Obliczanie układów statycznie niewyznaczalnych metodą sił.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Obliczanie układów statycznie niewyznaczalnych metodą sił."

Transkrypt

1 POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt wykonał: Krzysztof Wójtowicz Konsultacje: dr inż. Przemysław Litewka Obliczanie układów statycznie niewyznaczalnych metodą sił. Rama 5kN I I I I I 6kN/m I I [m] I I 0 50 cm II I cm E05GPa α t,*0 5 o C I,9*I

2 Układ podstawowy 5kN X X X X X 6kN/m X [m] Warunki kinematycznej zgodności układu rzeczywistego z układem podstawowym u ul u p 0 Xδ X δ X δ P 0 v vl v p 0 Xδ X δ X δ P 0 ϕ ϕd ϕ g 0 Xδ X δ X δ P 0 Stan p 5kN I I I I I 6kN/m a I I Va,5kN [m] b Hb5kN Vb6,5kN * V V b X : M a b H b : V ,5kN 5kN b * 5 * 6 * * V V a M a b : V z 9 00,5kN * 5* 6** 0

3 Wykres momentów w stanie p Mp [knm] Stan X Wykres momentów w stanie X I X X I I I I M [m] Va0 I I Vb0 Hb0 Stan X Wykres momentów w stanie X I X I X I I I M [m] Va0 I I Vb0 Hb0

4 Stan X Wykres momentów w stanie X I I I I I M [] Va0 I X X I Vb0 Hb0 δ δ δ 55,0 δ 5, *,9 δ δ 0 δ 5,7 δ δ M*M dx ( ***)* *[ δ ] (m*m*m) (m*m*m) m M* M dx 6 ( 9, * * * *) * M* M dx ( * * * * ) *,7 M * M *[ δ ] ( ***)* ( * *) * (m * m) (m * m) ( ** ) * *[δ ] (m * m * m) (m * m * m) m dx * ( * * * * ) * M* M dx ( ** * *) * 5,9 *[ δ ] (m * m * m) (m * m * m) m * [δ ] (m) (m) m ( * * ) * (* *) * *,9 m,67 *,9,67,67 *,9 6 *,9

5 Mp * M 6 * P dx ( *00 * * * ) * ( *00 ** * 5, 6 007,69 *,9 kn *[ ] (knm * m * m) (knm * m * m * m * m * m) knm m ** ) * P [ * * ( Mp * M dx ( *00 * * ) * 6 * *00 * 9) * * * * ]* 00 5,67 *,9, kn *[ ] (knm * m * m) [m * m(knm knm) * m * m * m] knm m P Mp * M dx ( * 9 * * 6 * * kn *[ ] (knm * m * m * m) knm m * *) * Ms MMM Sprawdzenie globalne współczynników M s [knm ] MsMs dx i k,7 MsMs dx [ ***( * *) [ *** * ***( * δ ik ***( *) * *) * ***( *** *) * *** *]*,69 **]* *,9

6 Sprawdzenie wierszowe współczynników Ms M [m] Ms * M 9,9 dx δ δ δ Ms * M dx [ * * * ( * ) * * * * ) * 9,9 [ * * ( * ) * * ]* *,9 Sprawdzenie kolumnowe współczynników Ms [knm] Mp [knm] 9 Ms*Mp,9 dx P P P Ms*Mp dx *00**( * )* [ *00**( * ) *9**( * ) *.9 * 6* **( * ) *9** * 6*,9 **6]*

7 Obliczenie nadliczbowych * 0 ) 5,9 *( X ) 9, *( X * 0, ),7 *( X ) 55,0 *( X * 0 007,7 ) 9, *( X ) 55,0 *( X ) 5,7 *( X 5,9*X 9,* X,,7* X 55,0*X 007,7 9,X 55,0*X 5,7*X knm X kn X kn X 9,5,7,9 [m] 9,5X 9,5X X,7 X,9 X,9 5kN,5 6,5 5 6kN/m Wykres momentów dla układu rzeczywistego 9,5 5,6 5,6,,5 0,0 0,0 6, 6, M[kNm]

8 Kontrola kinematyczna Do kontroli kinematycznej (zgodnie z twierdzeniem redukcyjnym) przyjmujemy nowy układ podstawowy i obliczamy przemieszczenie kątowe w punkcie b, które po wyliczeniu powinno wynieść 0 M o Va0 b Vb0 H b0 *** *5,6 *** *9,5 ϕ *,9 *,9 5,5 7,9 07,,7 0, 0 0, *00% 07, 0,% * ϕ M *M dx 0 *5,6 ** *,5 ** Wykresy sił normalnych i poprzecznych dla układu rzeczywistego o 6* * **,9,9 N[kN],7,,,7,7, T[kN],7 9,,,7,7,7,59,59,7 0,7 9,,,5 6,5

9 Dla miejsca zerowego siły poprzecznej znajdujemy wartość max. momentów. T(x) 6x, 0 x,m M(x) 6x M(,),5kNm,x 0,0 6, 6, M[kNm] 5,6 0,0 0,0 9,5 5,6,,5,5

10 Obciążenie zmianą temperatury tm5 C 0 C I I 0 C I 5 C I 5 C I 0 C I K 5 C I [m] I I 0 50 cm I I cm Układ podstawowy X X X X 0 C 0 C 5 C 5 C 0 C a Va X X 5 C [m] b Vb Hb Warunki kinematycznej zgodności układu rzeczywistego z układem podstawowym u ul u p 0 Xδ X δ X δ P 0 v vl v p 0 Xδ X δ X δ P 0 ϕ ϕd ϕ g 0 Xδ X δ X δ P 0 tm5 C to 7,5 C 0 C t 5 C 0 C to 7,5 C t 5 C 5 C to 0 C t 0 5 C to 7,5 C t 5 C 0 C to 0 C t 0 C 5 C [m]

11 Stan X Wykres sił normalnych w stanie X X X N[] Va0 Hb0 Vb0 Stan X Wykres sił normalnych w stanie X X X N[] Va0 Vb0 H b0 Stan X Wykres sił normalnych w stanie X N[/m] 0,5 0,5 Va0 X X Vb0 Hb0 0,5 0,5

