Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE

Wielkość: px
Rozpocząć pokaz od strony:

Download "Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE"

Transkrypt

1 METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody przemieszczeń, wyznaczyć siły w prętach oraz naszkicować postać deformacji. Zastosować trzy różne przekroje prętów. IPET 18 RO 51/5 a IPET 14 RO 51/5 IPET 18 RO 51/5 IPET 14 RO 51/5 IPET 14 IPET 14 P1=5 kn P2=2 kn,8,8 P3=3 kn 1,3 1,3 1,3 α = arctg,8 1,3 = 31,675 Opracowanie powinno zawierać: 1. Schematy konstrukcji z numeracją prętów i węzłów, lokalnymi układami współrzędnych, układem globalnym, stopniami swobody konstrukcji oraz zestawienie danych o konstrukcji. 2. Wydruk obliczeń konstrukcji macierzową metodą przemieszczeń. 3. Rezultaty analizy: tabela z wartościami sił i ręcznie przygotowany rysunek zdeformowanej postaci kratownicy. 4. Wydruki z programu Robot (schemat konstrukcji z numeracją węzłów i prętów, tabele: przemieszczenia węzłów i siły wewnętrzne). Uwaga: Na sprawdzenie stanu zaawansowania należy przynieść schemat dyskretnego modelu konstrukcji (rysunek odręczny lub wydruk) i wydruki obliczeń komputerowych. 1 S t r o n a

2 1. DYSKRETNY MODEL KONSTRUKCJI 1.1. Schematy konstrukcji Autor: mgr inż. Robert Cypryjański Y P1=5 kn, P2=2 kn 6 1 4,8 X 1 5 P3=3 kn 1,3 1,3 1,3 Rys. 1. Podział konstrukcji na węzły i pręty, globalny układ współrzędnych. Y 4 3 y1 8 7 x1 2 1 y7 x7 4 x8 y8 8 2 y2 x2 y y6 x y x9 11 x y5 x1 x5 y1 1 y4 x X 1 5 Rys. 2. Lokalne układy współrzędnych prętów, układ stopni swobody konstrukcji. 2 S t r o n a

3 1.2. Zestawienie danych o konstrukcji Tab. 1. Współrzędne węzłów (takie jak w programie ROBOT) Węzeł Współrzędna X [m Współrzędna Y [m 1,, 2, 1,6 3 1,3,8 4 1,3 1,6 5 2,6, 6 2,6,8 7 3,9,8 Tab. 2. Topologia konstrukcji i informacje o prętach (takie jak w programie ROBOT) Pręt Węzeł początkowy Węzeł końcowy Przekrój l i [cm A i [cm IPET , IPET , , IPET , IPET ,6434 8, IPET ,6434 8, IPET ,6434 8, RO 51x5 152,6434 7, RO 51x5 8 7, RO 51x5 13 7, RO 51x5 8 7,23 Moduł Younga dla kształtowników stalowych (taki jak w programie ROBOT): E = 25 Pa 3 S t r o n a

4 2. LOBALNA MACIERZ SZTYWNOŚCI KONSTRUKCJI K K = A T K A A gdzie A macierz alokacji A T transponowana macierz alokacji K A agregowana macierz sztywności konstrukcji 2.1. Macierz alokacji A Macierz alokacji A zawiera informację, któremu stopniowi swobody konstrukcji odpowiada dane, globalne przemieszczenie końca pręta. Przykładowo, w przypadku pręta nr 4 wiemy, że: V 47=14 y4 x4 4 7 U47=13 V 45=1 a U45=9 5 Rys. 3. Zgodność globalnych przemieszczeń końców pręta z przemieszczeniami węzłów na kierunku stopni swobody konstrukcji. Powyższe informacje można też zapisać w formie tablicy (Tab. 3) uzyskując w ten sposób część macierzy alokacji dotyczącą pręta czwartego. Sposób postępowania w przypadku pozostałych prętów jest analogiczny. Tab. 3. Fragment macierzy alokacji dotycząca pręta czwartego zapisany w formie tabeli U 45 1 V 45 1 U 47 1 V S t r o n a

5 Cała macierz alokacji ma wymiar 4 x 14 (sumaryczna liczba globalnych przemieszczeń końców prętów x liczba stopni swobody konstrukcji) i przyjmuje postać: A = U 12 V 12 U 14 V 14 U 24 V 24 U 26 V 26 U 36 V 36 U 37 V 37 U 45 V 45 U 47 V 47 U 53 V 53 U 55 V 55 U 61 V 61 U 63 V 63 U 72 V 72 U 73 V 73 U 83 V 83 U 84 V 84 U 93 V 93 U 96 V 96 U 15 V 15 U 16 V 16 [ S t r o n a

6 2.2. Agregowana macierz sztywności konstrukcji W macierzy tej na głównej przekątnej ustawiane są globalne macierze sztywności poszczególnych prętów, pozostałe elementy to macierze zerowe o wymiarze 4 x 4: K A = k 1 k 2 k 3 k 4 k 5 k 6 k 7 k 8 k 9 [ k 1 lobalne macierze sztywności poszczególnych prętów oblicza się ze wzoru: k i = λ T i k L i λ i gdzie: λ i macierz cosinusów kierunkowych i tego pręta λ T i transponowana macierz cosinusów kierunkowych i tego pręta k L i lokalne macierze sztywności prętów i tego pręta Macierze cosinusów kierunkowych λ i Macierze cosinusów kierunkowych określają położenie osi lokalnego układu danego pręta, względem układu globalnego. Jej wymiar zależy od liczby stopni swobody w węzłach danego pręta. Pręt ramy posiada 2 węzły po 3 stopnie swobody (dwie możliwości przesuwów wzajemnie prostopadłych oraz możliwość obrotu) macierz 6x6. λ i = cos γ xx cos γ xy cos γ yx cos γ yy 1 cos γ xx cos γ xy cos γ yx cos γ yy [ 1 6 S t r o n a

