szczegółowo

ORIGIN 1. E 10GPa - moduł Younga drewna. 700 kg m 3. g - ciężar właściwy drewna g m s 2. 6cm b2 6cm b3 5cm 12cm h2 10cm h3 8cm. b1 h1.

ORIGIN 1. E 10GPa - moduł Younga drewna. 700 kg m 3. g - ciężar właściwy drewna g m s 2. 6cm b2 6cm b3 5cm 12cm h2 10cm h3 8cm. b1 h1. Statyka kratownicy drewnianej o różnych przekrojach prętów, obciążonej siłai, wilgocią i ciężare własny ORIGIN - ustawienie sposobu nueracji wierszy i kolun acierzy E GPa - oduł Younga drewna αw. ρ - współczynnik

Bardziej szczegółowo

Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1

Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1 Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 Schemat analizowanej ramy Analizy wpływu imperfekcji globalnych oraz lokalnych, a także efektów drugiego rzędu

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Siła skupiona Mechanika teoretyczna Wykłady nr 5 Obliczanie sił wewnętrznych w belkach przykłady 1 2 Moment skupiony Obciążenie ciągłe równomierne 3 4 Obciążenie ciągłe liniowo zmienne Obciążenie ciągłe

Bardziej szczegółowo

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1 1.. 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1.1. Wstęp echanika budowli stanowi dział mechaniki technicznej zajmującej się statyką, dynamiką,

Bardziej szczegółowo

Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści

Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.

Bardziej szczegółowo

Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów

Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu rysunek jest w skali True 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Mechaniczny obowiązuje studentów rozpoczynających studia w roku akademickim 015/016 Kierunek studiów: Mechanika i Budowa Maszyn Forma

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

Nasyp przyrost osiadania w czasie (konsolidacja)

Nasyp przyrost osiadania w czasie (konsolidacja) Nasyp przyrost osiadania w czasie (konsolidacja) Poradnik Inżyniera Nr 37 Aktualizacja: 10/2017 Program: Plik powiązany: MES Konsolidacja Demo_manual_37.gmk Wprowadzenie Niniejszy przykład ilustruje zastosowanie

Bardziej szczegółowo

Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron)

Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Jerzy Wyrwał Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Uwaga. Załączone materiały są pomyślane jako pomoc do zrozumienia informacji podawanych na wykładzie. Zatem ich

Bardziej szczegółowo

gruparectan.pl 1. Kratownica 2. Szkic projektu 3. Ustalenie warunku statycznej niewyznaczalności układu Strona:1

gruparectan.pl 1. Kratownica 2. Szkic projektu 3. Ustalenie warunku statycznej niewyznaczalności układu Strona:1 1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek konieczny geometrycznej

Bardziej szczegółowo

ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP

ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP. Podstawowe związki (równania równowagi, liniowe i nieliniowe związki geometrczne, związki fizczne, warunki brzegowe) w zapisie wskaźnikowm

Bardziej szczegółowo

Styczeń Luty 2018

Styczeń Luty 2018 Styczeń 2018 149 Jeśli w modelu wprowadzono kilka stref różnie zbrojonych to po wybraniu przycisku Żelbet SGN lub Rysy pokaże się plansza szybkiej zmiany strefy lub pokazania całości - przycisk C. Nie

Bardziej szczegółowo

Analiza wrażliwości tarczy z wykorzystaniem metody elementów skończonych

Analiza wrażliwości tarczy z wykorzystaniem metody elementów skończonych Analiza wrażliwości tarczy z wykorzystaniem metody elementów skończonych Mgr inż. Tomasz Ferenc Politechnika Gdańska, Wydział Inżynierii Lądowej i Środowiska Projektowanie wszelkiego rodzaju konstrukcji

Bardziej szczegółowo

MECHANIKA BUDOWLI LINIE WPŁYWU BELKI CIĄGŁEJ

MECHANIKA BUDOWLI LINIE WPŁYWU BELKI CIĄGŁEJ Zadanie 6 1. Narysować linie wpływu wszystkich reakcji i momentów podporowych oraz momentu i siły tnącej w przekroju - dla belki. 2. Obliczyć rzędne na wszystkich liniach wpływu w czterech punktach: 1)

Bardziej szczegółowo

Z1/7. ANALIZA RAM PŁASKICH ZADANIE 3

Z1/7. ANALIZA RAM PŁASKICH ZADANIE 3 Z1/7. NLIZ RM PŁSKIH ZNI 3 1 Z1/7. NLIZ RM PŁSKIH ZNI 3 Z1/7.1 Zadanie 3 Narysować wykresy sił przekrojowych w ramie wspornikowej przedstawionej na rysunku Z1/7.1. Następnie sprawdzić równowagę sił przekrojowych

Bardziej szczegółowo

Schöck Isokorb typu KF

Schöck Isokorb typu KF Schöck Isokorb typu Schöck Isokorb typu Spis treści Strona Konstrukcja/Właściwości/Wskazówki 54 Zbrojenie na budowie 55 Instrukcja montażu 56-59 Lista kontrolna 60 Klasy odporności ogniowej 20-21 53 Schöck

Bardziej szczegółowo

Ą ć ę ż ż Ż ć ć Ż ć ń ę ę Ż ń ż ęż ę ę Ę ż ż ĘŚ ę Ż Ż Ż Ż Ż Ż Ż Ż ż ż ń ę ęż ęż Ó ęź Ą ń ę Ś Ż ć ę Ą ę ż ę ż ć ę ę Ż ę ż ż ę ń ń ę Ą ż ę Ł Ą ę ż ę Ą ę ę Ę Ą ę ę ęć ż Ę ęż ż ę Ą Ę ę ę Ą ę ę Ą Ą Ż ć ć Ń

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Inne rodzaje obciążeń Mechanika teoretyczna Obciążenie osiowe rozłożone wzdłuż pręta. Obciążenie pionowe na pręcie ukośnym: intensywność na jednostkę rzutu; intensywność na jednostkę długości pręta. Wykład

Bardziej szczegółowo

WYZNACZANIE PRZEMIESZCZEŃ SOLDIS

WYZNACZANIE PRZEMIESZCZEŃ SOLDIS WYZNACZANIE PRZEMIESZCZEŃ SOLDIS W programie SOLDIS-PROJEKTANT przemieszczenia węzła odczytuje się na końcu odpowiednio wybranego pręta. Poniżej zostanie rozwiązane przykładowe zadanie, które również zostało

Bardziej szczegółowo

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady ANALIZA STATYCZNA UP ZA POMOCĄ MES Przykłady PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki 2013/2014 Instytut

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA

Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA Obliczenia kratownicy płaskiej Wykonał: dr

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN

POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Ćwiczenie nr Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji Analiza statyczna obciążonej kratownicy

Bardziej szczegółowo

Zadanie 1 Zadanie 2 tylko Zadanie 3

Zadanie 1 Zadanie 2 tylko Zadanie 3 Zadanie 1 Obliczyć naprężenia oraz przemieszczenie pionowe pręta o polu przekroju A=8 cm 2. Siła działająca na pręt przenosi obciążenia w postaci siły skupionej o wartości P=200 kn. Długość pręta wynosi

Bardziej szczegółowo

Dr inż. Janusz Dębiński

Dr inż. Janusz Dębiński Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.

Bardziej szczegółowo

Katalog wymagań na poszczególne stopnie szkolne klasa 3

Katalog wymagań na poszczególne stopnie szkolne klasa 3 Katalog wymagań na poszczególne stopnie szkolne klasa 3 I. GRANIASTOSŁUPY I OSTROSŁUPY 6 5 4 3 2 Wskazuje wśród wielościanów graniastosłupy proste i pochyłe. Wskazuje na modelu lub rysunku krawędzie, wierzchołki,

Bardziej szczegółowo

8. Metody rozwiązywania układu równań

8. Metody rozwiązywania układu równań 8. Metody rozwiązywania układu równań [K][u e ]=[F e ] Błędy w systemie MES Etapy modelowania metodami komputerowymi UKŁAD RZECZYWISTY MODEL FIZYCZNY MODEL DYSKRETNY Weryfikacja modelu fiz. Weryfikacja

Bardziej szczegółowo

Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z

Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z wykorzystaniem Metody Sił Temat zadania rozwiązanie

Bardziej szczegółowo

Analiza osiadania terenu

Analiza osiadania terenu Przewodnik Inżyniera Nr 21 Aktualizacja: 01/2017 Analiza osiadania terenu Program: Plik powiązany: MES Demo_manual_21.gmk Celem przedmiotowego przewodnika jest przedstawienie analizy osiadania terenu pod

Bardziej szczegółowo

Elementy projektowania inżynierskiego

Elementy projektowania inżynierskiego Elementy projektowania inżynierskiego dr inż. Sławomir Koczubiej Politechnika Świętokrzyska Wydział Zarządzania i Modelowania Komputerowego Katedra Informatyki i Matematyki Stosowanej (7 listopada 017)

Bardziej szczegółowo