12 Do obliczenia sił nadliczbowych od obciążeń spowodowanych zmianą temperatury został przyjęty układ podstawowy identyczny jak w przypadku obliczeń od obciążeń zewnętrznych, dlatego współczynniki δ, δ, δ, δ, δ, δ nie zmieniają swej wartości. Obliczamy tylko przemieszczenia po kierunku X,X,X ( P, P, P ) spowodowane zmianą temperatury. t ip N α t t odx Miα t dx i h ***5 5 **0 P,*0 [( *( 7,5)* *( 0)*) ( * )] 0,097[m] 0, 0, ***5 ***0 5 **5 P,*0 [(**( 7,5) ( )**( 0)) ( )] 0,0067 [m] 0, 0, 0, ***5 5 **0 P,*0 [(0,5**( 7,5) ( 0,5)**( 0) ( )] 0,007[] 0, 0, 6 kn 05GPa *060cm 05*0 *060*0 m 67kNm m X Obliczenia nadliczbowych 5,7 55,0 9, *( ) X *( ) X *( ) 0,097 0 * 55,0,7 X *( ) X *( ) 0, * 9, 5,9 X *( ) X *( ) 0,007 0 * X *(5,7) X *(55,0) X *(9,) 0,097* 67 0 X *(55,0) X *(,7) 0,0067* 67 0 X *(9,) X *(5,9) 0,007* ,7*X 55,0*X 9,X 6,7 55,0*X,7* X 6,75 9,* X 5,9*X,7 X,66 kn X 0,57 kn X,75 knm

13 X,66 X,66 X0,57 X0,57 X,75 Hb0 Va0 X,75 [m] Vb0 Wykres momentów od zmiany temperatury,, M[kNm],6,6 5,09 6,7,75 5,09 5,09 Kontrola kinematyczna Do kontroli kinematycznej (zgodnie z twierdzeniem redukcyjnym) przyjmujemy nowy układ podstawowy i obliczamy wzajemne przemieszczenie kątowe w punkcie a, które po obliczeniu powinno wynieść 0 M a Va0 Hb0 Vb0

14 0,5 N[/m] 0,5 0,5 0,5, Wykres momentów od zmiany temperatury, M[kNm],6,6 5,09 6,7,75 5,09 5,09 ϕ [ 0 ** 0, ***( * ϕ *,6 _ M *M *,) dx *** _ M αt t h dx *,75]* 67*,9 (,6 6,7) ( 0,5)**( 7,5) 0,5**( 0)] [ _ Nαttodx 0 5 5,*0 *[ *** 0, **] 67 Wykresy sił normalnych oraz poprzecznych spowodowanych zmianą temperatury 7 9,77*0 rad 0 0,57,66,66,57 0,57,57,66 0,57 0,57 0,9,75 N[kN] T[kN] 0,57,66,66,57,57 0,57,66 0,57 0,57 0,9,75

15 Przemieszczenie pionowe punktu K od temperatury Przyjmujemy dowolny układ podstawowy ( zgodnie z twierdzeniem redukcyjnym) i obliczamy przemieszczenie w pkt. K I I I I I M[m] V a 0,5 I K I H b 0 V b 0,5 Wykres momentów od zmiany temperatury,, M[kNm],6,6 5,09 6,7,75 5,09 5,09 δ t [ * * *( *6,7 *,6) * * *5,09]* 0 ( * * * *,*0 0, 5 ) * 0,0009[m] Przemieszczenie pionowe punktu K od obciążenia zewnętrznego Do obliczenia przemieszczenia od sił zewnętrznych posłużymy się tym samym układem podstawowym, co powyżej. 6, 6, M[kNm] 5,6 0,0 0,0 9,5,5, 5,6,5 δ [ P * * *( *0,0 6* * * * * ]* *,) 0,097[m] 6* * * * * * * *( *,5 *5,6)

16 Kratownica G EA D EA K,5EA S,5EA α 5 sinα cosα 0, 707 o 0 kn 0 kn 7 5,66 α5 5 6 α5 9 0 α5 α x SSN Układ podstawowy 0 kn 0 kn X A B X C x X Warunki kinematycznej zgodności układu rzeczywistego z układem podstawowym Vc 0 δx δx P 0 AB 0 δx δx P 0

17 Stan P 0 kn 0 kn x *w przypadku, gdy pręt 7 nie jest obciążony siłą X wartość siły normalnej w tym pręcie wynosi 0 i nie uwzględniamy tego pręta na rysunku Np [kn] , ,,, Stan X X X x

18 0,707 N [] 0,707 0,707 0,707 Stan X x X N [],,,

19 Tabela z obliczeniami współczynników δ,δ,δ δ, P, P, zestawienie sił normalnych dla układu rzeczywistego w poszczególnych prętach oraz kontrola kinematyczna. *kreska w tabeli oznacza wartość równą Lp. L (NN)L (NN)L (NN)L (NNp)L (NNp)L N(H)[] dla N*N(H)*L Np [kn] N [] N [] N [kn] EA EA EA EA EA EA H EA 0 0 6,000 60,000,9 0,999 7, ,707,999 6,000 5,656 5,50 70,000,5 0,666, ,000 0,000,77 0, 9, , , 70,7 0, 7,5 77, 6,770 0,7,0 6,7 0 0,707,,667,5 56,560 0,000 6,9 0, 5,96 7, 0 0,77,7 0,,,,77 7,5 5,5 60, 6,0,75 0,7 5,5 9,7 0 0,707,,667,5 56,560 0,000 6,9 0, 5,96 0,, 0, 7,5 6,0,5 0,7,,7 0 0,667 0,000 5,7 0,,5,, 0 0, 0, , ,000 70,000 0,5 0,666, ,707,999,000, 69,60 0,000 5,75 0, 7, , ,000 0 δ, 06,6,9 5,07 670, 0,06 EA EA EA EA EA EA *kolumna zawiera zestawienie numeracji prętów * w kolumnie dla prętów o sztywności EA ( oraz 7) została podana długość prętów natomiast dla prętów o sztywności,5ea (5) długość prętów została podzielona przez,5 w celu ujednolicenia sztywności. *Kolumna 5 zawiera zestawienie sił normalnych dal poszczególnych stanów *Ostatni wiersz kolumn 60 zawiera obliczone współczynniki δ,δ,δ δ, P, P N N N N obliczone ze wzoru δ i k L ; i P ik ip L EA EA *Kolumna zawiera zestawienie sił normalnych dla układu rzeczywistego *Kolumna zestawienie sił normalnych N(H) powstałych od siły H (patrz poniżej Kontrola kinematyczna ) *Wiersz ostatni kolumny przemieszczenie punktu A (patrz poniżej Kontrola kinematyczna ) Po podstawieniu wartości z tabeli do równań kinematycznej zgodności otrzymujemy,,9 5,07 X X 0 EA EA EA,9 06,6 670, X X 0 EA EA EA *EA *EA,X,9X 5,07 X,7 kn,9x 06,6X 670, X 5,7 kn Obliczenia sił normalnych w kratownicy zostały przedstawione w tabeli powyżej (kol.) Do obliczenia sił posłużono się zasadą superpozycji korzystając ze wzoru: Np X N X N N