7 Pręt kratownicy posiada 2 węzły przegubowe po 2 stopnie swobody (dwie możliwości przesuwów wzajemnie prostopadłych ) macierz 4x4. λ i = cos γ xx cos γ xy cos γ yx cos γ yy cos γ xx cos γ xy [ cos γ yx cos γ yy Przykładowe wyznaczenie kątów dla pręta 4 y4 x4 4 7 a 5 Rys. 4. Lokalny układ współrzędnych pręta nr 4. Rys. 5. Położenie osi lokalnego układu danego pręta względem układu globalnego. α = arctg,8 1,3 = 31,675 γ xx = 36 α = 36 31,675 = 328,3925 γ xy = 9 α = 9 31,675 = 58,3925 γ yx = 27 α = 27 31,675 = 238,3925 γ yy = 36 α = 36 31,675 = 328, S t r o n a

8 Macierze cosinusów kierunkowych dla poszczególnych prętów Pręt nr 1 Pręt nr 9 Pręt nr 8 Pręt nr 7 Pręt nr 6 Pręt nr 5 Pręt nr 4 Pręt nr 3 Pręt nr 2 Pręt nr 1 γ xx = γ xy = 9 γ yx = 27 γ yy = γ xx = 31,675 γ xy = 121,675 γ yx = 31,675 γ yy = 31,675 γ xx = γ xy = 9 γ yx = 27 γ yy = γ xx = 328,3925 γ xy = 58,3925 γ yx = 238,3925 γ yy = 328,3925 γ xx = 31,675 γ xy = 121,675 γ yx = 31,675 γ yy = 31,675 γ xx = 328,3925 γ xy = 58,3925 γ yx = 238,3925 γ yy = 328,3925 γ xx = 31,675 γ xy = 121,675 γ yx = 31,675 γ yy = 31,675 γ xx = 27 γ xy = γ yx = 18 γ yy = 27 γ xx = γ xy = 9 γ yx = 27 γ yy = γ xx = 27 γ xy = γ yx = 18 γ yy = λ 1 = [ 1 1,8517,5241,5241,8517 λ 2 = [,8517,5241,5241, λ 3 = [ 1 1,8517,5241,5241,8517 λ 4 = [,8517,5241,5241,8517,8517,5241,5241,8517 λ 5 = [,8517,5241,5241,8517,8517,5241,5241,8517 λ 6 = [,8517,5241,5241,8517,8517,5241,5241,8517 λ 7 = [,8517,5241,5241, λ 8 = [ λ 9 = [ λ 1 = [ S t r o n a

9 Lokalne macierze sztywności prętów Kratownice płaskie posiadają po dwa stopnie swobody w każdym węźle. W układzie lokalnym pręta występują tylko siły normalne N, natomiast siły tnące T równe są zeru, zatem lokalna macierz sztywności i-tego elementu kratownicy płaskiej obliczana jest według wzoru v2 EA EA l l k L i = EA EA l l [ v1 u1 Rys. 6. Stopnie swobody elementu w układzie lokalnym. u2 Pręt nr 1 Pręt nr 2 Pręt nr 3 Pręt nr 4, 5, 6 Pręt nr 7 Pręt nr 8, 1 Pręt nr = 1892,31 = 1892, k L 1 = = 1892,31 = 1892, [ 1611,6 1611,6 k L 2 = [ 1611,6 1611,6 1294, ,65 k L 3 = [ 1294, ,65 112,6 112,6 k L 4 = k L 5 = k L 6 = [ 112,6 112,6 97,99 97,99 k L 7 = [ 97,99 97, , ,69 k L 8 = k L 1 = [ 1852, ,69 114,12 114,12 k L 9 = [ 114,12 114,12 9 S t r o n a

10 lobalna macierz sztywności poszczególnych prętów k i V 2 U2 Wyrażenie globalnej macierzy sztywności danego pręta w układzie globalnym polega na transformacji jego lokalnej macierzy sztywności do układu globalnego za pomocą macierzy cosinusów kierunkowych, zgodnie z formułą: k i = λ i T k i L λ i V 1 U1 Rys. 7. Stopnie swobody elementu w układzie globalnym. Pręt nr , ,31 k 1 = k L 1 = [ 1892, ,31 układ lokalny pręta pokrywa się z globalnym układem współrzędnych Pręt nr ,93 719, ,93 719,34 k 719,34 442,67 719,34 442,67 2 = [ 1168,93 719, ,93 719,34 719,34 442,67 719,34 442,67 Pręt nr , ,65 k 3 = k L 3 = [ 1294, ,65 układ lokalny pręta pokrywa się z globalnym układem współrzędnych Pręt nr 4, 6 Pręt nr 5 Pręt nr 7 Pręt nr 8, 1 799,74,15 799,74,15 k 4 = k,15 32,86,15 32,86 6 = [ 799,74,15 799,74,15,15 32,86,15 32,86 799,74,15 799,74,15 k,15 32,86,15 32,86 5 = [ 799,74,15 799,74,15,15 32,86,15 32,86 74,28 433,4 74,28 433,4 k 433,4 266,71 433,4 266,71 7 = [ 74,28 433,4 74,28 433,4 433,4 266,71 433,4 266,71 k 8 = k 1852, ,69 1 = [ 1852, ,69 Pręt nr 9 114,12 114,12 k 9 = k L 9 = [ 114,12 114,12 układ lokalny pręta pokrywa się z globalnym układem współrzędnych 1 S t r o n a

