5.1. Kratownice płaskie
|
|
- Angelika Mikołajczyk
- 8 lat temu
- Przeglądów:
Transkrypt
1 .. Kratownice płaskie... Definicja kratownicy płaskiej Kratownica płaska jest to układ prętowy złożony z prętów prostych, które są połączone między sobą za pomocą przegubów, Nazywamy je węzłami kratownicy. Wszystkie siły działające na kratownicę płaską przyłożone są w węzłach, są to więc wektory związane. Cała taka konstrukcja podparta jest podporami: przegubowo-nieprzesuwnymi oraz przegubowo-przesuwnymi.
2 .. Kratownice płaskie... Typy kratownic płaskich Rozróżniamy dwa typy kratownic płaskich:. kratownica płaska o strukturze prostej, w której pręty są bokami trójkątów, w wierzchołkach których znajdują się węzły (dwa trójkąty muszą mieć przynajmniej jeden bok wspólny). kratownica płaska o strukturze złożonej, w której pręty nie zawsze są bokami trójkątów.
3 .. Kratownice płaskie... Kratownice płaskie o strukturze prostej Pręty kratownicy są bokami trójkątów, w wierzchołkach których znajdują się węzły. P P 0 H 8 9 V 7 8 7,, i - pręty pasa dolnego P V8 i - pręty pasa górnego 7, 8 i 9 - słupki 0,, i - krzyżulce
4 .. Kratownice płaskie... Kratownice płaskie o strukturze złożonej P P P 8 P 9 7 H V V
5 .. Kratownice płaskie... Przykłady stalowych kratownic płaskich i przestrzennych
6 .. Kratownice płaskie... Przykłady stalowych kratownic płaskich i przestrzennych 7
7 .. Kratownice płaskie... Przykłady stalowych kratownic płaskich i przestrzennych 8
8 .. Kratownice płaskie... Przykład żelbetowej kratownicy przestrzennej 9
9 .. Kratownice płaskie..7. Przykłady drewnianych kratownic płaskich 0
10 .. Analiza kinematyczna kratownic płaskich... Warunek konieczny geometrycznej niezmienności kratownic płaskich Jak wiadomo każdy punkt na płaszczyźnie posiada dwa stopnie swobody. Jeżeli więc kratownica płaska składa się z w węzłów to razem posiadają one w stopni swobody. Warunek konieczny geometrycznej niezmienności kratownicy płaskiej ma więc postać w p r p oznacza liczbę prętów kratownicy płaskiej r oznacza liczbę stopni swobody odbieranych przez podpory.
11 .. Analiza kinematyczna kratownic płaskich... Warunek konieczny geometrycznej niezmienności kratownic płaskich Kratownica spełniająca nierówność w p r może być kratownicą płaską statycznie niewyznaczalną. Kratownica spełniająca równanie w= p r może być kratownicą płaską statycznie wyznaczalną.
12 .. Analiza kinematyczna kratownic płaskich... Warunek konieczny geometrycznej niezmienności kratownic płaskich Kratownice niespełniające warunku koniecznego geometrycznej niezmienności są kratownicami geometrycznie zmiennymi. Kratownice takie są mechanizmami i nie mogą być modelem żadnej konstrukcji budowlanej.
13 .. Analiza kinematyczna kratownic płaskich... Warunki dostateczne geometrycznej niezmienności kratownic płaskich Jeżeli kratownica jest kratownicą o strukturze prostej, to wtedy jej części zbudowane z trójkątów, w wierzchołkach których znajdują się węzły możemy traktować jako tarczę sztywną. I Mając już kratownicę zamienioną na poszczególne tarcze sztywne, zamieniamy podpory na pręty podporowe i traktujemy ją jako płaski układ tarcz sztywnych.
14 .. Analiza kinematyczna kratownic płaskich... Analiza kinematyczna kratownic płaskich - przykład = 7 + 7
15 .. Analiza kinematyczna kratownic płaskich... Analiza kinematyczna kratownic płaskich - przykład = I Kratownica jest geometrycznie niezmienna i statycznie wyznaczalna. Tarcza sztywna numer I jest połączona z tarczą podporową za pomocą prętów podporowych numer, i, których kierunki nie przecinają się w jednym punkcie.