20 Wykres sił normalnych dla układu rzeczywistego 0 kn N[kN] 0 kn,9,5,7 0 6,770 6,9,75,7 6,9,5 5,7, 0,5 5,75 0 X5,7 Kontrola kinematyczna Przyjmujemy nowy układ podstawowy (zgodnie z tw. redukcyjnym). 0 kn 0 kn H A X X x Obliczamy przemieszczenie po kierunku H(A), które w naszym przypadku powinno wynieść 0 δ A 0

21 Stan H H A , kn Wykres sił normalnych od H N(H) [] 0,999 0,666 0, 0,7 0, 0,7 0, 0,7 0, A 0,666 0, Zgodnie z zasada pracy wirtualnej oraz twierdzeniem redukcyjnym nasze przemieszczenie obliczamy ze wzoru; N N(H) δ A L EA Obliczenia zamieszczono w tabelce powyżej. 0,06 Wartość obliczonego przemieszczenia wynosi δ A, co stanowi błąd rzędu 0,0%, EA zatem możemy przyjąć, że nasze przemieszczenie jest równe 0

1. METODA PRZEMIESZCZEŃ

1. METODA PRZEMIESZCZEŃ .. METODA PRZEMIESZCZEŃ.. Obliczanie sił wewnętrznych od obciążenia zewnętrznego q = kn/m P= kn Rys... Schemat konstrukcji φ φ u Rys... Układ podstawowy metody przemieszczeń Do wyliczenia mamy niewiadome:

Bardziej szczegółowo

Ćwiczenie nr 3. Obliczanie układów statycznie niewyznaczalnych metodą sił.

Ćwiczenie nr 3. Obliczanie układów statycznie niewyznaczalnych metodą sił. Ewa Kloczkowska, KBI 1, rok akademicki 006/007 Ćwiczenie nr 3 Obliczanie układów statycznie niewyznaczalnych metodą sił. Dla układu prętowego przedstawionego na rysunku naleŝy: 1) Obliczyć i wykonać wykresy

Bardziej szczegółowo

PROJEKT NR 1 METODA PRZEMIESZCZEŃ

PROJEKT NR 1 METODA PRZEMIESZCZEŃ POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr

Bardziej szczegółowo

Zadanie: Narysuj wykres sił normalnych dla zadanej kratownicy i policz przemieszczenie poziome węzła G. Zadanie rozwiąż metodą sił.

Zadanie: Narysuj wykres sił normalnych dla zadanej kratownicy i policz przemieszczenie poziome węzła G. Zadanie rozwiąż metodą sił. Zadanie: Narysuj wykres sił normalnych dla zadanej kratownicy i policz przemieszczenie poziome węzła. Zadanie rozwiąż metodą sił. P= 2kN P= 2kN Stopień statycznej niewyznaczalności: n s l r l pr 2 w 6

Bardziej szczegółowo

Obliczanie układów statycznie niewyznaczalnych. metodą sił

Obliczanie układów statycznie niewyznaczalnych. metodą sił Politechnika Poznańska Instytut Konstrukcji Budowlanych Zakład echaniki Budowli Obliczanie układów statycznie niewyznaczalnych metodą sił. Rama Dla układu pokazanego poniŝej naleŝy: - Oblicz i wykonać

Bardziej szczegółowo

2kN/m Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeń dobieram wstępne przekroje prętów.

2kN/m Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeń dobieram wstępne przekroje prętów. 2kN/m -20 C D 5kN 0,006m A B 0,004m +0 +20 0,005rad E 4 2 4 [m] Układ prętów ma dwie tarcze i osiem reakcji w podporach. Stopień statycznej niewyznaczalności SSN= 2, ponieważ, przy dwóch tarczach powinno

Bardziej szczegółowo

1. Obciążenie statyczne

1. Obciążenie statyczne . Obciążenie statyczne.. Obliczenie stopnia kinematycznej niewyznaczalności n = Σ ϕ + Σ = + = p ( ) Σ = w p + d u = 5 + 5 + 0 0 =. Schemat podstawowy metody przemieszczeń . Schemat odkształceń łańcucha

Bardziej szczegółowo

METODA SIŁ KRATOWNICA

METODA SIŁ KRATOWNICA Część. METDA SIŁ - RATWNICA.. METDA SIŁ RATWNICA Sposób rozwiązywania kratownic statycznie niewyznaczalnych metodą sił omówimy rozwiązują przykład liczbowy. Zadanie Dla kratownicy przedstawionej na rys..

Bardziej szczegółowo

PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA

PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA Dla zadanego układu należy 1) Dowolną metodą znaleźć rozkład sił normalnych

Bardziej szczegółowo

Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej

Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 1 Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej

Bardziej szczegółowo

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: 1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]

Bardziej szczegółowo

Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeo dobieram wstępne przekroje prętów.

Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeo dobieram wstępne przekroje prętów. 2kN/m -20 C D 5kN 0,006m A B 0,004m +0 +20 3 0,005rad E 4 2 4 [m] Układ prętów ma dwie tarcze i osiem reakcji w podporach. Stopieo statycznej niewyznaczalności SSN= 2, ponieważ, przy dwóch tarczach powinno

Bardziej szczegółowo

OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA

OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA POLECHNA POZNAŃSA WYDZAŁ BUDOWNCWA NŻYNER ŚRODOWSA NSYU ONSRUCJ BUDOWLANYCH ZAŁAD ECHAN BUDOWL OBLCZANE RA EODĄ PRZEESZCZEŃ WERSJA OPUEROWA Ćwiczenie projektowe nr z echani budowli Wykonał: aciej BYCZYŃS

Bardziej szczegółowo

MECHANIKA BUDOWLI I. Prowadzący : dr inż. Hanna Weber pok. 225, email: weber@zut.edu.pl strona: www.weber.zut.edu.pl

MECHANIKA BUDOWLI I. Prowadzący : dr inż. Hanna Weber pok. 225, email: weber@zut.edu.pl strona: www.weber.zut.edu.pl MECHANIKA BUDOWLI I Prowadzący : pok. 5, email: weber@zut.edu.pl strona: www.weber.zut.edu.pl Literatura: Dyląg Z., Mechanika Budowli, PWN, Warszawa, 989 Paluch M., Mechanika Budowli: teoria i przykłady,

Bardziej szczegółowo

Obliczanie układów statycznie niewyznaczalnych. Obliczanie układów statycznie niewyznaczalnych metoda sił z wykorzystaniem symetrii i antysymetrii

Obliczanie układów statycznie niewyznaczalnych. Obliczanie układów statycznie niewyznaczalnych metoda sił z wykorzystaniem symetrii i antysymetrii Gr. rok III POLITECHNIK POZNŃSK INSTYTUT KONSTRUKCJI BUDOWLNYCH ZKŁD ECHNIKI BUDOWLI metoda sił z wykorzystaniem symetrii i antysymetrii Gr. rok III 0 kn 6 kn/m Ponieważ rama jest symetryczna, do obliczenia

Bardziej szczegółowo

MECHANIKA BUDOWLI I. Prowadzący : dr inż. Hanna Weber. pok. 227, email: weber@zut.edu.pl

MECHANIKA BUDOWLI I. Prowadzący : dr inż. Hanna Weber. pok. 227, email: weber@zut.edu.pl MECHANIKA BUDOWLI I Prowadzący : dr inż. Hanna Weber pok. 227, email: weber@zut.edu.pl Literatura: Dyląg Z., Mechanika Budowli, PWN, Warszawa, 1989 Paluch M., Mechanika Budowli: teoria i przykłady, PWN,

Bardziej szczegółowo

Projekt nr 4. Dynamika ujęcie klasyczne

Projekt nr 4. Dynamika ujęcie klasyczne Projekt nr 4 Dynamika POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 4 Dynamika ujęcie klasyczne Konrad Kaczmarek

Bardziej szczegółowo

OBLICZENIE RAMY METODĄ PRZEMIESZCZEŃ (wpływ temperatury)

OBLICZENIE RAMY METODĄ PRZEMIESZCZEŃ (wpływ temperatury) Poliechnika Poznańska Wydział Achiekuy Budownicwa i Inżynieii Śodowiska ĆWICZENIE NR 4 OBLICZENIE RAMY METODĄ PRZEMIESZCZEŃ (wpływ empeauy) Sieocki Damian ok sudiów: III semes: VI g. 8 Poznań METODA PRZEMIESZCZEŃ

Bardziej szczegółowo

5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY

5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY Część 2. METODA PRZEMIESZCZEŃ PRZYKŁAD LICZBOWY.. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY.. Działanie sił zewnętrznych Znaleźć wykresy rzeczywistych sił wewnętrznych w ramie o schemacie i obciążeniu podanym

Bardziej szczegółowo

Rama statycznie wyznaczalna

Rama statycznie wyznaczalna Rama statycznie wyznaczalna m 5kN/m 1m 2m 3m Rama statycznie wyznaczalna 3m Obciążenie ramy statycznie wyznaczalnej: siła skupioną P =, momentem skupionym M = 10 knm, obciążeniem ciągłym równomiernie rozłożonym

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH

POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 1 LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH Prowadzący: mgr inż. A. Kaczor STUDIUM ZAOCZNE, II

Bardziej szczegółowo

MECHANIKA BUDOWLI. Linie wpływu sił w prętach kratownic statycznie niewyznaczalnych

MECHANIKA BUDOWLI. Linie wpływu sił w prętach kratownic statycznie niewyznaczalnych Dana kratownica: Olga Kopacz, Ada Łodygowski, ojciech Pawłowski, Michał Płotkowiak, Krzysztof Typer Konsultacje naukowe: prof. dr hab. JERZY RAKOSKI Poznań 00/00 MECHANIKA BUDOLI Linie wpływu sił w prętach

Bardziej szczegółowo

Linie wpływu w belce statycznie niewyznaczalnej

Linie wpływu w belce statycznie niewyznaczalnej Prof. Mieczysław Kuczma Poznań, styczeń 215 Zakład Mechaniki Budowli, PP Linie wpływu w belce statycznie niewyznaczalnej (Przykład liczbowy) Zacznijmy od zdefiniowania pojęcia linii wpływu (używa się też

Bardziej szczegółowo

OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH

OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH Sporządził: Bartosz Pregłowski Grupa : II Rok akadem: 2004/2005 OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH

Bardziej szczegółowo

ZADANIA - POWTÓRKA

ZADANIA - POWTÓRKA Część 5. ZADANIA - POWTÓRKA 5. 5. ZADANIA - POWTÓRKA Zadanie W ramie przedstawionej na rys 5. obliczyć kąt obrotu przekroju w punkcie K oraz obrót cięciwy RS. W obliczeniach można pominąć wpływ sił normalnych

Bardziej szczegółowo

1. Silos Strona:1 Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu ...

1. Silos Strona:1 Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu ... 1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu... Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] Strona:1 2. Ustalenie stopnia

Bardziej szczegółowo

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH.. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Rozwiązując układy niewyznaczalne dowolnie obciążone, bardzo często pomijaliśmy wpływ sił normalnych i

Bardziej szczegółowo

ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI

ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Łukasz Faściszewski, gr. KBI2, sem. 2, Nr albumu: 75 201; rok akademicki 2010/11. ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Stateczność ram wersja komputerowa 1. Schemat statyczny ramy i dane materiałowe

Bardziej szczegółowo

Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI

Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI Katedra Mechaniki Konstrukcji Wydział Budownictwa i Inżynierii Środowiska Politechniki Białostockiej... (imię i nazwisko)... (grupa, semestr, rok akademicki) ĆWICZENIE PROJEKTOWE NR Z MECHANIKI BUDOWLI