11 11 S t r o n a Utworzenie agregowanej macierzy sztywności konstrukcji K A = [

12 2.3. Utworzenie globalnej macierzy sztywności konstrukcji lobalna macierz sztywności konstrukcji obliczana jest według wzoru: K = [ K = A T K A A ,742, ,742,149,149 32,861,149 32, , ,43 74, , ,38 433,43 266,79 433,43 266,79 799,742,149 74, , , ,43 799,742, ,115,149 32, ,43 266,79 433, , ,688,149 32, ,38 361, , , , , , , , , ,742, , ,742,149,149 32, , ,688,149 32, , , , , , , , , , , , ,742, , ,396,149,149 32,861,149 32, Nałożenie warunków brzegowych na globalną macierz sztywności konstrukcji W węźle nr 1 oraz 2 znajduje się podpora przegubowo nieprzesuwna, co znaczy że węzeł ten nie przemieści się ani w poziomie, ani w pionie. W węźle nr 4 znajduje się podpora przegubowo przesuwna z możliwością przesuwu w poziomie, co znaczy że węzeł ten nie przemieści się w pionie Rys. 8. Układ stopni swobody konstrukcji K = [ , ,43 799,742, , , ,119,149 32, , , , ,742, , ,742,149,149 32, , ,688,149 32, , , , , , , , , , ,742, , ,396,149,149 32,861,149 32, S t r o n a

13 Autor: mgr inż. Robert Cypryjański 3. LOBALNY WEKTOR OBCIĄŻENIA Q lobalny wektor obciążeń obliczyć można za pomocą wzoru Q = Q W + Q P gdzie: Q W - suma globalnego wektora obciążeń węzłowych Q P - suma globalnego wektora obciążeń prętowych sprowadzonych do węzłów. W przypadku obu wektorów obciążenia wyrażone są za pomocą składowych działających na kierunkach stopni swobody konstrukcji. Wszystkie obciążenia są przyłożone w węzłach, dlatego Q P =, a co za tym idzie P1=5 kn P2=2 kn P3=3 kn Rys. 9. Układ stopni swobody konstrukcji. Rys. 1. Siły węzłowe. Q = Q W = [ 5 13 S t r o n a

14 4. PRZEMIESZCZENIA WĘZŁOWE Układ równań kanonicznych metody przemieszczeń K = Q gdzie: K globalna macierz sztywności konstrukcji, wektor parametrów węzłowych (przemieszczeń, obrotów jeśli występują), Q wektor obciążeń zewnętrznych. Przemieszczenia węzłowe obliczane są przez przekształcenie powyższego układu równań. Otrzymane wartości przemieszczeń są w cm. = K 1 Q = ,8982,2282,611,522,51438,13587,4766, [ 1, = 4= 7=,611 8= 11=-, =-,4766 1= 2= 5=-,8982 6=,2282 9=-,522 1=-, =-, =-1,38382 Rys. 11. Deformacja kratownicy (przygotować ręczny rysunek). 14 S t r o n a

15 5. OBLICZENIE SIŁ WEWNĘTRZNYCH Autor: mgr inż. Robert Cypryjański Wartości sił wewnętrznych w przekrojach przywęzłowych i tego pręta kratownicy obliczane są na podstawie wyznaczonych wartości przemieszczeń węzłów według wzoru: S i L = k i L i L Znaki sił wewnętrznych odnoszą się do zwrotów lokalnych stopni swobody elementu. Lokalne wektory przemieszczeń obliczane są zgodnie z zależnością i L = λ i i lobalne wektory przemieszczeń końców prętów i tworzy poprzez wybranie z globalnego wektora przemieszczeń wartości opisujących przemieszczeniu danego pręta. Pręt nr 7 Pręt nr 6 Pręt nr 5 Pręt nr 4 Pręt nr 3 Pręt nr 2 Pręt nr , = [ L 7,611 1 = [ S L,611 1 = [ 113,75 8 7,611, , = [ 11,13587 L,315 2 = [ S,1347 L 2 = [ 133,563 12,4766, ,13587, ,25 12, = [ 13,8856 L, = [ S,8856 L 3 = [ 61, , , ,522, , = [ 13,8856 L, = [ S,868 L 4 = [ 14 1, , ,421 95,421 5,8982, ,421 6, = [ 9,522 L, = [ S,17498 L 5 = [ 95,421 1,51438, , = [ 5,8982 L 6 = [ S,6454 L 6 = [ 71,1571 6,2282, = [ 5,8982 6, L = [,8846,2764 S 7 L = [ 85, , S t r o n a

16 Pręt nr 8 Pręt nr 9 Pręt nr 1 8 = [,8982,2282 L,611 8 = [,2282,8982,611 42,2788 S L 8 = [ 42,2788 5,8982,8982 6, = [ 11,13587 L, = [ S,13587 L 9 = [ 12,4766, ,5 52,5 9,522, , 1, = [ 11,13587 L,522 1 = [ S,4766 L 1 = [ 7, 12,4766, S t r o n a

17 6. WYDRUKI Z PRORAMU ROBOT Autor: mgr inż. Robert Cypryjański Rys. 12. Schemat konstrukcji z numeracją węzłów i prętów Tab. 4. Przemieszczenia węzłów Węzeł/Przypadek UX (cm) UZ (cm) 1/1,, 2/1,, 3/1 -,8982,2282 4/1,611, 5/1 -,522 -, /1 -, ,4766 7/1 -,8856-1,38382 Tab. 5. Siły wewnętrzne Pręt/Węzeł/Przypadek FX (kn) 1/2/1-113,75 1/4/1-113,75 2/4/1-133,563 2/6/1-133,563 3/6/1-61,25 3/7/1-61,25 4/5/1 95,421 4/7/1 95,421 5/3/1 95,421 5/5/1 95,421 6/1/1 71,1571 6/3/1 71,1571 7/2/1 85,8894 7/3/1 85,8894 8/3/1 42,2788 8/4/1 42,2788 9/3/1 52,5 9/6/1 52,5 1/5/1-7, 1/6/1-7, 17 S t r o n a

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY ALGORYTM STATYCZNEJ ANALIZY MES DLA RATOWNICY Piotr Pluciński e-mail: p.plucinski@l5.pk.edu.pl Jerzy Pamin e-mail: jpamin@l5.pk.edu.pl Instytut Technologii Informatycznych w Inżynierii Lądowej Wydział