16 .. Analiza kinematyczna kratownic płaskich... Analiza kinematyczna kratownic płaskich - przykład = 7+ 7
17 .. Analiza kinematyczna kratownic płaskich... Analiza kinematyczna kratownic płaskich - przykład I = Tarcza sztywna numer I jest połączona z tarczą podporową za pomocą trzech prętów podporowych numer, i, których kierunki nie przecinają się w jednym punkcie. Kratownica jest geometrycznie niezmienna i statycznie wyznaczalna. 8
18 .. Analiza kinematyczna kratownic płaskich... Analiza kinematyczna kratownic płaskich - przykład Kratownica płaska - półkrzyżulcowa = +
19 .. Analiza kinematyczna kratownic płaskich... Analiza kinematyczna kratownic płaskich - przykład I = Kratownica jest geometrycznie niezmienna i statycznie wyznaczalna. Tarcza sztywna numer I jest połączona z tarczą podporową za pomocą trzech prętów podporowych numer, i, których kierunki nie przecinają się w jednym puncie.
20 .. Analiza kinematyczna kratownic płaskich..8. Analiza kinematyczna kratownic płaskich - przykład = + 7
21 .. Analiza kinematyczna kratownic płaskich..8. Analiza kinematyczna kratownic płaskich - przykład II A I = + Tarcza sztywna numer I połączona z tarczą podporową za pomocą trzech prętów podporowych numer, i, których kierunki nie przecinają się w jednym punkcie. Jest ona więc geometrycznie niezmienna i stanowi tarczę podporową dla tarczy sztywnej numer II. 8
22 .. Analiza kinematyczna kratownic płaskich..8. Analiza kinematyczna kratownic płaskich - przykład II A I Kratownica jest geometrycznie zmienna. Tarcza sztywna numer II połączona z tarczą podporową za pomocą przegubu A oraz pręta podporowego numer, a przegub leży na kierunku pręta podporowego. Jest więc ona geometrycznie zmienna. 9
23 .. Metody rozwiązywania kratownic płaskich... Podstawowe założenie - zasada zesztywnienia Rzeczywiste kratownice płaskie są zbudowane z prętów, które pod wpływem obciążenia zmieniają swój kształt oraz wymiary. Jednak badania tych konstrukcji udowodniły, że zmiany te są małe w porównaniu z wymiarami kratownic płaskich. Spostrzeżenie to pozwala nam wprowadzić zasadę zesztywnienia. Mówi ona, że reakcje na podporach oraz siły przekrojowe w prętach kratownicy płaskiej obliczamy dla kratownicy nieodkształconej. Pozwala to znacznie uprościć obliczenia. 0
24 .. Metody rozwiązywania kratownic płaskich... Siły przekrojowe działające w pręcie kratownicy płaskiej Aby pręt kratownicy płaskiej był w równowadze, muszą na niego działać dwie siły o tych samych wartościach, przeciwnych zwrotach, a ich kierunki pokrywają się z prętem. S S W prętach kratownicy płaskiej działają tylko siły normalne. Y X M S N N M S T T N N S S
25 .. Metody rozwiązywania kratownic płaskich... Metoda zrównoważenia węzłów - podstawowe zasady Jest to metoda służąca do wyznaczania sił we wszystkich prętach kratownicy płaskiej. Dla kratownicy płaskiej o strukturze prostej zbudowanej z w węzłów podstawowa procedura składa się z następujących kroków:. sprawdzamy warunki geometrycznej niezmienności: konieczny i dostateczne. wyznaczamy wartości reakcji traktując kratownicę płaską jako płaski układ tarcz sztywnych, a następnie sprawdzamy je. zaczynając od węzła, w którym schodzą się tylko dwa pręty kratownicy wyznaczamy siły normalne w tych prętach
26 .. Metody rozwiązywania kratownic płaskich... Metoda zrównoważenia węzłów - podstawowe zasady. znajdujemy kolejne węzły, w których nie znamy wartości sił normalnych tylko w dwóch prętach i wyznaczamy je. sprawdzamy poprawność obliczeń stosując jedno z równań równowagi w węźle przedostatnim w oraz oba równania w węźle ostatnim w. Na początku obliczeń zakładamy zwroty wszystkich reakcji podporowych. Jeżeli w wyniku obliczeń otrzymamy reakcję dodatnią, to ma ona w rzeczywistości taki zwrot jaki założyliśmy, jeżeli otrzymamy reakcję ujemną, to ma ona zwrot przeciwny do założonego. Na początek w każdym węźle zakładamy, że siły normalne działające w prętach schodzących się w nim są dodatnie, czyli pręty te są rozciągane. Prawidłowy znak siły normalnej otrzymamy w wyniku obliczeń.
27 .. Metody rozwiązywania kratownic płaskich... Metoda Rittera - podstawowe zasady Jest to metoda, dzięki której da się wyznaczyć siłę normalną w jednym, ściśle określonym pręcie kratownicy płaskiej. Aby ją zastosować musimy wykonać następujące kroki:. sprawdzamy warunki geometrycznej niezmienności: konieczny i dostateczne. wyznaczamy wartości reakcji traktując kratownicę płaską jako płaski układ tarcz sztywnych, a następnie sprawdzamy je. przecinamy kratownicę płaską maksymalnie przez trzy pręty, w których nie znamy sił normalnych. z odpowiedniego równania równowagi wyznaczamy nieznaną siłę normalną w pręcie kratownicy.