Bardziej szczegółowo

Zad.1 Zad. Wyznaczyć rozkład sił wewnętrznych N, T, M, korzystając z komputerowej wersji metody przemieszczeń. schemat konstrukcji:

Zad.1 Zad. Wyznaczyć rozkład sił wewnętrznych N, T, M, korzystając z komputerowej wersji metody przemieszczeń. schemat konstrukcji: Zad. Wznaczć rozkład sił wewnętrznch N, T, M, korzstając z komputerowej wersji metod przemieszczeń. schemat konstrukcji: ϕ 4, kn 4, 4, macierz transformacji (pręt nr): α = - ϕ = -, () 5 () () E=5GPa; I

Bardziej szczegółowo

Stateczność ramy. Wersja komputerowa

Stateczność ramy. Wersja komputerowa Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 2 Stateczność ramy. Wersja komputerowa Daniel Sworek gr. KB2 Rok akademicki 1/11 Semestr 2, II Grupa: KB2 Daniel

Bardziej szczegółowo

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY ALGORYTM STATYCZNEJ ANALIZY MES DLA RATOWNICY Piotr Pluciński e-mail: p.plucinski@l5.pk.edu.pl Jerzy Pamin e-mail: jpamin@l5.pk.edu.pl Instytut Technologii Informatycznych w Inżynierii Lądowej Wydział

Bardziej szczegółowo

METODA PASM SKOŃCZONYCH PŁYTY DWUPRZĘSŁOWE

METODA PASM SKOŃCZONYCH PŁYTY DWUPRZĘSŁOWE POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI METODA PASM SKOŃCZONYCH PŁYTY DWUPRZĘSŁOWE Dla płyty przedstawionej na rysunku należy: 1)Obciążając ciężarem własnym q i

Bardziej szczegółowo

gruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił

gruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił 1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] 2. Ustalenie stopnia statycznej

Bardziej szczegółowo

Z1/1. ANALIZA BELEK ZADANIE 1

Z1/1. ANALIZA BELEK ZADANIE 1 05/06 Z1/1. NLIZ LK ZNI 1 1 Z1/1. NLIZ LK ZNI 1 Z1/1.1 Zadanie 1 Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/1.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej

Bardziej szczegółowo

Część ZADANIA - POWTÓRKA ZADANIA - POWTÓRKA. Zadanie 1

Część ZADANIA - POWTÓRKA ZADANIA - POWTÓRKA. Zadanie 1 Część 6. ZADANIA - POWTÓRKA 6. 6. ZADANIA - POWTÓRKA Zadanie Wykorzystując metodę przemieszczeń znaleźć wykres momentów zginających dla ramy z rys. 6.. q = const. P [m] Rys. 6.. Rama statycznie niewyznaczalna

Bardziej szczegółowo

6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH

6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH Część 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6. 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6.. Wyznaczanie przemieszczeń z zastosowaniem równań pracy wirtualnej w układach prętowych W metodzie pracy

Bardziej szczegółowo

Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są

Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są PODPORY SPRĘŻYSTE Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są wprost proporcjonalne do reakcji w nich

Bardziej szczegółowo

3. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE

3. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE Część. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE.. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE Istotę metody przemieszczeń, najwygodniej jest przedstawić przez porównanie jej do metody sił, którą wcześniej już poznaliśmy

Bardziej szczegółowo

WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE

WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 2 WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE Prowadzący: mgr inŝ. A. Kaczor STUDIA DZIENNE MAGISTERSKIE, I ROK Wykonał:

Bardziej szczegółowo

DYNAMIKA RAM WERSJA KOMPUTEROWA

DYNAMIKA RAM WERSJA KOMPUTEROWA DYNAMIKA RAM WERSJA KOMPTEROWA Parametry przekrojów belek: E=205MPa=205 10 6 kn m 2 =205109 N m 2 1 - IPE 220 Pręty: 1, 3, 4: I y =2770cm 4 =0,00002770 m 4 EI =5678500 Nm 2 A=33,4 cm 4 =0,00334 m 2 EA=684700000

Bardziej szczegółowo

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE. A) o trzech reakcjach podporowych N=3

ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE. A) o trzech reakcjach podporowych N=3 ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE A) o trzech reakcjach podporowych N=3 B) o liczbie większej niż 3 - reakcjach podporowych N>3 A) wyznaczanie reakcji z równań

Bardziej szczegółowo

PROJEKT NR PROJEKT NR 3 OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH

PROJEKT NR PROJEKT NR 3 OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 3 OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH Dla zadanego układu należy 1) Obliczyć

Bardziej szczegółowo

Metody energetyczne. Metoda Maxwella Mohra Układy statycznie niewyznaczalne Metoda sił Zasada minimum energii

Metody energetyczne. Metoda Maxwella Mohra Układy statycznie niewyznaczalne Metoda sił Zasada minimum energii Metody energetyczne Metoda Maxwella Mohra Układy statycznie niewyznaczalne Metoda sił Zasada minimum energii dv 1 N dx Ndu EA dv dv S 1 M dx M sdϕ GI 1 M gdx M gdϑ EI S Energia sprężysta układu prętowego

Bardziej szczegółowo

ĆWICZENIE NR 3 OBLICZANIE UKŁADÓW STATYCZNIE NIEWYZNACZALNYCH METODĄ SIŁ OD OSIADANIA PODPÓR I TEMPERATURY

ĆWICZENIE NR 3 OBLICZANIE UKŁADÓW STATYCZNIE NIEWYZNACZALNYCH METODĄ SIŁ OD OSIADANIA PODPÓR I TEMPERATURY zęść OLIZNIE UKŁÓW STTYZNIE NIEWYZNZLNYH METOĄ SIŁ 1 POLITEHNIK POZNŃSK INSTYTUT KONSTRUKJI UOWLNYH ZKŁ MEHNIKI UOWLI ĆWIZENIE NR 3 OLIZNIE UKŁÓW STTYZNIE NIEWYZNZLNYH METOĄ SIŁ O OSINI POPÓR I TEMPERTURY

Bardziej szczegółowo

Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1

Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1 Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 Schemat analizowanej ramy Analizy wpływu imperfekcji globalnych oraz lokalnych, a także efektów drugiego rzędu

Bardziej szczegółowo

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17 Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1 MECHANIKA OGÓLNA - lista zadań 2016/17 Część 1 analiza kinematyczna układów płaskich Przeprowadzić analizę kinematyczną układu. Odpowiednią

Bardziej szczegółowo

Uwaga: Linie wpływu w trzech prętach.