Bardziej szczegółowo

DYNAMIKA RAM WERSJA KOMPUTEROWA

DYNAMIKA RAM WERSJA KOMPUTEROWA DYNAMIKA RAM WERSJA KOMPTEROWA Parametry przekrojów belek: E=205MPa=205 10 6 kn m 2 =205109 N m 2 1 - IPE 220 Pręty: 1, 3, 4: I y =2770cm 4 =0,00002770 m 4 EI =5678500 Nm 2 A=33,4 cm 4 =0,00334 m 2 EA=684700000

Bardziej szczegółowo

PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA

PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA Dla zadanego układu należy 1) Dowolną metodą znaleźć rozkład sił normalnych

Bardziej szczegółowo

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: 1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]

Bardziej szczegółowo

gruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił

gruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił 1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] 2. Ustalenie stopnia statycznej

Bardziej szczegółowo

ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI

ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Łukasz Faściszewski, gr. KBI2, sem. 2, Nr albumu: 75 201; rok akademicki 2010/11. ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Stateczność ram wersja komputerowa 1. Schemat statyczny ramy i dane materiałowe

Bardziej szczegółowo

PRZYKŁADOWE ZADANIA. ZADANIE 1 (ocena dostateczna)

PRZYKŁADOWE ZADANIA. ZADANIE 1 (ocena dostateczna) PRZYKŁADOWE ZADANIA ZADANIE (ocena dostateczna) Obliczyć reakcje, siły wewnętrzne oraz przemieszczenia dla kratownicy korzystając z Metody Elementów Skończonych. Zweryfikować poprawność obliczeń w mathcadzie

Bardziej szczegółowo

1. Silos Strona:1 Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu ...

1. Silos Strona:1 Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu ... 1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu... Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] Strona:1 2. Ustalenie stopnia

Bardziej szczegółowo

OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA

OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA POLECHNA POZNAŃSA WYDZAŁ BUDOWNCWA NŻYNER ŚRODOWSA NSYU ONSRUCJ BUDOWLANYCH ZAŁAD ECHAN BUDOWL OBLCZANE RA EODĄ PRZEESZCZEŃ WERSJA OPUEROWA Ćwiczenie projektowe nr z echani budowli Wykonał: aciej BYCZYŃS

Bardziej szczegółowo

Stateczność ramy - wersja komputerowa

Stateczność ramy - wersja komputerowa Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych

Bardziej szczegółowo

gruparectan.pl 1. Kratownica 2. Szkic projektu 3. Ustalenie warunku statycznej niewyznaczalności układu Strona:1

gruparectan.pl 1. Kratownica 2. Szkic projektu 3. Ustalenie warunku statycznej niewyznaczalności układu Strona:1 1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek konieczny geometrycznej

Bardziej szczegółowo

Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów

Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu rysunek jest w skali True 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

Stateczność ramy. Wersja komputerowa

Stateczność ramy. Wersja komputerowa Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 2 Stateczność ramy. Wersja komputerowa Daniel Sworek gr. KB2 Rok akademicki 1/11 Semestr 2, II Grupa: KB2 Daniel

Bardziej szczegółowo

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17 Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1 MECHANIKA OGÓLNA - lista zadań 2016/17 Część 1 analiza kinematyczna układów płaskich Przeprowadzić analizę kinematyczną układu. Odpowiednią

Bardziej szczegółowo

Rozwiązanie stateczności ramy MES

Rozwiązanie stateczności ramy MES Rozwiązanie stateczności ramy MES Rozwiążemy stateczność ramy pokazanej na Rys.. λkn EA24.5 kn EI4kNm 2 d 5,r 5 d 6,r 6 2 d 4,r 4 4.m e e2 d 3,r 3 d,r X d 9,r 9 3 d 7,r 7 3.m d 2,r 2 d 8,r 8 Y Rysunek

Bardziej szczegółowo

7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności:

7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności: 7. ELEMENTY PŁYTOWE 1 7. 7. ELEMENTY PŁYTOWE Rys. 7.1. Element płytowy Aby rozwiązać zadanie płytowe należy: zdefiniować geometrię płyty, dokonać podziału płyty na elementy, zdefiniować węzły, wprowadzić

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1 1.. 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1.1. Wstęp echanika budowli stanowi dział mechaniki technicznej zajmującej się statyką, dynamiką,

Bardziej szczegółowo

Twierdzenia o wzajemności

Twierdzenia o wzajemności Twierdzenia o wzajemności Praca - definicja Praca iloczyn skalarny wektora siły i wektora drogi jaką pokonuje punkt materialny pod wpływem działania tej siły. L S r r F( s) o ds r F( s) cos ( α ) ds F

Bardziej szczegółowo

1. METODA PRZEMIESZCZEŃ

1. METODA PRZEMIESZCZEŃ .. METODA PRZEMIESZCZEŃ.. Obliczanie sił wewnętrznych od obciążenia zewnętrznego q = kn/m P= kn Rys... Schemat konstrukcji φ φ u Rys... Układ podstawowy metody przemieszczeń Do wyliczenia mamy niewiadome:

Bardziej szczegółowo

5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY

5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY Część 2. METODA PRZEMIESZCZEŃ PRZYKŁAD LICZBOWY.. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY.. Działanie sił zewnętrznych Znaleźć wykresy rzeczywistych sił wewnętrznych w ramie o schemacie i obciążeniu podanym

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

METODA SIŁ KRATOWNICA

METODA SIŁ KRATOWNICA Część. METDA SIŁ - RATWNICA.. METDA SIŁ RATWNICA Sposób rozwiązywania kratownic statycznie niewyznaczalnych metodą sił omówimy rozwiązują przykład liczbowy. Zadanie Dla kratownicy przedstawionej na rys..