28 .. Metody rozwiązywania kratownic płaskich... Metoda Rittera - podstawowe zasady W większości przypadków odpowiednim równaniem równowagi jest równanie sumy momentów wszystkich sił działających na odciętą część kratownicy płaskiej względem punktu, który nazywamy punktem Rittera. Jeżeli przecinamy kratownicę przez trzy pręty, to punktem Rittera dla jednego z nich jest punkt przecięcia się kierunków pozostałych dwóch prętów.
29 .. Metody rozwiązywania kratownic płaskich... Metoda Rittera - podstawowe zasady α G P K H V P α D P V 7
30 .. Metody rozwiązywania kratownic płaskich... Metoda Rittera - podstawowe zasady NG Y G X K RG H V M RG =0 RD D NK ND P M RD=0 Y =0 8
31 .. Metody rozwiązywania kratownic płaskich... Metoda Rittera - podstawowe zasady - kratownica z drugorzędnym zakratowaniem Pierwszorzędne zakratowanie Drugorzędne zakratowanie 9
32 .. Metody rozwiązywania kratownic płaskich... Metoda Rittera - podstawowe zasady - kratownica z drugorzędnym zakratowaniem β α G K R K R β. Przekrój α α K α RG=R. Wyznaczenie siły normalnej w pręcie G. Przekrój β β 0
33 .. Metody rozwiązywania kratownic płaskich... Metoda Rittera - podstawowe zasady - kratownica półkrzyżulcowa α G D α
34 .. Metody rozwiązywania kratownic płaskich... Metoda Rittera - podstawowe zasady - kratownica półkrzyżulcowa RD S S G NG D ND NS NS RG M RD=0 M RG =0
35 .. Wyznaczanie prętów zerowych w kratownicach płaskich... Definicja pręta zerowego Prętem zerowym nazywamy pręt, w którym przy danej konfiguracji obciążenia czynnego oraz reakcji, siła normalna wynosi zero. Nie oznacza to jednak, że pręt ten jest niepotrzebny. Nie możemy go usunąć, ponieważ wtedy nie byłyby spełniony warunek konieczny geometrycznej niezmienności, więc kratownica byłaby geometrycznie zmienna. 7
36 .. Wyznaczanie prętów zerowych w kratownicach płaskich... Zasady wyznaczania prętów zerowych Jeżeli w nieobciążonym węźle spotykają się dwa pręty, to oba są prętami zerowymi. Jeżeli w nieobciążonym węźle spotykają się trzy pręty i dwa z nich leżą na jednej prostej, to trzeci z nich jest prętem zerowym Jeżeli w obciążonym węźle spotykają się dwa pręty i siła czynna lub reakcja ma kierunek jednego z prętów, to drugi jest prętem zerowym. P 7
37 .. Wyznaczanie prętów zerowych w kratownicach płaskich - zadanie... Zadanie Wyznaczyć pręty zerowe w kratownicy płaskiej przedstawionej na poniższym rysunku. P P H P 8 8 V V8 77
38 .7. Wyznaczanie prętów zerowych w kratownicach płaskich - zadanie.7.. Zadanie Wyznaczyć pręty zerowe w kratownicy płaskiej przedstawionej na poniższym rysunku. P H V 0 P 7 9 P V9 78
39 .8. Wyznaczanie prętów zerowych w kratownicach płaskich - zadanie.8.. Zadanie Wyznaczyć pręty zerowe w kratownicy płaskiej przedstawionej na poniższym rysunku. 9 H P V P P 0 9 V7 79
40 .9. Wyznaczanie prętów zerowych w kratownicach płaskich - zadanie.9.. Zadanie Wyznaczyć pręty zerowe w kratownicy płaskiej przedstawionej na poniższym rysunku. P R R 80
Z1/1. ANALIZA KINEMATYCZNA PŁASKICH UKŁADÓW PRĘTOWYCH ZADANIE 1
Z/. NLZ KNEMTYCZN PŁSKCH UKŁDÓW PRĘTOWYCH ZDNE Z/. NLZ KNEMTYCZN PŁSKCH UKŁDÓW PRĘTOWYCH ZDNE Z/.. Kratownica numer Sprawdzić czy kratownica płaska przedstawiona na rysunku Z/. jest układem geometrycznie
KRATOWNICE 1. Definicja: konstrukcja prętowa, składająca się z prętów prostych połączonych ze sobą przegubami. pas górny.