Uwaga: Linie wpływu w trzech prętach. Zestaw nr 1 Imię i nazwisko zadanie 1 2 3 4 5 6 7 Razem punkty Zad.1 (5p.). Narysować wykresy linii wpływu sił wewnętrznych w przekrojach K i L oraz reakcji w podporze R. Zad.2 (5p.). Narysować i napisać

Bardziej szczegółowo

Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych

Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 3 Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych Daniel Sworek gr. KB2 Rok akademicki

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

{H B= 6 kn. Przykład 1. Dana jest belka: Podać wykresy NTM.

{H B= 6 kn. Przykład 1. Dana jest belka: Podać wykresy NTM. Przykład 1. Dana jest belka: Podać wykresy NTM. Niezależnie od sposobu rozwiązywania zadania, zacząć należy od zastąpienia podpór reakcjami. Na czas obliczania reakcji można zastąpić obciążenie ciągłe

Bardziej szczegółowo

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1 1.. 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1.1. Wstęp echanika budowli stanowi dział mechaniki technicznej zajmującej się statyką, dynamiką,

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

2ql [cm] Przykład Obliczenie wartości obciażenia granicznego układu belkowo-słupowego

2ql [cm] Przykład Obliczenie wartości obciażenia granicznego układu belkowo-słupowego Przykład 10.. Obiczenie wartości obciażenia granicznego układu bekowo-słupowego Obiczyć wartość obciążenia granicznego gr działającego na poniższy układ. 1 1 σ p = 00 MPa = m 1-1 - - 1 8 1 [cm] Do obiczeń

Bardziej szczegółowo

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli

Bardziej szczegółowo

PRZYKŁADOWE ZADANIA. ZADANIE 1 (ocena dostateczna)

PRZYKŁADOWE ZADANIA. ZADANIE 1 (ocena dostateczna) PRZYKŁADOWE ZADANIA ZADANIE (ocena dostateczna) Obliczyć reakcje, siły wewnętrzne oraz przemieszczenia dla kratownicy korzystając z Metody Elementów Skończonych. Zweryfikować poprawność obliczeń w mathcadzie

Bardziej szczegółowo

Wykład nr 2: Obliczanie ramy przesuwnej metodą przemieszczeń

Wykład nr 2: Obliczanie ramy przesuwnej metodą przemieszczeń Mechanika Budowli 2 sem. IV N1 Wykład nr 2: Obliczanie ramy przesuwnej metodą przemieszczeń Mechanika Budowli 2 sem. IV N1 Treści Programowe: 1. Metoda przemieszczeń układy nieprzesuwne 2. Metoda przemieszczeń

Bardziej szczegółowo

Dr inż. Janusz Dębiński

Dr inż. Janusz Dębiński Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MACHANIKI BUDOWLI

POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MACHANIKI BUDOWLI POLIECHNIKA POZNAŃSKA INSYU KONSRUKCJI BUDOWLANYCH ZAKŁAD MACHANIKI BUDOWLI ĆWICZENIE PROJEKOWE NR 2 DYNAMIKA RAM WERSJA KOMPUEROWA Z PRZEDMIOU MECHANIKA KONSRUKCJI Wykonał: Kamil Sobczyński WBiIŚ; SUM;

Bardziej szczegółowo

Zadanie 1 Zadanie 2 tylko Zadanie 3

Zadanie 1 Zadanie 2 tylko Zadanie 3 Zadanie 1 Obliczyć naprężenia oraz przemieszczenie pionowe pręta o polu przekroju A=8 cm 2. Siła działająca na pręt przenosi obciążenia w postaci siły skupionej o wartości P=200 kn. Długość pręta wynosi

Bardziej szczegółowo

Rozwiązywanie ramy statyczne niewyznaczalnej Metodą Sił

Rozwiązywanie ramy statyczne niewyznaczalnej Metodą Sił Rozwiązywanie ramy statyczne niewyznaczalnej Metodą Sił Polecenie: Narysuj wykres sił wewnętrznych w ramie. Zadanie rozwiąż metodą sił. PkN MkNm EJ q kn/m EJ EJ Określenie stopnia statycznej niewyznaczalności

Bardziej szczegółowo

Politechnika Poznańska 2006 Ćwiczenie nr2

Politechnika Poznańska 2006 Ćwiczenie nr2 Obliczanie przeieszczeń układów sayczne wyznaczalnych z zasosowanie równań pracy wirualnej. Poliechnika Poznańska 006 Ćwiczenie nr. Dla układu przedsawionego na rysunku naleŝy przyjąć przekroje pręów ak,

Bardziej szczegółowo

MECHANIKA BUDOWLI NA SEMESTRZE ZIMOWYM ROKU AKADEMICKIEGO 2015/2016

MECHANIKA BUDOWLI NA SEMESTRZE ZIMOWYM ROKU AKADEMICKIEGO 2015/2016 Termin zajęć: poniedziałek 1 odkształconej 05.10.15r. postaci ramy z zasady prac wirtualnych. 2 12.10.15r. Liczenie przemieszczeń w ramie Zasada Prac Wirtualnych. 3 19.10.15r. Rysowanie odkształconej postaci

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH. Ćwiczenie nr 4. Prowadzący: mgr inŝ. A. Kaczor

POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH. Ćwiczenie nr 4. Prowadzący: mgr inŝ. A. Kaczor POLITECHNIKA POZNAŃKA INTYTUT KONTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli Ćwiczenie nr 4 WYZNACZANIE IŁ W PRĘTACH KRATOWNIC PŁAKICH Prowadzący: mgr inŝ. A. Kaczor Wykonał: Dariusz Włochal gr. B6 rok

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Siła skupiona Mechanika teoretyczna Wykłady nr 5 Obliczanie sił wewnętrznych w belkach przykłady 1 2 Moment skupiony Obciążenie ciągłe równomierne 3 4 Obciążenie ciągłe liniowo zmienne Obciążenie ciągłe

Bardziej szczegółowo

Ćwiczenie nr 3: Wyznaczanie nośności granicznej belek Teoria spręŝystości i plastyczności. Magdalena Krokowska KBI III 2010/2011