Bardziej szczegółowo

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia) PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z

Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z wykorzystaniem Metody Sił Temat zadania rozwiązanie

Bardziej szczegółowo

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN ZACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY Instrukcja do ćwiczeń laboratoryjnych z metody

Bardziej szczegółowo

Zadanie: Narysuj wykres sił normalnych dla zadanej kratownicy i policz przemieszczenie poziome węzła G. Zadanie rozwiąż metodą sił.

Zadanie: Narysuj wykres sił normalnych dla zadanej kratownicy i policz przemieszczenie poziome węzła G. Zadanie rozwiąż metodą sił. Zadanie: Narysuj wykres sił normalnych dla zadanej kratownicy i policz przemieszczenie poziome węzła. Zadanie rozwiąż metodą sił. P= 2kN P= 2kN Stopień statycznej niewyznaczalności: n s l r l pr 2 w 6

Bardziej szczegółowo

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie

Bardziej szczegółowo

Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1

Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1 Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 Schemat analizowanej ramy Analizy wpływu imperfekcji globalnych oraz lokalnych, a także efektów drugiego rzędu

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

1. Obciążenie statyczne

1. Obciążenie statyczne . Obciążenie statyczne.. Obliczenie stopnia kinematycznej niewyznaczalności n = Σ ϕ + Σ = + = p ( ) Σ = w p + d u = 5 + 5 + 0 0 =. Schemat podstawowy metody przemieszczeń . Schemat odkształceń łańcucha

Bardziej szczegółowo

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy Wstęp Numeryczne Modeowanie Układów Ciągłych Podstawy Metody Eementów Skończonych Metoda Eementów Skończonych służy do rozwiązywania probemów początkowo-brzegowych, opisywanych równaniami różniczkowymi

Bardziej szczegółowo

Modelowanie układów prętowych

Modelowanie układów prętowych Modelowanie kładów prętowych Elementy prętowe -definicja Elementami prętowymi można modelować - elementy konstrkcji o stosnk wymiarów poprzecznych do podłżnego poniżej 0.1, - elementy, które są wąskie

Bardziej szczegółowo

Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI

Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI Katedra Mechaniki Konstrukcji Wydział Budownictwa i Inżynierii Środowiska Politechniki Białostockiej... (imię i nazwisko)... (grupa, semestr, rok akademicki) ĆWICZENIE PROJEKTOWE NR Z MECHANIKI BUDOWLI

Bardziej szczegółowo

PROJEKT NR 1 METODA PRZEMIESZCZEŃ

PROJEKT NR 1 METODA PRZEMIESZCZEŃ POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr

Bardziej szczegółowo

Z1/1. ANALIZA KINEMATYCZNA PŁASKICH UKŁADÓW PRĘTOWYCH ZADANIE 1

Z1/1. ANALIZA KINEMATYCZNA PŁASKICH UKŁADÓW PRĘTOWYCH ZADANIE 1 Z/. NLZ KNEMTYCZN PŁSKCH UKŁDÓW PRĘTOWYCH ZDNE Z/. NLZ KNEMTYCZN PŁSKCH UKŁDÓW PRĘTOWYCH ZDNE Z/.. Kratownica numer Sprawdzić czy kratownica płaska przedstawiona na rysunku Z/. jest układem geometrycznie

Bardziej szczegółowo

5.1. Kratownice płaskie

5.1. Kratownice płaskie .. Kratownice płaskie... Definicja kratownicy płaskiej Kratownica płaska jest to układ prętowy złożony z prętów prostych, które są połączone między sobą za pomocą przegubów, Nazywamy je węzłami kratownicy.

Bardziej szczegółowo

6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH

6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH Część 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6. 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6.. Wyznaczanie przemieszczeń z zastosowaniem równań pracy wirtualnej w układach prętowych W metodzie pracy

Bardziej szczegółowo

TENSOMETRIA ZARYS TEORETYCZNY

TENSOMETRIA ZARYS TEORETYCZNY TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba

Bardziej szczegółowo

Drgania układu o wielu stopniach swobody

Drgania układu o wielu stopniach swobody Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach

Bardziej szczegółowo

Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, Michał Płotkowiak, Wojciech Pawłowski Poznań 2002/2003 MECHANIKA BUDOWLI 1

Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, Michał Płotkowiak, Wojciech Pawłowski Poznań 2002/2003 MECHANIKA BUDOWLI 1 Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, ichał Płotkowiak, Wojciech Pawłowski Poznań 00/003 ECHANIKA UDOWLI WSTĘP. echanika budowli stanowi dział mechaniki technicznej, zajmujący się statyką, statecznością

Bardziej szczegółowo

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej

Bardziej szczegółowo

ORIGIN 1. E 10GPa - moduł Younga drewna. 700 kg m 3. g - ciężar właściwy drewna g m s 2. 6cm b2 6cm b3 5cm 12cm h2 10cm h3 8cm. b1 h1.

ORIGIN 1. E 10GPa - moduł Younga drewna. 700 kg m 3. g - ciężar właściwy drewna g m s 2. 6cm b2 6cm b3 5cm 12cm h2 10cm h3 8cm. b1 h1. Statyka kratownicy drewnianej o różnych przekrojach prętów, obciążonej siłai, wilgocią i ciężare własny ORIGIN - ustawienie sposobu nueracji wierszy i kolun acierzy E GPa - oduł Younga drewna αw. ρ - współczynnik

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MACHANIKI BUDOWLI

POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MACHANIKI BUDOWLI POLIECHNIKA POZNAŃSKA INSYU KONSRUKCJI BUDOWLANYCH ZAKŁAD MACHANIKI BUDOWLI ĆWICZENIE PROJEKOWE NR 2 DYNAMIKA RAM WERSJA KOMPUEROWA Z PRZEDMIOU MECHANIKA KONSRUKCJI Wykonał: Kamil Sobczyński WBiIŚ; SUM;

Bardziej szczegółowo

Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są

Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są PODPORY SPRĘŻYSTE Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są wprost proporcjonalne do reakcji w nich

Bardziej szczegółowo

WPROWADZENIE DO PROGRAMU FEAS - KAM Wersja r.