KRTOWNIE efinicja: konstrukcja prętowa, składająca się z prętów prostych połączonych ze sobą przegubami słupki pas górny krzyżulce pas dolny Założenia: pręty są połączone w węzłach przegubami idealnymi
Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów
1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu rysunek jest w skali True 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek
4.1. Modelowanie matematyczne
4.1. Modelowanie matematyczne Model matematyczny Model matematyczny opisuje daną konstrukcję budowlaną za pomocą zmiennych. Wartości zmiennych będą należały to zbioru liczb rzeczywistych i będą one reprezentować
Z1/1. ANALIZA BELEK ZADANIE 1
05/06 Z1/1. NLIZ LK ZNI 1 1 Z1/1. NLIZ LK ZNI 1 Z1/1.1 Zadanie 1 Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/1.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej
PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE
PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE Podstawy statyki budowli: Pojęcia podstawowe Model matematyczny, w odniesieniu do konstrukcji budowlanej, opisuje ją za pomocą zmiennych. Wartości zmiennych
ĆWICZENIE 6 Kratownice
ĆWICZENIE 6 Kratownice definicja konstrukcja składająca się z prętów prostych połączonych przegubowo w węzłach, dla której jedynymi obciążeniami są siły skupione przyłożone w węzłach. Umowa: jeśli konstrukcja
gruparectan.pl 1. Kratownica 2. Szkic projektu 3. Ustalenie warunku statycznej niewyznaczalności układu Strona:1
1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek konieczny geometrycznej
Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17
Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1 MECHANIKA OGÓLNA - lista zadań 2016/17 Część 1 analiza kinematyczna układów płaskich Przeprowadzić analizę kinematyczną układu. Odpowiednią
Z1/2 ANALIZA BELEK ZADANIE 2
05/06 Z1/. NLIZ LK ZNI 1 Z1/ NLIZ LK ZNI Z1/.1 Zadanie Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej i momentu
MECHANIKA OGÓLNA wykład 4
MECHNIK OGÓLN wykład 4 D R I N Ż. G T M R Y N I K Obliczanie sił wewnętrznych w układach prętowych. K R T O W N I C E KRTOWNIC UKŁD PRĘTÓW PROSTOLINIOWYCH Przegubowe połączenia w węzłach Obciążenie węzłowe
1. ANALIZA KINAMATYCZNA PŁASKICH UKŁADÓW PRĘTOWYCH
1 1.1. Płaskie układy tarcz sztywnych naliza kinematyczna służy nam do określenia czy dany układ spełnia wszystkie warunki aby być konstrukcją budowlaną. Podstawowym pojęciem stosowanym w analizie kinematycznej
8. ANALIZA KINEMATYCZNA I STATYCZNA USTROJÓW PRĘTOWYCH
Część 1 8. ANALIZA KINEMATYCZNA I STATYCZNA USTROJÓW PRĘTOWYCH 1 8. 8. ANALIZA KINEMATYCZNA I STATYCZNA USTROJÓW PRĘTOWYCH 8.1. Analiza kinematyczna płaskiego układu tarcz sztywnych. Układy statycznie
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 1 LINIE WPŁYWOWE SIŁ W UKŁADACH STATYCZNIE WYZNACZALNYCH Prowadzący: mgr inż. A. Kaczor STUDIUM ZAOCZNE, II
WIERZBICKI JĘDRZEJ. 4 (ns)
WIERZBICKI JĘDRZEJ 4 (ns) CZĘŚĆ 1a BELKA 1. Zadanie Przeprowadzić analizę kinematyczną oraz wyznaczyć reakcje w więzach belki, danej schematem przedstawionym na rys. 1. Wymiary oraz obciążenia przyjąć
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH. Ćwiczenie nr 4. Prowadzący: mgr inŝ. A. Kaczor
POLITECHNIKA POZNAŃKA INTYTUT KONTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli Ćwiczenie nr 4 WYZNACZANIE IŁ W PRĘTACH KRATOWNIC PŁAKICH Prowadzący: mgr inŝ. A. Kaczor Wykonał: Dariusz Włochal gr. B6 rok
Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych. Pręty obciążone osiowo Kratownice
Tematyka wykładu 2 Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych ręty obciążone osiowo Kratownice Mechanika budowli - kratownice Kratownicą lub układem kratowym nazywamy układ prostoliniowych
Dr inż. Janusz Dębiński
Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.