Ćwiczenie nr 3: Wyznaczanie nośności granicznej belek Teoria spręŝystości i plastyczności. Magdalena Krokowska KBI III 2010/2011 Ćwiczenie nr 3: Wyznaczanie nośności granicznej belek Teoria spręŝystości i plastyczności Magdalena Krokowska KBI III 010/011 Wyznaczyć zakres strefy spręŝystej dla belki o zadanym przekroju poprzecznym

Bardziej szczegółowo

Krótko, co nas czeka na zajęciach. Jak realizujemy projekty. Jak je zaliczamy. Nieobecności Wykład nr 1

Krótko, co nas czeka na zajęciach. Jak realizujemy projekty. Jak je zaliczamy. Nieobecności Wykład nr 1 O czym dzisiaj Krótko, co nas czeka na zajęciach. Jak realizujemy projekty. Jak je zaliczamy. Nieobecności Wykład nr Co nas czeka na zajęciach Spis ćwiczeń projektowych: Wyznaczanie wykresów sił wewnętrznych

Bardziej szczegółowo

ĆWICZENIE 6 Kratownice

ĆWICZENIE 6 Kratownice ĆWICZENIE 6 Kratownice definicja konstrukcja składająca się z prętów prostych połączonych przegubowo w węzłach, dla której jedynymi obciążeniami są siły skupione przyłożone w węzłach. Umowa: jeśli konstrukcja

Bardziej szczegółowo

10.0. Schody górne, wspornikowe.

10.0. Schody górne, wspornikowe. 10.0. Schody górne, wspornikowe. OBCIĄŻENIA: Grupa: A "obc. stałe - pł. spocznik" Stałe γf= 1,0/0,90 Q k = 0,70 kn/m *1,5m=1,05 kn/m. Q o1 = 0,84 kn/m *1,5m=1,6 kn/m, γ f1 = 1,0, Q o = 0,63 kn/m *1,5m=0,95

Bardziej szczegółowo

Rozwiązanie stateczności ramy MES

Rozwiązanie stateczności ramy MES Rozwiązanie stateczności ramy MES Rozwiążemy stateczność ramy pokazanej na Rys.. λkn EA24.5 kn EI4kNm 2 d 5,r 5 d 6,r 6 2 d 4,r 4 4.m e e2 d 3,r 3 d,r X d 9,r 9 3 d 7,r 7 3.m d 2,r 2 d 8,r 8 Y Rysunek

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.

Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. Wytrzymałość Konstrukcji I - MEiL część II egzaminu 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. 2. Omówić pojęcia sił wewnętrznych i zewnętrznych konstrukcji.

Bardziej szczegółowo

Przykłady (twierdzenie A. Castigliano)

Przykłady (twierdzenie A. Castigliano) 23 Przykłady (twierdzenie A. Castigiano) Zadanie 8.4.1 Obiczyć maksymane ugięcie beki przedstawionej na rysunku (8.2). Do obiczeń przyjąć następujące dane: q = 1 kn m, = 1 [m], E = 2 17 [Pa], d = 4 [cm],

Bardziej szczegółowo

PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE

PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE Podstawy statyki budowli: Pojęcia podstawowe Model matematyczny, w odniesieniu do konstrukcji budowlanej, opisuje ją za pomocą zmiennych. Wartości zmiennych

Bardziej szczegółowo

KRATOWNICE 1. Definicja: konstrukcja prętowa, składająca się z prętów prostych połączonych ze sobą przegubami. pas górny.

KRATOWNICE 1. Definicja: konstrukcja prętowa, składająca się z prętów prostych połączonych ze sobą przegubami. pas górny. KRTOWNIE efinicja: konstrukcja prętowa, składająca się z prętów prostych połączonych ze sobą przegubami słupki pas górny krzyżulce pas dolny Założenia: pręty są połączone w węzłach przegubami idealnymi

Bardziej szczegółowo

Twierdzenia o wzajemności

Twierdzenia o wzajemności Twierdzenia o wzajemności Praca - definicja Praca iloczyn skalarny wektora siły i wektora drogi jaką pokonuje punkt materialny pod wpływem działania tej siły. L S r r F( s) o ds r F( s) cos ( α ) ds F

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej.

10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej. 10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej. OBCIĄŻENIA: 6,00 6,00 4,11 4,11 1 OBCIĄŻENIA: ([kn],[knm],[kn/m]) Pręt: Rodzaj: Kąt: P1(Tg): P2(Td): a[m]: b[m]: Grupa:

Bardziej szczegółowo

Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów

Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu rysunek jest w skali True 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek

Bardziej szczegółowo

Rys. 32. Widok perspektywiczny budynku z pokazaniem rozmieszczenia kratownic

Rys. 32. Widok perspektywiczny budynku z pokazaniem rozmieszczenia kratownic ROZDZIAŁ VII KRATOW ICE STROPOWE VII.. Analiza obciążeń kratownic stropowych Rys. 32. Widok perspektywiczny budynku z pokazaniem rozmieszczenia kratownic Bezpośrednie obciążenie kratownic K5, K6, K7 stanowi

Bardziej szczegółowo

STATECZNOŚĆ RAM WERSJA KOMPUTEROWA

STATECZNOŚĆ RAM WERSJA KOMPUTEROWA Politechnika Poznańska Wydział Budownictwa i Inżynierii Środowiska Instytut Konstrukcji Budowlanych Zakład Mechaniki Budowli Studia Stacjonarne II Stopnia I rok Semestr II 21/211 STATECZNOŚĆ RAM WERSJA

Bardziej szczegółowo

OPIS TECHNICZNY KONSTRUKCJA

OPIS TECHNICZNY KONSTRUKCJA OPIS TECHNICZNY KONSTRUKCJ 1.0 Ocena stanu konstrukcji istniejącego budynku Istniejący budynek to obiekt dwukondygnacyjny, z poddaszem, częściowo podpiwniczony, konstrukcja ścian nośnych tradycyjna murowana.