WPROWADZENIE DO PROGRAMU FEAS - KAM Wersja r. Mechanika Budowli I FINITE ELEMENT ANALYSIS SYSTEM WPROWADZENIE DO PROGRAMU FEAS - KAM Wersja - 04.11.2006 r. Opracował: mgr inż. Piotr Bilko Katedra Geotechniki i Mechaniki Budowli Informacje ogólne Program

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

ĆWICZENIE 6 Kratownice

ĆWICZENIE 6 Kratownice ĆWICZENIE 6 Kratownice definicja konstrukcja składająca się z prętów prostych połączonych przegubowo w węzłach, dla której jedynymi obciążeniami są siły skupione przyłożone w węzłach. Umowa: jeśli konstrukcja

Bardziej szczegółowo

Część ZADANIA - POWTÓRKA ZADANIA - POWTÓRKA. Zadanie 1

Część ZADANIA - POWTÓRKA ZADANIA - POWTÓRKA. Zadanie 1 Część 6. ZADANIA - POWTÓRKA 6. 6. ZADANIA - POWTÓRKA Zadanie Wykorzystując metodę przemieszczeń znaleźć wykres momentów zginających dla ramy z rys. 6.. q = const. P [m] Rys. 6.. Rama statycznie niewyznaczalna

Bardziej szczegółowo

Analiza stanu naprężenia - pojęcia podstawowe

Analiza stanu naprężenia - pojęcia podstawowe 10. ANALIZA STANU NAPRĘŻENIA - POJĘCIA PODSTAWOWE 1 10. 10. Analiza stanu naprężenia - pojęcia podstawowe 10.1 Podstawowy zapisu wskaźnikowego Elementy konstrukcji znajdują się w przestrzeni fizycznej.

Bardziej szczegółowo

Stateczność ramy drewnianej o 2 różnych przekrojach prętów, obciążonej siłą skupioną

Stateczność ramy drewnianej o 2 różnych przekrojach prętów, obciążonej siłą skupioną Stateczność ray drewnianej o różnych przekrojach prętów, obciążonej siłą skupioną ORIGIN - Ustawienie sposobu nueracji wierszy i kolun acierzy E GPa - Moduł Younga drewna Wyiary przekrojów a 7c b 7c a

Bardziej szczegółowo

Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z

Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z wykorzystaniem Metody Sił Temat zadania rozwiązanie

Bardziej szczegółowo

Narysować wykresy momentów i sił tnących w belce jak na rysunku. 3ql

Narysować wykresy momentów i sił tnących w belce jak na rysunku. 3ql Narysować wykresy momentów i sił tnących w belce jak na rysunku. q l Określamy stopień statycznej niewyznaczalności: n s = r - 3 - p = 5-3 - 0 = 2 Przyjmujemy schemat podstawowy: X 2 X Zakładamy do obliczeń,

Bardziej szczegółowo

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α

Bardziej szczegółowo

Rozwiązywanie ramy statyczne niewyznaczalnej Metodą Sił

Rozwiązywanie ramy statyczne niewyznaczalnej Metodą Sił Rozwiązywanie ramy statyczne niewyznaczalnej Metodą Sił Polecenie: Narysuj wykres sił wewnętrznych w ramie. Zadanie rozwiąż metodą sił. PkN MkNm EJ q kn/m EJ EJ Określenie stopnia statycznej niewyznaczalności

Bardziej szczegółowo

4.1. Modelowanie matematyczne

4.1. Modelowanie matematyczne 4.1. Modelowanie matematyczne Model matematyczny Model matematyczny opisuje daną konstrukcję budowlaną za pomocą zmiennych. Wartości zmiennych będą należały to zbioru liczb rzeczywistych i będą one reprezentować

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

Elementy Projektowania Inżynierskiego CALFEM Wybrane funkcje.

Elementy Projektowania Inżynierskiego CALFEM Wybrane funkcje. Elementy Projektowania Inżynierskiego CALFEM Wybrane funkcje. A B C E F P S assem() beam2d() beam2e() beam2s() coordxtr() eigen() eldia2() eldisp2() eldraw2() elflux2() eliso2() extract() flw2qe() flw2qs()

Bardziej szczegółowo

Mechanika i Budowa Maszyn

Mechanika i Budowa Maszyn Mechanika i Budowa Maszyn Materiały pomocnicze do ćwiczeń Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Andrzej J. Zmysłowski Andrzej J. Zmysłowski Wyznaczanie sił wewnętrznych w belkach

Bardziej szczegółowo

Przykład Łuk ze ściągiem, obciążenie styczne. D A

Przykład Łuk ze ściągiem, obciążenie styczne. D A Przykład 1.4. Łuk ze ściągiem, obciążenie styczne. Rysunek przedstawia łuk trójprzegubowy, kołowy, ze ściągiem. Łuk obciążony jest obciążeniem stycznym do łuku, o stałej gęstości na jednostkę długości

Bardziej szczegółowo

KRATOWNICE 1. Definicja: konstrukcja prętowa, składająca się z prętów prostych połączonych ze sobą przegubami. pas górny.