3. Rozciąganie osiowe
3. 3. Rozciąganie osiowe 3. Podstawowe definicje Przyjmijmy, że materiał z którego wykonany został pręt jest jednorodny oraz izotropowy. Izotropowy oznacza, że próbka wycięta z większej bryły materiału
1. ANALIZA BELEK I RAM PŁASKICH
5/6 1. NIZ BEEK I RM PŁSKICH 1 1. NIZ BEEK I RM PŁSKICH 1.1 naliza kinematyczna podstawowe definicje Podstawowym pojęciem stosowanym w analizie kinematycznej belek i ram płaskich jest tarcza sztywna. Jest
ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE. A) o trzech reakcjach podporowych N=3
ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE A) o trzech reakcjach podporowych N=3 B) o liczbie większej niż 3 - reakcjach podporowych N>3 A) wyznaczanie reakcji z równań
Mechanika teoretyczna
Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe
METODA SIŁ KRATOWNICA
Część. METDA SIŁ - RATWNICA.. METDA SIŁ RATWNICA Sposób rozwiązywania kratownic statycznie niewyznaczalnych metodą sił omówimy rozwiązują przykład liczbowy. Zadanie Dla kratownicy przedstawionej na rys..
WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 2 WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE Prowadzący: mgr inŝ. A. Kaczor STUDIA DZIENNE MAGISTERSKIE, I ROK Wykonał:
WYZNACZANIE REAKCJI WIĘZÓW W UKŁADZIE TARCZ SZTYWNYCH
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 1 WYZNACZANIE REAKCJI WIĘZÓW W UKŁADZIE TARCZ SZTYWNYCH Prowadzący: mgr inŝ. A. Kaczor STUDIA DZIENNE MAGISTERSKIE,
1. Silos Strona:1 Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu ...
1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu... Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] Strona:1 2. Ustalenie stopnia
Mechanika teoretyczna
Inne rodzaje obciążeń Mechanika teoretyczna Obciążenie osiowe rozłożone wzdłuż pręta. Obciążenie pionowe na pręcie ukośnym: intensywność na jednostkę rzutu; intensywność na jednostkę długości pręta. Wykład
WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204
WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW
Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI
Katedra Mechaniki Konstrukcji Wydział Budownictwa i Inżynierii Środowiska Politechniki Białostockiej... (imię i nazwisko)... (grupa, semestr, rok akademicki) ĆWICZENIE PROJEKTOWE NR Z MECHANIKI BUDOWLI
Mechanika. Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji.
Mechanika Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji. Przyłożenie układu zerowego (układ sił równoważących się, np. dwie siły o takiej samej mierze,
Uwaga: Linie wpływu w trzech prętach.
Zestaw nr 1 Imię i nazwisko zadanie 1 2 3 4 5 6 7 Razem punkty Zad.1 (5p.). Narysować wykresy linii wpływu sił wewnętrznych w przekrojach K i L oraz reakcji w podporze R. Zad.2 (5p.). Narysować i napisać
5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY
Część 2. METODA PRZEMIESZCZEŃ PRZYKŁAD LICZBOWY.. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY.. Działanie sił zewnętrznych Znaleźć wykresy rzeczywistych sił wewnętrznych w ramie o schemacie i obciążeniu podanym
6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH
Część 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6. 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6.. Wyznaczanie przemieszczeń z zastosowaniem równań pracy wirtualnej w układach prętowych W metodzie pracy
WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH
Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1 1.. 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1.1. Wstęp echanika budowli stanowi dział mechaniki technicznej zajmującej się statyką, dynamiką,
Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie
Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie materiały pomocnicze do zajęć audytoryjnych i projektowych opracowanie: dr inż. Piotr Dębski, dr inż. Dariusz Zaręba
gruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił
1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] 2. Ustalenie stopnia statycznej
3. RÓWNOWAGA PŁASKIEGO UKŁADU SIŁ
3. ÓWNOWG PŁSKIEGO UKŁDU SIŁ Zadanie 3. elka o długości 3a jest utwierdzona w punkcie zaś w punkcie spoczywa na podporze przegubowej ruchomej, rysunek 3... by belka była statycznie wyznaczalna w punkcie
MECHANIKA CIAŁA ODKSZTAŁCALNEGO. 1. Przedmiot i cel wytrzymałości materiałów STATYKA POLSKIE NORMY PODSTAWOWE POJĘCIA, DEFINICJE I ZAŁOŻENIA 1
ODSTWOWE OJĘC, DEFNCJE ZŁOŻEN 1 Wytrzymałość ateriałów - dział mechaniki stosowanej zajmujący się zachowaniem ciał stałych pod wpływem różnego typu obciążeń. Celem analizy tego zachowania jest wyznaczenie
Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.
Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład
Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są
PODPORY SPRĘŻYSTE Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są wprost proporcjonalne do reakcji w nich
gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:
1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]
Treść ćwiczenia T6: Wyznaczanie sił wewnętrznych w belkach
Instrukcja przygotowania i realizacji scenariusza dotyczącego ćwiczenia 6 z przedmiotu "Wytrzymałość materiałów", przeznaczona dla studentów II roku studiów stacjonarnych I stopnia w kierunku Energetyka
Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE
METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody
Mechanika i Budowa Maszyn
Mechanika i Budowa Maszyn Materiały pomocnicze do ćwiczeń Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Andrzej J. Zmysłowski Andrzej J. Zmysłowski Wyznaczanie sił wewnętrznych w belkach
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
1. METODA PRZEMIESZCZEŃ
.. METODA PRZEMIESZCZEŃ.. Obliczanie sił wewnętrznych od obciążenia zewnętrznego q = kn/m P= kn Rys... Schemat konstrukcji φ φ u Rys... Układ podstawowy metody przemieszczeń Do wyliczenia mamy niewiadome:
[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)
PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]
wszystkie elementy modelu płaskiego są w jednej płaszczyźnie, zwanej płaszczyzną modelu
Schemat statyczny zawiera informacje, takie jak: geometria i połoŝenie tarcz (ciał sztywnych), połączenia tarcz z fundamentem i ze sobą, rodzaj, połoŝenie i wartość obciąŝeń czynnych. wszystkie elementy
7. WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELKACH
7. WYZNCZNIE SIŁ WEWNĘTRZNYCH W ELKCH Zadanie 7.1 Dla belki jak na rysunku 7.1.1 ułożyć równania sił wewnętrznych i sporządzić ich wykresy. Dane: q, a, M =. Rys.7.1.1 Rys.7.1. W zależności od rodzaju podpór
OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA
POLECHNA POZNAŃSA WYDZAŁ BUDOWNCWA NŻYNER ŚRODOWSA NSYU ONSRUCJ BUDOWLANYCH ZAŁAD ECHAN BUDOWL OBLCZANE RA EODĄ PRZEESZCZEŃ WERSJA OPUEROWA Ćwiczenie projektowe nr z echani budowli Wykonał: aciej BYCZYŃS
R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y
Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α
FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c
FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie
Z1/7. ANALIZA RAM PŁASKICH ZADANIE 3
Z1/7. NLIZ RM PŁSKIH ZNI 3 1 Z1/7. NLIZ RM PŁSKIH ZNI 3 Z1/7.1 Zadanie 3 Narysować wykresy sił przekrojowych w ramie wspornikowej przedstawionej na rysunku Z1/7.1. Następnie sprawdzić równowagę sił przekrojowych
MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW - OBLICZANIE SIŁ WEWNĘTRZNYCH W BELKACH
ECHANIKA I WYTRZYAŁOŚĆ ATERIAŁÓW - OBLICZANIE SIŁ WEWNĘTRZNYCH W BELKACH ZAD. 1. OBLICZYĆ SIŁY TNĄCE ORAZ OENTY ZGINAJĄCE W BELCE ORAZ NARYSOWAĆ WYKRESY TYCH SIŁ Wyznaczamy siły reakcji. Obciążenie ciągłe
Narysować wykresy momentów i sił tnących w belce jak na rysunku. 3ql
Narysować wykresy momentów i sił tnących w belce jak na rysunku. q l Określamy stopień statycznej niewyznaczalności: n s = r - 3 - p = 5-3 - 0 = 2 Przyjmujemy schemat podstawowy: X 2 X Zakładamy do obliczeń,
2kN/m Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeń dobieram wstępne przekroje prętów.