Bardziej szczegółowo

Ć w i c z e n i e K 4

Ć w i c z e n i e K 4 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

WIERZBICKI JĘDRZEJ. 4 (ns)

WIERZBICKI JĘDRZEJ. 4 (ns) WIERZBICKI JĘDRZEJ 4 (ns) CZĘŚĆ 1a BELKA 1. Zadanie Przeprowadzić analizę kinematyczną oraz wyznaczyć reakcje w więzach belki, danej schematem przedstawionym na rys. 1. Wymiary oraz obciążenia przyjąć

Bardziej szczegółowo

Z1/7. ANALIZA RAM PŁASKICH ZADANIE 3

Z1/7. ANALIZA RAM PŁASKICH ZADANIE 3 Z1/7. NLIZ RM PŁSKIH ZNI 3 1 Z1/7. NLIZ RM PŁSKIH ZNI 3 Z1/7.1 Zadanie 3 Narysować wykresy sił przekrojowych w ramie wspornikowej przedstawionej na rysunku Z1/7.1. Następnie sprawdzić równowagę sił przekrojowych

Bardziej szczegółowo

9.0. Wspornik podtrzymujący schody górne płytowe

9.0. Wspornik podtrzymujący schody górne płytowe 9.0. Wspornik podtrzymujący schody górne płytowe OBCIĄŻENIA: 55,00 55,00 OBCIĄŻENIA: ([kn],[knm],[kn/m]) Pręt: Rodzaj: Kąt: P(Tg): P2(Td): a[m]: b[m]: Grupa: A "" Zmienne γf=,0 Liniowe 0,0 55,00 55,00

Bardziej szczegółowo

5.1. Kratownice płaskie

5.1. Kratownice płaskie .. Kratownice płaskie... Definicja kratownicy płaskiej Kratownica płaska jest to układ prętowy złożony z prętów prostych, które są połączone między sobą za pomocą przegubów, Nazywamy je węzłami kratownicy.

Bardziej szczegółowo

Narysować wykresy momentów i sił tnących w belce jak na rysunku. 3ql

Narysować wykresy momentów i sił tnących w belce jak na rysunku. 3ql Narysować wykresy momentów i sił tnących w belce jak na rysunku. q l Określamy stopień statycznej niewyznaczalności: n s = r - 3 - p = 5-3 - 0 = 2 Przyjmujemy schemat podstawowy: X 2 X Zakładamy do obliczeń,

Bardziej szczegółowo

KONSTRUKCJE METALOWE 1 Przykład 4 Projektowanie prętów ściskanych

KONSTRUKCJE METALOWE 1 Przykład 4 Projektowanie prętów ściskanych KONSTRUKCJE METALOWE Przykład 4 Projektowanie prętów ściskanych 4.Projektowanie prętów ściskanych Siły ściskające w prętach kratownicy przyjęto z tablicy, przykładu oraz na rysunku 3a. 4. Projektowanie

Bardziej szczegółowo

Analiza I i II rzędu. gdzie α cr mnożnik obciążenia krytycznego według procedury

Analiza I i II rzędu. gdzie α cr mnożnik obciążenia krytycznego według procedury Analiza I i II rzędu W analizie I rzędu stosuje się zasadę zesztywnienia, tzn. rozpatruje się nieodkształconą, pierwotną geometrię konstrukcji, niezależnie od stanu obciążenia. Gdy w obliczeniac statycznyc

Bardziej szczegółowo

Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z

Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z wykorzystaniem Metody Sił Temat zadania rozwiązanie

Bardziej szczegółowo

Obliczenia szczegółowe dźwigara głównego

Obliczenia szczegółowe dźwigara głównego Katedra Mostów i Kolei Obliczenia szczegółowe dźwigara głównego Materiały dydaktyczne dla kursu Mosty dr inż. Mieszko KUŻAWA 18.04.2015 r. III. Szczegółowe obliczenia statyczne dźwigara głównego Podstawowe

Bardziej szczegółowo

Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, Michał Płotkowiak, Wojciech Pawłowski Poznań 2002/2003 MECHANIKA BUDOWLI 1

Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, Michał Płotkowiak, Wojciech Pawłowski Poznań 2002/2003 MECHANIKA BUDOWLI 1 Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, ichał Płotkowiak, Wojciech Pawłowski Poznań 00/003 ECHANIKA UDOWLI WSTĘP. echanika budowli stanowi dział mechaniki technicznej, zajmujący się statyką, statecznością

Bardziej szczegółowo

Podkreśl prawidłową odpowiedź

Podkreśl prawidłową odpowiedź TEST z przedmiotu: Zakres: Czas trwania egzaminu: Punktacja: ZESPÓŁ SZKÓŁ BUDOWLANYCH projektowanie konstrukcyjne obciążenia budowli, konstrukcje drewniane 40minut 0pkt.- Odpowiedź nieprawidłowa lub brak

Bardziej szczegółowo

ZGINANIE PŁASKIE BELEK PROSTYCH

ZGINANIE PŁASKIE BELEK PROSTYCH ZGINNIE PŁSKIE EEK PROSTYCH WYKRESY SIŁ POPRZECZNYCH I OENTÓW ZGINJĄCYCH Zginanie płaskie: wszystkie siły zewnętrzne czynne (obciążenia) i bierne (reakcje) leżą w jednej wspólnej płaszczyźnie przechodzącej

Bardziej szczegółowo

SKRĘCANIE WAŁÓW OKRĄGŁYCH

SKRĘCANIE WAŁÓW OKRĄGŁYCH KRĘCANIE AŁÓ OKRĄGŁYCH kręcanie występuje wówczas gdy para sił tworząca moment leży w płaszczyźnie prostopadłej do osi elementu konstrukcyjnego zwanego wałem Rysunek pokazuje wał obciążony dwiema parami

Bardziej szczegółowo

= 2 42EI 41EI EI 2 P=15 M=10 M=10 3EI. q=5. Pret s-p. Pret s-p. Pret s-p. Pret s-p. Pret s-l.

= 2 42EI 41EI EI 2 P=15 M=10 M=10 3EI. q=5. Pret s-p. Pret s-p. Pret s-p. Pret s-p. Pret s-l. Dane wyjściowe do obliczeń kf=0 ks=20 3 EI 2 2EI EI P=5 M=0 3EI M=0 q=5 EI 5 6 8 2 Dobór układu podstawowego metody przemieszczeń n = 2 3 Pret s-p 2 Pret s-p Pret s-p Pret s-p Pret s-l Pret p-s 5 6 Wyznaczenie

Bardziej szczegółowo