KRATOWNICE 1. Definicja: konstrukcja prętowa, składająca się z prętów prostych połączonych ze sobą przegubami. pas górny. KRTOWNIE efinicja: konstrukcja prętowa, składająca się z prętów prostych połączonych ze sobą przegubami słupki pas górny krzyżulce pas dolny Założenia: pręty są połączone w węzłach przegubami idealnymi

Bardziej szczegółowo

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił. Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład

Bardziej szczegółowo

1. ANALIZA KINAMATYCZNA PŁASKICH UKŁADÓW PRĘTOWYCH

1. ANALIZA KINAMATYCZNA PŁASKICH UKŁADÓW PRĘTOWYCH 1 1.1. Płaskie układy tarcz sztywnych naliza kinematyczna służy nam do określenia czy dany układ spełnia wszystkie warunki aby być konstrukcją budowlaną. Podstawowym pojęciem stosowanym w analizie kinematycznej

Bardziej szczegółowo

Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D

Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D Równanie konstytutywne opisujące sposób w jaki ciepło przepływa w materiale o danych właściwościach, prawo Fouriera Macierz konstytutywna (właściwości) materiału Wektor gradientu temperatury Wektor strumienia

Bardziej szczegółowo

Przykład 9.2. Wyboczenie słupa o dwóch przęsłach utwierdzonego w fundamencie

Przykład 9.2. Wyboczenie słupa o dwóch przęsłach utwierdzonego w fundamencie rzykład 9.. Wyboczenie słupa o dwóch przęsłach utwierdzonego w undamencie Wyznaczyć wartość krytyczną siły obciążającej głowicę słupa, dla słupa przebiegającego w sposób ciągły przez dwie kondygnacje budynku.

Bardziej szczegółowo

Zad.1 Zad. Wyznaczyć rozkład sił wewnętrznych N, T, M, korzystając z komputerowej wersji metody przemieszczeń. schemat konstrukcji:

Zad.1 Zad. Wyznaczyć rozkład sił wewnętrznych N, T, M, korzystając z komputerowej wersji metody przemieszczeń. schemat konstrukcji: Zad. Wznaczć rozkład sił wewnętrznch N, T, M, korzstając z komputerowej wersji metod przemieszczeń. schemat konstrukcji: ϕ 4, kn 4, 4, macierz transformacji (pręt nr): α = - ϕ = -, () 5 () () E=5GPa; I

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 6 Temat ćwiczenia:

Bardziej szczegółowo

Uwaga: Linie wpływu w trzech prętach.

Uwaga: Linie wpływu w trzech prętach. Zestaw nr 1 Imię i nazwisko zadanie 1 2 3 4 5 6 7 Razem punkty Zad.1 (5p.). Narysować wykresy linii wpływu sił wewnętrznych w przekrojach K i L oraz reakcji w podporze R. Zad.2 (5p.). Narysować i napisać

Bardziej szczegółowo

PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE

PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE Podstawy statyki budowli: Pojęcia podstawowe Model matematyczny, w odniesieniu do konstrukcji budowlanej, opisuje ją za pomocą zmiennych. Wartości zmiennych

Bardziej szczegółowo

Metody komputerowe i obliczeniowe Metoda Elementów Skończonych. Element dwuwymiarowy liniowy : rama 2D

Metody komputerowe i obliczeniowe Metoda Elementów Skończonych. Element dwuwymiarowy liniowy : rama 2D Metody komputerowe i obliczeniowe Metoda Elementów Skończonych Element dwuwymiarowy liniowy : rama D Jest to element dwuwymiarowy o róŝnych współrzędnych lokalnych i globalnych węzłów niezbędne są transformacje

Bardziej szczegółowo

ANALIZA RAMY PŁASKIEJ W SYSTEMIE ROBOT. Adam Wosatko

ANALIZA RAMY PŁASKIEJ W SYSTEMIE ROBOT. Adam Wosatko ANALIZA RAMY PŁASKIEJ W SYSTEMIE ROBOT Adam Wosatko v. 1.2, Marzec 2019 2 1. Definicja i typ zadania, początkowe ustawienia Definicja zadania. Zadanie przykładowe do rozwiązania za pomocą systemu obliczeniowego

Bardziej szczegółowo

Obliczenie kratownicy przy pomocy programu ROBOT

Obliczenie kratownicy przy pomocy programu ROBOT Obliczenie kratownicy przy pomocy programu ROBOT 1. Wybór typu konstrukcji (poniższe okno dostępne po wybraniu ikony NOWE) 2. Ustawienie norm projektowych oraz domyślnego materiału Z menu górnego wybieramy

Bardziej szczegółowo

ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE. A) o trzech reakcjach podporowych N=3

ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE. A) o trzech reakcjach podporowych N=3 ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE A) o trzech reakcjach podporowych N=3 B) o liczbie większej niż 3 - reakcjach podporowych N>3 A) wyznaczanie reakcji z równań

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA

Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Instrukcja do ćwiczeń laboratoryjnych z metody elementów skończonych w programie ADINA Obliczenia kratownicy płaskiej Wykonał: dr

Bardziej szczegółowo

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory

Bardziej szczegółowo

2. Charakterystyki geometryczne przekroju

2. Charakterystyki geometryczne przekroju . CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 1.. Charakterystyki geometryczne przekroju.1 Podstawowe definicje Z przekrojem pręta związane są trzy wielkości fizyczne nazywane charakterystykami geometrycznymi

Bardziej szczegółowo

Document: Exercise-05-manual /1/ : page 1 of 16. KATEDRA MECHANIKI STOSOWANEJ Wydzia! Mechaniczny POLITECHNIKA LUBELSKA

Document: Exercise-05-manual /1/ : page 1 of 16. KATEDRA MECHANIKI STOSOWANEJ Wydzia! Mechaniczny POLITECHNIKA LUBELSKA Document: Exercise-05-manual --- 2015/1/19 --- 17:10 --- page 1 of 16 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydzia! Mechaniczny POLITECHNIKA LUBELSKA!"#$%&'()* +, -.!(/0"!* "% 1 1. CEL ĆWICZENIA

Bardziej szczegółowo

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest

Bardziej szczegółowo

MECHANIKA OGÓLNA wykład 4

MECHANIKA OGÓLNA wykład 4 MECHNIK OGÓLN wykład 4 D R I N Ż. G T M R Y N I K Obliczanie sił wewnętrznych w układach prętowych. K R T O W N I C E KRTOWNIC UKŁD PRĘTÓW PROSTOLINIOWYCH Przegubowe połączenia w węzłach Obciążenie węzłowe

Bardziej szczegółowo

1. Obliczenia sił wewnętrznych w słupach (obliczenia wykonane zostały uproszczoną metodą ognisk)

1. Obliczenia sił wewnętrznych w słupach (obliczenia wykonane zostały uproszczoną metodą ognisk) Zaprojektować słup ramy hali o wymiarach i obciążeniach jak na rysunku. DANE DO ZADANIA: Rodzaj stali S235 tablica 3.1 PN-EN 1993-1-1 Rozstaw podłużny słupów 7,5 [m] Obciążenia zmienne: Śnieg 0,8 [kn/m

Bardziej szczegółowo

2kN/m Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeń dobieram wstępne przekroje prętów.

2kN/m Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeń dobieram wstępne przekroje prętów. 2kN/m -20 C D 5kN 0,006m A B 0,004m +0 +20 0,005rad E 4 2 4 [m] Układ prętów ma dwie tarcze i osiem reakcji w podporach. Stopień statycznej niewyznaczalności SSN= 2, ponieważ, przy dwóch tarczach powinno

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

Obsługa programu Soldis

Obsługa programu Soldis Obsługa programu Soldis Uruchomienie programu Po uruchomieniu, program zapyta o licencję. Można wybrać licencję studencką (trzeba założyć konto na serwerach soldisa) lub pracować bez licencji. Pliki utworzone

Bardziej szczegółowo

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH.. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Rozwiązując układy niewyznaczalne dowolnie obciążone, bardzo często pomijaliśmy wpływ sił normalnych i

Bardziej szczegółowo

{H B= 6 kn. Przykład 1. Dana jest belka: Podać wykresy NTM.

{H B= 6 kn. Przykład 1. Dana jest belka: Podać wykresy NTM. Przykład 1. Dana jest belka: Podać wykresy NTM. Niezależnie od sposobu rozwiązywania zadania, zacząć należy od zastąpienia podpór reakcjami. Na czas obliczania reakcji można zastąpić obciążenie ciągłe

Bardziej szczegółowo

ROZDZIAŁ II. STATYKA PŁASKICH KONSTRUKCJI KRATOWYCH

ROZDZIAŁ II. STATYKA PŁASKICH KONSTRUKCJI KRATOWYCH ROZDZIAŁ II. STATYKA PŁASKICH KONSTRUKCJI KRATOWYCH Kratownice płaskie są jednym z najczęściej stosowanych typów konstrukcji. Budowa kratownicy sprawia, że jest to układ ekonomiczny pod względem ciężaru,

Bardziej szczegółowo

STATECZNOŚĆ RAM WERSJA KOMPUTEROWA

STATECZNOŚĆ RAM WERSJA KOMPUTEROWA Politechnika Poznańska Wydział Budownictwa i Inżynierii Środowiska Instytut Konstrukcji Budowlanych Zakład Mechaniki Budowli Studia Stacjonarne II Stopnia I rok Semestr II 21/211 STATECZNOŚĆ RAM WERSJA

Bardziej szczegółowo

Przykład 4.2. Sprawdzenie naprężeń normalnych

Przykład 4.2. Sprawdzenie naprężeń normalnych Przykład 4.. Sprawdzenie naprężeń normalnych Sprawdzić warunki nośności przekroju ze względu na naprężenia normalne jeśli naprężenia dopuszczalne są równe: k c = 0 MPa k r = 80 MPa 0, kn 0 kn m 0,5 kn/m

Bardziej szczegółowo

Analiza I i II rzędu. gdzie α cr mnożnik obciążenia krytycznego według procedury

Analiza I i II rzędu. gdzie α cr mnożnik obciążenia krytycznego według procedury Analiza I i II rzędu W analizie I rzędu stosuje się zasadę zesztywnienia, tzn. rozpatruje się nieodkształconą, pierwotną geometrię konstrukcji, niezależnie od stanu obciążenia. Gdy w obliczeniac statycznyc

Bardziej szczegółowo

3. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE

3. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE Część. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE.. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE Istotę metody przemieszczeń, najwygodniej jest przedstawić przez porównanie jej do metody sił, którą wcześniej już poznaliśmy

Bardziej szczegółowo

Element cięgnowy. Rysunek: Element LINK1. Jakub J. Słowiński (IMMT PWr) Wykład 4 09 i 16.03.2012 51 / 74

Element cięgnowy. Rysunek: Element LINK1. Jakub J. Słowiński (IMMT PWr) Wykład 4 09 i 16.03.2012 51 / 74 Elementy 1D Element cięgnowy Element LINK1 jest elementem 2D, dwuwęzłowym, posiadającym jedynie dwa stopnie swobody - translację w kierunku x oraz y. Można zadeklarować pole jego przekroju oraz odkształcenie

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH

POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 1 LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH Prowadzący: mgr inż. A. Kaczor STUDIUM ZAOCZNE, II

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 4

INSTRUKCJA DO ĆWICZENIA NR 4 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 4 PRZEDMIOT TEMAT Wybrane zagadnienia z optymalizacji elementów konstrukcji Zastosowanie optymalizacji

Bardziej szczegółowo

NA PODSTAWIE PROGRAMU ROBOT STRUCTURAL ANALYSIS PROFESSIONAL Autor: mgr inż. Bartosz Kawecki

NA PODSTAWIE PROGRAMU ROBOT STRUCTURAL ANALYSIS PROFESSIONAL Autor: mgr inż. Bartosz Kawecki NA PODSTAWIE PROGRAMU ROBOT STRUCTURAL ANALYSIS PROFESSIONAL 2016 Autor: mgr inż. Bartosz Kawecki Konstrukcję należy wykonać z przestrzennych elementów prętowych Wybór ikony pręt z paska narzędzi po prawej

Bardziej szczegółowo

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B 1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =

Bardziej szczegółowo