2kN/m -20 C D 5kN 0,006m A B 0,004m +0 +20 0,005rad E 4 2 4 [m] Układ prętów ma dwie tarcze i osiem reakcji w podporach. Stopień statycznej niewyznaczalności SSN= 2, ponieważ, przy dwóch tarczach powinno
STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH
Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH.. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Rozwiązując układy niewyznaczalne dowolnie obciążone, bardzo często pomijaliśmy wpływ sił normalnych i
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i
Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym
Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest
FUNKCJA LINIOWA - WYKRES
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości
Zadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć:
adanie 3. elki statycznie wyznaczalne. 15K la belek statycznie wyznaczalnych przedstawionych na rysunkach rys., rys., wyznaczyć: 18K 0.5m 1.5m 1. składowe reakcji podpór, 2. zapisać funkcje sił przekrojowych,
Dr inż. Janusz Dębiński
r inż. Janusz ębiński Mechanika teoretyczna zastosowanie metody prac wirtualnych 1. Metoda prac wirtualnych zadanie 1 1.1. Zadanie 1 Na rysunku 1.1 przedstawiono belkę złożoną z pionowym prętem F, na którą
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
1. Obciążenie statyczne
. Obciążenie statyczne.. Obliczenie stopnia kinematycznej niewyznaczalności n = Σ ϕ + Σ = + = p ( ) Σ = w p + d u = 5 + 5 + 0 0 =. Schemat podstawowy metody przemieszczeń . Schemat odkształceń łańcucha
PRZYKŁADOWE ZADANIA. ZADANIE 1 (ocena dostateczna)
PRZYKŁADOWE ZADANIA ZADANIE (ocena dostateczna) Obliczyć reakcje, siły wewnętrzne oraz przemieszczenia dla kratownicy korzystając z Metody Elementów Skończonych. Zweryfikować poprawność obliczeń w mathcadzie
Defi f nicja n aprę r żeń
Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie
ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych
ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych bez pisania funkcji Układ płaski - konwencja zwrotu osi układu domniemany globalny układ współrzędnych ze zwrotem osi jak na rysunku (nawet jeśli
Rachunek wektorowy - wprowadzenie. dr inż. Romuald Kędzierski
Rachunek wektorowy - wprowadzenie dr inż. Romuald Kędzierski Graficzne przedstawianie wielkości wektorowych Długość wektora jest miarą jego wartości Linia prosta wyznaczająca kierunek działania wektora
{H B= 6 kn. Przykład 1. Dana jest belka: Podać wykresy NTM.
Przykład 1. Dana jest belka: Podać wykresy NTM. Niezależnie od sposobu rozwiązywania zadania, zacząć należy od zastąpienia podpór reakcjami. Na czas obliczania reakcji można zastąpić obciążenie ciągłe
Hale o konstrukcji słupowo-ryglowej
Hale o konstrukcji słupowo-ryglowej SCHEMATY KONSTRUKCYJNE Elementy konstrukcji hal z transportem podpartym: - prefabrykowane, żelbetowe płyty dachowe zmonolityzowane w sztywne tarcze lub przekrycie lekkie
Przykład 1.8. Wyznaczanie obciąŝenia granicznego dla układu prętowego metodą kinematyczną i statyczną
Przykład 1.8. Wyznaczanie obciąŝenia granicznego dla układu prętowego metodą kinematyczną i statyczną Analizując równowagę układu w stanie granicznym wyznaczyć obciąŝenie graniczne dla zadanych wartości
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia Mechanika teoretyczna Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych,
Wpływ podpory ograniczającej obrót pasa ściskanego na stateczność słupa-belki
Wpływ podpory ograniczającej obrót pasa ściskanego na stateczność słupa-belki Informacje ogólne Podpora ograniczająca obrót pasa ściskanego słupa (albo ramy) może znacząco podnieść wielkość mnożnika obciążenia,
Mechanika Analityczna i Drgania
Mechanika naityczna i rgania Zasada prac przygotowanych dr inż. Sebastian akuła Wydział nżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki mai: spakua@agh.edu.p dr inż. Sebastian akuła
Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeo dobieram wstępne przekroje prętów.
2kN/m -20 C D 5kN 0,006m A B 0,004m +0 +20 3 0,005rad E 4 2 4 [m] Układ prętów ma dwie tarcze i osiem reakcji w podporach. Stopieo statycznej niewyznaczalności SSN= 2, ponieważ, przy dwóch tarczach powinno
Wyznaczenie reakcji w Belkach Gerbera
Wyznaczenie reakcji w elkach erbera Sposób obliczania: by policzyć elkę erbera w najprostszy sposób dzielimy ją w przegubach uzyskując pojedyncze belki by móc policzyć konstrukcję, belki powstałe po podziale
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH
1 Przedmowa Okładka CZĘŚĆ PIERWSZA. SPIS PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1. STAN NAPRĘŻENIA 1.1. SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE 1.2. WEKTOR NAPRĘŻENIA 1.3. STAN NAPRĘŻENIA W PUNKCIE 1.4. RÓWNANIA
FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE
Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,
Spis treści. Wstęp Część I STATYKA
Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.
PROJEKT NR 1 METODA PRZEMIESZCZEŃ
POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr
SPORZĄDZANIE LINII WPŁYWU WIELKOŚCI STATYCZNYCH SPOSOBEM KINEMATYCZNYM
LINIE WŁYWU przykład sposób kinematyczny SORZĄDZNIE LINII WŁYWU WIELKOŚCI STTYCZNYCH SOSOBEM KINEMTYCZNYM Sposób kinematyczny sporządzania linii wpływu wielkości statycznych polega na wykorzystaniu twierdzenia
Sił Si y y w ewnętrzne (1)(1 Mamy my bry r łę y łę mate t r e iralną obc ob iążon ż ą u kła k de d m e si m ł si ł
echanika ogóna Wykład nr 5 Statyczna wyznaczaność układu. Siły wewnętrzne. 1 Stopień statycznej wyznaczaności Stopień zewnętrznej statycznej wyznaczaności n: Beka: n=rgrs; Rama: n=r3ogrs; rs; Kratownica:
ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI
Łukasz Faściszewski, gr. KBI2, sem. 2, Nr albumu: 75 201; rok akademicki 2010/11. ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Stateczność ram wersja komputerowa 1. Schemat statyczny ramy i dane materiałowe
ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY
ALGORYTM STATYCZNEJ ANALIZY MES DLA RATOWNICY Piotr Pluciński e-mail: p.plucinski@l5.pk.edu.pl Jerzy Pamin e-mail: jpamin@l5.pk.edu.pl Instytut Technologii Informatycznych w Inżynierii Lądowej Wydział
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie
Przykład Łuk ze ściągiem, obciążenie styczne. D A
Przykład 1.4. Łuk ze ściągiem, obciążenie styczne. Rysunek przedstawia łuk trójprzegubowy, kołowy, ze ściągiem. Łuk obciążony jest obciążeniem stycznym do łuku, o stałej gęstości na jednostkę długości
Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym
Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel
Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z
Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z wykorzystaniem Metody Sił Temat zadania rozwiązanie
Mechanika ogólna Obliczanie sił wewnętrznych c w układach prętowych. Kratownice. Kratownica
Mechanika ogólna Wykład nr 7 Obliczanie sił wewnętrznych w układach rętowych. Kratownice. 1 Kratownica Układ rętów w rostoliniowych: ołą łączenia rzegubowe w węzłach; w obciąż ążenia w ostaci sił skuionych
ANALIZA KINEMATYCZNA PŁASKICH UKŁADÓW TARCZ SZTYWNYCH
ANALIZA KINEMATYCZNA PŁASKICH UKŁADÓW TARCZ SZTYWNYCH 1. Rodzaje więzów i reakcje więzów KaŜda konstrukcja budowlana, stanowiąca przedmiot analizy nauki wytrzymałości materiałów, jest w jakiś sposób posadowiona,
DEFINICJE: Punkt, prosta, płaszczyzna i przestrzeń są pojęciami pierwotnymi przyjmowanymi bez definicji,
TEMATYKA: Współliniowość Współpłaszczyznowość Ćwiczenia nr DEFINICJE: Punkt, prosta, płaszczyzna i przestrzeń są pojęciami pierwotnymi przyjmowanymi bez definicji, Podstawowe aksjomaty (zdanie, którego
Mechanika ogólna statyka
Mechanika ogóna statyka kierunek Budownictwo, sem. II materiały pomocnicze do ćwiczeń opracowanie: dr inż. iotr Dębski, dr inż. Irena Wagner TREŚĆ WYKŁADU ojęcia podstawowe, działy mechaniki. ojęcie punktu
FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH
FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest
WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą
1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku
Statyka. Rozdział Twierdzenie o trzech siłach. Twierdzenie dotyczy równowagi płaskiego zbieżnego układu sił.
Rozdział 1 Statyka 1.1 Twierdzenie o trzech siłach Twierdzenie dotyczy równowagi płaskiego zbieżnego układu sił. Twierdzenie 1 (Twierdzenie o trzech siłach) Aby trzy nierównoległe dosiebiesiły działajace
Zestaw pytań z konstrukcji i mechaniki
Zestaw pytań z konstrukcji i mechaniki 1. Układ sił na przedstawionym rysunku a) jest w równowadze b) jest w równowadze jeśli jest to układ dowolny c) nie jest w równowadze d) na podstawie tego rysunku
Wytrzymałość Materiałów
Wytrzymałość Materiałów Zginanie Wyznaczanie sił wewnętrznych w belkach i ramach, analiza stanu naprężeń i odkształceń, warunek bezpieczeństwa Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości,
Na rysunku przedstawiony jest wykres funkcji f(x) określonej dla x [-7, 8].
Zadania 1 28 stanowią przykłady spełniające kryteria na ocenę 3. Zadanie 1 Na rysunku przedstawiony jest wykres funkcji f() określonej dla [-7, 8]. Odczytaj z wykresu i zapisz: a) największą wartość funkcji
BELKI GERBERA WYTRZYMAŁOŚĆ MATERIAŁÓW. n s = R P 3 gdzie: - R liczba reakcji, - P liczba przegubów, - 3 liczba równań równowagi na płaszczyźnie.
Są to belki ciągłe przegubowe i należą do układów statycznie wyznaczalnych (zatem n s = 0). Przykładowy schemat: A ELKI GERERA V V Wyznaczenie stopnia statycznej niewyznaczalności układu: n s = R P 3 gdzie: